Copyright LTG 2011 LTG/PTR/EPUSP
|
|
|
- Lívia Domingues Prado
- 8 Há anos
- Visualizações:
Transcrição
1 1
2 Avaliação de Áreas 2 Fundamental para planejamentos de engenharia, agricultura, loteamentos, limites de preservação ambiental, levantamentos cadastrais para compra e venda, partilha, escrituras, etc. As áreas topográficas são projeções horizontais das obras projetadas e executadas pela engenharia.
3 Avaliação de Áreas 3 Processos de Cálculo Analíticos; Computacionais; Gráficos; Mecânicos; Mistos
4 Avaliação de Áreas 4 Processos Analíticos Foram os primeiros métodos desenvolvidos para o cálculo de área de poligonais. São baseados em fórmulas matemáticas, limitantes da figura. Fórmula de Gauss Método de Bezout Método de Poncelet Método de Simpson
5 5 Processos Analíticos FÓRMULA DE GAUSS (Áreas delimitadas por poligonais regulares: triângulos, trapézios, etc) Basea-se na soma e subtração da área de trapézios formados pelos vértices e projeções sobre os eixos N, E. Essa operação pode ser expressa por diferentes equações, como a equação a seguir, que utiliza a propriedade distributiva. S n 0,5 N E E i i1 i1 i1 n i N i1
6 6 Processos Analíticos FÓRMULA DE GAUSS Exemplo: Base dos trapézios no eixo E 2 3 N 1 4 E =
7 N1 N2 N1 N2 N5 N5 N3 N3 N4 N4 7 Processos Analíticos FÓRMULA DE GAUSS Exemplo: Base dos trapézios no eixo E S = 0,5 x [ (E2-E1) x (N1+N2) + (E3-E2) x (N3+N2) + (E4-E3) x (N4+N3) + (E5-E4) x (N5+N4) E3-E2 E4-E3 + (E1-E5) x (N1+N5)] E2 E1 (uma das formas da fórmula de Gauss) E1-E5 (<0) E5-E4 (<0)
8 8 Processos Analíticos MÉTODO DE BEZOUT (Áreas que se delimitam por poligonais irregulares) Para n qualquer (par ou ímpar) esse método interpreta a curva com uma série de trapézios de altura d. y o y 1 y 2 y 3 y 4 y 5 y 6 y 7 y n d d d d d d d d n 1 yo yn S d yi 2 i1 onde: yi = y1 + y2 + y yn 1 (Internos)
9 9 Processos Analíticos MÉTODO DE PONCELET (Áreas que se delimitam por poligonais irregulares) Para n par, interpreta a curva como uma série de trapézios de altura 2d. S d n1 ( y ) o yn yi 4 1 n1 2 i1 y y onde: yi = y1 + y3 + y yn - 1 (Ímpares)
10 10 Processos Analíticos MÉTODO DE SIMPSON (Áreas que se delimitam por poligonais irregulares) Para n par, interpreta a curva como uma série de trechos de parábola de base 2d, e calcula-se a área por integração. S d y y 2 y n p y i onde: y p = y 2 + y 4 + y y n 2 (pares) y i = y 1 + y 3 + y y n 1 (Ímpares)
11 11 Processos Analíticos MÉTODO DE SIMPSON
12 Processos Computacionais A partir de uma mesa digitalizadora acoplada a um computador que disponha de um editor de desenho (AutoCAD ou similar), fornece-se as coordenadas (x,y) de pelo menos dois pontos. O cursor passa a fornecer coordenadas reais. 12
13 Processos Computacionais O programa utiliza a fórmula de Gauss, já que o contorno da figura é na realidade uma poligonal de muitos lados. 13 LENTE DE AUMENTO MIRA DO CURSOR cursor ,
14 14 Processos Gráficos Transformação Geométrica Faixas de Igual Espessura Divisão de Quadrículas Figuras Geométricas Equivalentes
15 15 Processos Gráficos TRANSFORMAÇÃO GEOMÉTRICA Consiste em transformar as poligonais regulares em um triângulo de área equivalente. D D D C C E E A B N A B M N M
16 16 Processos Gráficos FAIXAS DE IGUAL ESPESSURA (Áreas que se delimitam por poligonais irregulares) Consiste em efetuar a divisão da figura em faixas de espessura constante (e), medindo-se as larguras (l i ) dessas faixas. S e l i i
17 17 Processos Gráficos DIVISÃO EM QUADRÍCULAS (Áreas que se delimitam por poligonais irregulares) Consiste na contagem direta dos quadrados mutiplicados pela área deles. Pode-se utilizar milimetrado para facilitar a tarefa. S i A i
18 18 Processos Gráficos FIGURAS GEOMÉTRICAS EQUIVALENTES (Áreas que se delimitam por poligonais irregulares) Consiste em dividir a área em figuras geométricas equivalentes: retângulos, triângulos e trapézios, de modo a compensar as áreas que ficaram dentro e fora da figura geométrica. S i A i
19 19 Processo Mecânico PLANÍMETRO O planímetro é um equipamento que possui dois braços articulados com um pólo numa extremidade, que deve permanecer fixo, e um cursor na outra, devendo percorrer todo o contorno da área, retornando ao ponto inicial.
20 20 Processo Mecânico PLANÍMETRO Um tambor giratório no mesmo braço do cursor, situado na extremidade oposta, faz girar um ponteiro sobre o círculo de leitura. Pode-se demonstrar que o giro do tambor, e portanto a diferença de leituras, é proporcional à área envolvida pelo contorno percorrido. braço polar pólo fixo rolo de medição lupa de medição do cursor braço de medição
21 21 Processo Mecânico PLANÍMETRO Esquema de operação
22 22 Processo Mecânico PLANÍMETRO Esquema de operação
23 23 Processo Mecânico PLANÍMETRO S área Lf leitura final Li leitura inicial k constante do aparelho S k ( L f Li ) Para determinar o valor de k, sugere-se planimetrar n vezes uma área S conhecida. S d y o 2 y n n 1 i1 y i
TOPOGRAFIA CÁLCULO DE ÁREAS
TOPOGRAFIA CÁLCULO DE ÁREAS AVALIAÇÃO DE ÁREAS Fundamental para planejamentos de engenharia, agricultura, loteamentos, limites de preservação ambiental, levantamentos cadastrais para compra e venda, partilha,
Avaliação de Áreas. As áreas topográficas são projeções horizontais das obras projetadas e executadas pela engenharia.
1 Avaliação de Áreas 2 A avaliação de áreas é fundamental para planejamentos de engenharia, agricultura, loteamentos, limites de preservação ambiental, levantamentos cadastrais para compra e venda, partilha,
TOPOGRAFIA II CÁLCULO DE ÁREA
TOPOGRAFIA II CÁLCULO DE ÁREA PROCESSO GRÁFICO Cálculo de áreas Neste processo a área a ser avaliada é dividida em figuras geométricas, como triângulos, quadrados ou outras figuras, e a área final será
APONTAMENTOS DE AULA TOPOGRAFIA AULAS 09 e 10: CÁLCULO DA POLIGONAL
APONTAMENTOS DE AULA TOPOGRAFIA AULAS 09 e 10: CÁLCULO DA POLIGONAL Extraído da apostila fundamentos da topografia, de Luis A. K. Veiga/Maria A. Z. Zanetti/Pedro L. Faggion A avaliação de áreas é uma atividade
7 NIVELAMENTO GEOMÉTRICO
7 NIVELAMENTO GEOMÉTRICO 44 7 NIVELAMENTO GEOMÉTRICO A partir dos dados mostrados nas planilhas anexas, pede-se determinar as cotas ajustadas dos pontos da poligonal levantada no campo, pelo processo de
REVISÃO DE TRIGONOMETRIA E GEOMETRIA ANALÍTICA
UNIVERSIDADE DE SÃO PAULO ESCOLA SUPERIOR DE AGRICULTURA LUIZ DE QUEIROZ DEPARTAMENTO DE ENGENHARIA DE BIOSSISTEMAS LEB340 TOPOGRAFIA E GEOPROCESSAMENTO I PROF. DR. CARLOS ALBERTO VETTORAZZI REVISÃO DE
TOPOGRAFIA. Áreas e Volumes
TOPOGRAFIA Áreas e Volumes A estimativa da área de um terreno pode ser determinada através de medições realizadas diretamente no terreno ou através de medições gráficas sobre uma planta topográfica. As
AULA 03 MEDIDAS ANGULARES. Laboratório de Topografia e Cartografia - CTUFES
AULA 03 MEDIDAS ANGULARES Laboratório de Topografia e Cartografia - CTUFES Declinação magnética: Ângulo formado pelo norte magnético e o norte geográfico. Devido ao NG ser o eixo de rotação da Terra e
O objetivo da Topografia é, representar graficamente uma porção limitada do terreno, através das etapas:
O objetivo da Topografia é, representar graficamente uma porção limitada do terreno, através das etapas: 1. Materialização de um eixo de referência no terreno ao qual serão amarrados todos os pontos julgados
Mat. Monitor: Roberta Teixeira
1 Professor: Alex Amaral Monitor: Roberta Teixeira 2 Geometria analítica plana: circunferência e elipse 26 out RESUMO 1) Circunferência 1.1) Definição: Circunferência é o nome dado ao conjunto de pontos
Preliminares de Cálculo
Preliminares de Cálculo Profs. Ulysses Sodré e Olivio Augusto Weber Londrina, 21 de Fevereiro de 2008, arquivo: precalc.tex... Conteúdo 1 Números reais 2 1.1 Algumas propriedades do corpo R dos números
Aplicações à Física e à Engenharia
UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Aplicações à Física
Bacias Hidrográficas. Universidade de São Paulo PHA3307 Hidrologia Aplicada. Escola Politécnica. Aula 3
Universidade de São Paulo PHA3307 Hidrologia Aplicada Escola Politécnica Departamento de Eng. Hidráulica e Ambiental Bacias Hidrográficas Aula 3 Prof. Dr. Arisvaldo Méllo Prof. Dr. Joaquin Garcia Objetivos
Universidade do Estado de Mato Grosso UNEMAT. Estradas 1 Projeto geométrico
Universidade do Estado de Mato Grosso UNEMAT Faculdade de Ciências Exatas e Tecnológicas FACET Curso: Bacharelado em Engenharia Civil Estradas 1 Projeto geométrico Prof. Me. Arnaldo Taveira Chioveto O
MAT Cálculo Diferencial e Integral I
MAT3110 - Cálculo Diferencial e Integral I Bacharelado em Matemática Aplicada e Computacional - IME/USP Lista de exercícios 4 23/04/2015 1. Encontre as equações das retas que passam pelo ponto (3, 2) e
Sumário. Agradecimentos Sobre os Autores Prefácio. CAPÍTULO 1 Conceitos Gerais de Geomática 1
Sumário Agradecimentos Sobre os Autores Prefácio V IX XI CAPÍTULO 1 Conceitos Gerais de Geomática 1 1.1 Introdução 1 1.2 Ciências e técnicas englobadas pela Geomática 2 1.2.1 Geodésia 2 1.2.2 Topografia
Topografia 1. Métodos de Levantamento Planimétrico. Prof.ª MSc. Antonia Fabiana Marques Almeida Outubro/2013
UNIVERSIDADE REGIONAL DO CARIRI DEPARTAMENTO DE CONSTRUÇÃO CIVIL TECNOLOGIA EM ESTRADAS E TOPOGRAFIA Topografia 1 Métodos de Levantamento Planimétrico Prof.ª MSc. Antonia Fabiana Marques Almeida [email protected]
ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO Departamento de Engenharia de Transportes
ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO Departamento de Engenharia de Transportes EXERCÍCIOS - TOPOGRAFIA Prof.: CARLOS YUKIO SUZUKI APRESENTAÇÃO Esta apostila de apoio didático à disciplina Topografia,
Roteiro de trabalho para o 5o ano
Roteiro de trabalho para o 5o ano No volume do 5º ano estão assim organizados os conteúdos e as habilidades a serem desenvolvidos no decorrer do ano. LIÇÃO CONTEÚDO OBJETOS 1. Vamos recordar 2. Sistema
Lista 12. Aula 39. Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil
Revisão - Resolução de Exerícios Aula 39 Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil 13 de Junho de 2014 Primeiro Semestre de 2014 Turma 2014106 - Engenharia Mecânica
UNICAP Universidade Católica de Pernambuco Prof. Prof. Eduardo Oliveira Barros Disciplina: Estradas II. Terraplenagem
UNICAP Universidade Católica de Pernambuco Prof. Prof. Eduardo Oliveira Barros Disciplina: Estradas II Terraplenagem Recife, Março 2017 Conceitos Básicos de Terraplenagem Elaboração do projeto de terraplenagem
Nome Cartão Turma Chamada
UFG Instituto de Matemática 215/2 POVA 2 16 de outubro de 215 8h3 1 2 3 4 5 81 3 y 811 onsidere a integral dupla iterada I = f(x,y)dxdy, em que o integrando é dado por f(x,y) = 4x y 2 x 2. 1. Determine
Capítulo 1-Sistemas de Coordenadas, Intervalos e Inequações
Capítulo 1-Sistemas de Coordenadas, Intervalos e Inequações 1 Sistema Unidimensional de Coordenadas Cartesianas Conceito: Neste sistema, também chamado de Sistema Linear, um ponto pode se mover livremente
Datas de Avaliações 2016
ROTEIRO DE ESTUDOS MATEMÁTICA (6ºB, 7ºA, 8ºA e 9ºA) SÉRIE 6º ANO B Conteúdo - Sucessor e Antecessor; - Representação de Conjuntos e as relações entre eles: pertinência e inclusão ( ). - Estudo da Geometria:
7. Subtração de números inteiros Adição algébrica de números inteiros 31 Expressões numéricas com adição algébrica 33
Sumário CAPÍTULO 1 Os números inteiros 1. A necessidade de outros números 11 2. Representação dos números inteiros na reta numérica 14 3. Valor absoluto ou módulo de um número inteiro 15 4. Números inteiros
ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO Departamento de Engenharia de Transportes
ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO Departamento de Engenharia de Transportes EXERCÍCIOS - TOPOGRAFIA Prof.: CARLOS YUKIO SUZUKI APRESENTAÇÃO Esta apostila de apoio didático à disciplina Topografia,
ELIPSE. Figura 1: Desenho de uma elipse no plano euclidiano (à esquerda). Desenho de uma elipse no plano cartesiano (à direita).
QUÁDRICAS/CÔNICAS - Cálculo II MAT 147 FEAUSP Segundo semestre de 2018 Professor Oswaldo Rio Branco de Oliveira [ Veja também http://www.ime.usp.br/~oliveira/ele-conicas.pdf] No plano euclidiano consideremos
UNICAP Universidade Católica de Pernambuco Laboratório de Topografia de UNICAP - LABTOP Topografia 2. Interpretação Curvas de Nível
UNICAP Universidade Católica de Pernambuco Laboratório de Topografia de UNICAP - LABTOP Topografia 2 Interpretação Curvas de Nível Recife, 2014 Conceito de Curvas de Nível: São linhas que ligam pontos,
Olá! Fernanda e Lorena. Matemática. Somos do PET Engenharia Ambiental
Olá! Fernanda e Lorena Somos do PET Engenharia Ambiental Matemática Polígonos Vamos pensar + O que são polígonos? + O que vocês entendem por área? + Como calculamos a área de grama para um campo de futebol?
SOLUCÃO DAS ATIVIDADES COM VARETAS
SOLUCÃO DAS ATIVIDADES COM VARETAS Em todas as atividades é usado o Material: Varetas. Nos casos específicos onde o trabalho é realizado com varetas congruentes será especificado como Material: varetas
MEDIÇÃO DA ÁREA DE PRESERVAÇÃO PERMANENTE DE UM CURSO D ÁGUA ATRAVÉS DE MÉTODO NUMÉRICO 1
MEDIÇÃO DA ÁREA DE PRESERVAÇÃO PERMANENTE DE UM CURSO D ÁGUA ATRAVÉS DE MÉTODO NUMÉRICO 1 Nicole Deckmann Callai 2, Gabriela Da Silva Da Costa Bressam 3, Peterson Cleyton Avi 4. 1 Pesquisa desenvolvida
APÊNDICE I Alguns procedimentos de obtenção do centro de gravidade de. figuras planas
245 APÊNDICE I Alguns procedimentos de obtenção do centro de gravidade de figuras planas 1. Demonstração da localização do centro de gravidade de um paralelogramo por Arquimedes (287-212 a.c) Arquimedes
Plano Curricular de Matemática 3.º Ano - Ano Letivo 2016/2017
Plano Curricular de Matemática 3.º Ano - Ano Letivo 2016/2017 1.º Período Conteúdos Programados Previstas Dadas Números e Operações Utilizar corretamente os numerais ordinais até vigésimo. Ler e representar
MATEMÁTICA. O aluno achou interessante e continuou a escrever, até a décima linha. Somando os números dessa linha, ele encontrou:
MATEMÁTICA Passando em uma sala de aula, um aluno verificou que, no quadro-negro, o professor havia escrito os números naturais ímpares da seguinte maneira: 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 O aluno
DESENHO TÉCNICO ( AULA 02)
DESENHO TÉCNICO ( AULA 02) Posições da reta e do plano no espaço A geometria, ramo da Matemática que estuda as figuras geométricas, preocupa-se também com a posição que os objetos ocupam no espaço. A reta
PLANIFICAÇÃO ANUAL 2016/2017 MATEMÁTICA- 3ºANO
Direção Geral dos Estabelecimentos Escolares Direção de Serviços da Região do Algarve Agrupamento de Escolas José Belchior Viegas (Sede: Escola Secundária José Belchior Viegas) PLANIFICAÇÃO ANUAL 2016/2017
AGRUPAMENTO DE ESCOLAS DE PAREDE
GESTÃO DE CONTEÚDOS Ensino Básico 1.º Ciclo Matemática 3.º Ano Domínios Subdomínios Conteúdos Programáticos Nº Tempos previstos (Horas) 1º Período Geometria Medida naturais Adição e subtração Ler e interpretar
Geometria Analítica. Geometria Analítica 28/08/2012
Prof. Luiz Antonio do Nascimento [email protected] www.lnascimento.com.br Conjuntos Propriedades das operações de adição e multiplicação: Propriedade comutativa: Adição a + b = b + a Multiplicação
Planificação Anual de Matemática 2017 / ºAno
Planificação Anual de Matemática 2017 / 2018 3ºAno NÚMEROS E Aulas Previstas: 1º período: 64 aulas 2º período: 55 aulas 3º período: 52 aulas DOMÍNIOS OBJETIVOS ATIVIDADES Números naturais Utilizar corretamente
NÚMEROS E OPERAÇÕES Números naturais
CRITÉRIOS ESPECÍFICOS DE AVALIAÇÃO (Aprovados em Conselho Pedagógico de 16 outubro de 2012) No caso específico da disciplina de MATEMÁTICA, do 3.º ano de escolaridade, a avaliação incidirá ainda ao nível
FUNDAMENTOS DE TOPOGRAFIA
Estrutura do Curso Conceitos Topografia Ângulos e Distâncias Poligonal e Aplicações Medição de Ângulos Aulas Práticas Cálculo de Áreas Cálculo da Distância Remota Topografia...do grego topos (lugar) e
Planificação Anual de Matemática 2016 / ºAno
Planificação Anual de Matemática 2016 / 2017 3ºAno NÚMEROS E Aulas Previstas: 1º período: 63 aulas 2º período: 63 aulas 3º período: 45 aulas DOMÍNIOS OBJETIVOS ATIVIDADES Números naturais Conhecer os numerais
PLANIFICAÇÃO ANUAL MATEMÁTICA 3º ANO
PLANIFICAÇÃO ANUAL MATEMÁTICA 3º ANO Domínios Subdomínios Objetivos Descritores de Desempenho/ Metas de Aprendizagem NÚMEROS OPERAÇÕES E Números naturais Conhecer os números ordinais Contar até um milhão
Capítulo 19. Fórmulas de Integração Numérica
Capítulo 19 Fórmulas de Integração Numérica Você tem um problema Lembre-se que a velocidade de um saltador de bungee jumping em queda livre como uma função do tempo pode ser calculada como: v t gm gc.
Plano de Recuperação Semestral EF2
Série/Ano: 9º ANO MATEMÁTICA Objetivo: Proporcionar ao aluno a oportunidade de rever os conteúdos trabalhados durante o semestre nos quais apresentou dificuldade e que servirão como pré-requisitos para
CURRÍCULO DA DISCIPLINA MATEMÁTICA / CRITÉRIOS DE AVALIAÇÃO 2013/2014 1º Ciclo Matemática 2º Ano Metas / Objetivos
de Avaliação Números e Operações Números Sistema de numeração decimal Adição e subtração Multiplicação Conhecer os numerais ordinais Contar até mil Reconhecer a paridade Descodificar o sistema de numeração
PLANIFICAÇÃO MENSAL/ANUAL Matemática 3.ºano
PLANIFICAÇÃO MENSAL/ANUAL Matemática 3.ºano Domínio/ Subdomínio Números Naturais Sistema de numeração decimal Adição e subtração Multiplicação MATEMÁTICA Metas a atingir 3.º ANO DE ESCOLARIDADE Meses do
Universidade Federal do Paraná Setor de Ciências da Terra - Departamento de Geomática Prof a Regiane Dalazoana
1 Universidade Federal do Paraná Setor de Ciências da Terra - Departamento de Geomática Prof a Regiane Dalazoana CAPÍTULO 1 - REVISÃO MATEMÁTICA GA069 - TOPOGRAFIA I LISTA DE EXERCÍCIOS a) Transforme os
Matriz Curricular 1º Ciclo / 2016 Ano de Escolaridade: 3.º Ano Matemática
Ano letivo 2015 / 16 Matriz Curricular 1º Ciclo Ano Letivo: 2015 / 2016 Ano de Escolaridade: 3.º Ano Matemática Nº total de dias letivos 164 dias Nº de dias letivos 1º período - 64 dias 2º período - 52
Cronograma - 2º Bimestre / 2016
Prof.: TIAGO LIMA Disciplina: MATEMÁTICA Série: 1º ano EM 25/04 e 28/04 02/05 e 04/05 09/05 e 12/05 23/05 e 26/05 30/05 e 02/06 06/06 e 09/06 13/06 e 16/06 20/06 e 23/06 27/06 e 30/06 04/07 e 07/07 Função
Integração Volume. Aula 07 Matemática II Agronomia Prof. Danilene Donin Berticelli
Integração Volume Aula 7 Matemática II Agronomia Prof. Danilene Donin Berticelli Volume de um sólido Na tentativa de encontra o volume de um sólido, nos deparamos com o mesmo tipo de problema que para
MATEMÁTICA PLANEJAMENTO 4º BIMESTRE º B - 11 Anos
PREFEITURA MUNICIPAL DE IPATINGA ESTADO DE MINAS GERAIS SECRETARIA MUNICIPAL DE EDUCAÇÃO DEPARTAMENTO PEDAGÓGICO/ SEÇÃO DE ENSINO FORMAL Centro de Formação Pedagógica CENFOP MATEMÁTICA PLANEJAMENTO 4º
Figura 1. Duas partículas de diferentes massas perfeitamente apoiadas pelo bastão = (1)
PRÁTICA 13: CENTRO DE MASSA Centro de massa (ou centro de gravidade) de um objeto pode ser definido como o ponto em que ele pode ser equilibrado horizontalmente. Seu significado físico tem muita utilidade
Qual é a posição do Centro de Massa de um corpo de material homogêneo que possui um eixo de simetria
Valter B. Dantas Imagem e texto protegida por direitos autorais. Copia proibida. Geometria das Massas Centro de Massa de um Sistema Contínuo de Partículas Qual é a posição do Centro de Massa de um corpo
DESCRITORES BIM4/2018 4º ANO
ES BIM4/2018 4º ANO fd15 id6 id10 id11 id12 id13 id18 id19 id20 id24 id28 im32 Resolver problema utilizando relações entre diferentes unidades de medida. Estimar a medida de grandezas, utilizando unidades
Área e Teorema Fundamental do Cálculo
UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Área e Teorema Fundamental
Elementos ópticos. 1 - Conceitos relacionados. Reflexão e refração da luz, imagem real, imagem virtual, distância focal.
1 - Conceitos relacionados Reflexão e refração da luz, imagem real, imagem virtual, distância focal. 2 - Objetivos Determinar a distância focal, o centro de curvatura e verificar a formação de imagens
LISTA 2 ESPELHOS PLANOS (MÓD. 3 E 4)
1. (Epcar (Afa) 2016) Considere um objeto formado por uma combinação de um quadrado de aresta a cujos vértices são centros geométricos de círculos e quadrados menores, como mostra a figura abaixo. Colocando-se
Grupo 1 - PIC OBMEP 2011 Módulo 2 - Geometria. Resumo do Encontro 6, 22 de setembro de Questões de geometria das provas da OBMEP
Grupo 1 - PIC OBMEP 2011 Módulo 2 - Geometria Resumo do Encontro 6, 22 de setembro de 2012 Questões de geometria das provas da OBMEP http://www.obmep.org.br/provas.htm 1. Área: conceito e áreas do quadrado
Objetivos Gerais Descritores Conteúdos. 1.Utilizar corretamente os números ordinais até "centésimo
AGRUPAMENTO DE ESCOLAS DE VALE DE MILHAÇOS PLANIFICAÇÃO ANUAL DE MATEMÁTICA 3.º ANO DE ESCOLARIDADE - 2016-2017 Domínio/ Números naturais Objetivos Gerais Descritores Conteúdos 1.Conhecer os números ordinais
DEPARTAMENTO DE MATEMÁTICA INFORMÁTICA DISCIPLINA: Matemática (7º Ano) METAS CURRICULARES/CONTEÚDOS... 1º Período
ANO LETIVO 2015/2016 DEPARTAMENTO DE MATEMÁTICA INFORMÁTICA DISCIPLINA: Matemática (7º Ano) METAS CURRICULARES/CONTEÚDOS... 1º Período Metas / Objetivos Conceitos / Conteúdos Aulas Previstas Números e
Colégio Notre Dame de Campinas Congregação de Santa Cruz PLANTÕES DE JULHO MATEMÁTICA AULA 1
PLANTÕES DE JULHO MATEMÁTICA AULA 1 Nome: Nº: Série: 3º ANO Turma: Prof: Luis Felipe Bortoletto Data: JULHO 2018 Lista 1 1) Após acionar um flash de uma câmera, a bateria imediatamente começa a recarregar
MATRIZ DE REFERÊNCIA - SPAECE MATEMÁTICA 5 o ANO DO ENSINO FUNDAMENTAL TEMAS E SEUS DESCRITORES
MATEMÁTICA 5 o ANO DO ENSINO FUNDAMENTAL I INTERAGINDO COM OS NÚMEROS E FUNÇÕES D1 Reconhecer e utilizar características do sistema de numeração decimal. Utilizar procedimentos de cálculo para obtenção
GGM Geometria Analítica I 19/04/2012- Turma M1 Dirce Uesu
GGM0016 Geometria Analítica I 19/04/01- Turma M1 Dirce Uesu CÔNICAS DEFINIÇÃO GEOMÉTRICA Exercício: Acesse o sitio abaixo e use o programa: http://www.professores.uff.br/hjbortol/disciplinas/005.1/gma04096/applets/conic/co
Universidade do Estado de Santa Catarina Departamento de Engenharia Civil TOPOGRAFIA I. Profa. Adriana Goulart dos Santos
Universidade do Estado de Santa Catarina Departamento de Engenharia Civil TOPOGRAFIA I Profa. Adriana Goulart dos Santos Recapitulando Topografia é a ciência que estuda a representação da superfície terrestre
PHA Hidrologia Ambiental. Bacias Hidrográficas
Escola Politécnica da Universidade de São Paulo Departamento de Engenharia Hidráulica e Ambiental PHA3308 - Hidrologia Ambiental Bacias Hidrográficas Mario Thadeu Leme de Barros Renato Carlos Zambon 1
c) F( 4, 2) r : 2x+y = 3 c) a = 3 F 1 = (0,0) F 2 = (1,1)
Lista de Exercícios Estudo Analítico das Cônicas e Quádricas 1. Determine o foco, o vértice, o parâmetro e a diretriz da parábola P e faça um esboço. a) P : y 2 = 4x b) P : y 2 +8x = 0 c) P : x 2 +6y =
MATRIZ DE REFERÊNCIA DE MATEMÁTICA PROVA FLORIPA MATEMÁTICA - 1º ANO DO ENSINO FUNDAMENTAL
MATEMÁTICA - 1º ANO DO ENSINO FUNDAMENTAL T1 - RECONHECIMENTO DE NÚMEROS E OPERAÇÕES. C1. Mobilizar ideias, conceitos e estruturas relacionadas à construção do significado dos números e suas representações.
Colégio Nossa Senhora de Lourdes. Professor: Leonardo Maciel Matemática. Apostila 5: Função do 2º grau
Colégio Nossa Senhora de Lourdes Professor: Leonardo Maciel Matemática Apostila 5: Função do º grau 1. (Enem 016) Um túnel deve ser lacrado com uma tampa de concreto. A seção transversal do túnel e a tampa
PROGRAMAÇÃO CURRICULAR DE MATEMÁTICA. UNIDADE 1 Conteúdos
PROGRAMAÇÃO CURRICULAR DE MATEMÁTICA 1. ano - 1. volume 1. ano - 2. volume UNIDADE 1 Localização espacial, utilizando o próprio corpo como referencial. Localização espacial, utilizando referenciais externos
8.1 Áreas Planas. 8.2 Comprimento de Curvas
8.1 Áreas Planas Suponha que uma certa região D do plano xy seja delimitada pelo eixo x, pelas retas x = a e x = b e pelo grá co de uma função contínua e não negativa y = f (x) ; a x b, como mostra a gura
Assine e coloque seu número de inscrição no quadro abaixo. Preencha, com traços firmes, o espaço reservado a cada opção na folha de resposta.
1 Prezado(a) candidato(a): Assine e coloque seu número de inscrição no quadro abaixo. Preencha, com traços firmes, o espaço reservado a cada opção na folha de resposta. Nº de Inscrição Nome Q U E S T Ã
CAPÍTULO 3 INSTRUÇÕES BÁSICAS
CAPÍTULO 3 INSTRUÇÕES BÁSICAS Guilherme da Cunha Fonseca FEPI Centro Universitário de Itajubá Curso de Tecnologia em Fabricação Mecânica 1 INTRODUÇÃO As instruções ou comandos básicos são o conjunto de
CURRÍCULO DA DISCIPLINA MATEMÁTICA / CRITÉRIOS DE AVALIAÇÃO 2013/2014 1º Ciclo Matemática 3º Ano Metas / Objetivos Instrumentos de Domínios e
de Avaliação Números e Operações Números Sistema de decimal Adição e subtração Multiplicação Conhecer os numerais ordinais Contar até ao milhão Conhecer a romana Descodificar o sistema de decimal Adicionar
1. Seja θ = ang (r, s). Calcule sen θ nos casos (a) e (b) e cos θ nos casos (c) e (d): = z 3 e s : { 3x + y 5z = 0 x 2y + 3z = 1
14 a lista de exercícios - SMA0300 - Geometria Analítica Estágio PAE - Alex C. Rezende Medida angular, distância, mudança de coordenadas, cônicas e quádricas 1. Seja θ = ang (r, s). Calcule sen θ nos casos
ADA 1º BIMESTRE CICLO I MATEMÁTICA 9º ANO DO ENSINO FUNDAMENTAL 2018
ADA 1º BIMESTRE CICLO I MATEMÁTICA 9º ANO DO ENSINO FUNDAMENTAL 018 ITEM 1 DA ADA Observe potência a seguir: ( ) O resultado dessa potenciação é igual a (A) 8 1. (B) 1 8. (C) 1 81 81 (D) 1 Dada uma potência
Exercícios de Geometria Analítica - Prof. Ademir
Exercícios de Geometria nalítica - Prof. demir Vetores 1. onsidere o triângulo, onde = (1, 1, 1), = (2, 1, 0) e = (3, 2, 3). Verifique que este triângulo é retângulo, diga qual vértice contém o ângulo
Mat. Mat. Monitor: Gabriella Teles
Mat. Professor: Alex Amaral Monitor: Gabriella Teles Geometria analítica plana: hipérbole e parábola 16 nov RESUMO Parábola Consideremos em um plano uma reta diretriz e um ponto Foco não pertencente a
Revisão de Matemática
UNIVERSIDADE FEDERAL DO CEARÁ - UFC DEPARTAMENTO DE ENGENHARIA AGRÍCOLA DENA TOPOGRAFIA BÁSICA Revisão de Matemática Facilitador: Fabrício M. Gonçalves Unidades de medidas Unidade de comprimento (METRO)
Faculdade Pitágoras. Desenho Técnico. Engenharias. Prof.: Flaudilenio Eduardo Lima
Faculdade Pitágoras Desenho Técnico Engenharias Prof.: Flaudilenio Eduardo Lima UNIDADE 1 LINHAS RETAS, CÍRCULOS E ARCOS Proposta do Curso Introdução Principais pontos Capacitar o aluno a se expressar
CÔNICAS - MAT Complementos de Matemática para Contabilidade FEAUSP - Diurno 2 o semestre de 2015 Professor Oswaldo Rio Branco de Oliveira ELIPSE
CÔNICAS - MAT 103 - Complementos de Matemática para Contabilidade FEAUSP - Diurno 2 o semestre de 2015 Professor Oswaldo Rio Branco de Oliveira No plano euclidiano consideremos dois pontos (focos) distintos
TOPOGRAFIA TRIANGULAÇÃO e TRIGONOMETRIA
200784 Topografia I TOPOGRAFIA TRIANGULAÇÃO e TRIGONOMETRIA Prof. Carlos Eduardo Troccoli Pastana [email protected] (14) 3422-4244 AULA 3 1. TRIANGULAÇÃO Sabe-se que o triângulo é uma figura geométrica
Geometria e Medida. Números e Operações. Domínios/Subdomínios Objetivos gerais Descritores de desempenho Avaliação. - Atenção.
Conselho de Docentes do 3º Ano PLANIFICAÇÃO Anual de Matemática Domínios/Subdomínios Objetivos gerais Descritores de desempenho Avaliação Geometria e Medida Localização e orientação no espaço Coordenadas
PLANIFICAÇÃO DE MATEMÁTICA- setembro/outubro
PLANIFICAÇÃO DE MATEMÁTICA- setembro/outubro Recorda os números até 100 Estratégias de cálculo Adição e subtração Números ordinais Números pares e números ímpares Sólidos geométricos - Saber de memória
DESENHO GEOMÉTRICO E GEOMETRIA DESCRITIVA
DESENHO GEOMÉTRICO E GEOMETRIA DESCRITIVA CURSO: Licenciatura em Matemática PROFESSOR: Katia Arcaro E-mail: [email protected] 2017/2 1 Definições Preliminares 1. Desenho Geométrico: figura
LEITURA E INTERPRETAÇÃO DE PROJETOS DE CONSTRUÇÃO CIVIL
LEITURA E INTERPRETAÇÃO DE PROJETOS DE CONSTRUÇÃO CIVIL Prof: Helano Abreu [email protected] www.profhelanoabreu.wordpress.com 1 PROJETO TOPOGRÁFICO 2 O que é Topografia? ETIMOLOGIA: A palavra TOPOGRAFIA
Notas de aulas de Estradas (parte 11)
1 Notas de aulas de Estradas (parte 11) Hélio Marcos Fernandes Viana Tema: Noções de terraplenagem Conteúdo da parte 11 1 Introdução 2 Cálculo dos volumes 3 Cálculo das áreas das seções transversais 4
Agrupamento de Escolas Eugénio de Castro Critérios de Avaliação. Ano Letivo 2017/18 Disciplina MATEMÁTICA 3.º Ano
Agrupamento de Escolas Eugénio de Castro Critérios de Avaliação Ano Letivo 2017/18 Disciplina MATEMÁTICA 3.º Ano Números e Operações Números naturais Utilizar corretamente os numerais ordinais até centésimo.
Nome: nº Professor(a): UBERLAN / CRISTIANA Série: 3ª EM Turmas: 3301 / 3302 Data: / /2013
Nome: nº Professor(a): UBERLAN / CRISTIANA Série: 3ª EM Turmas: 3301 / 3302 Data: / /2013 Sem limite para crescer Bateria de Exercícios de Matemática II 1) A área do triângulo, cujos vértices são (1, 2),
