Estabilidade. Conhecimentos Básicos
|
|
|
- Lorenzo Belo Medina
- 9 Há anos
- Visualizações:
Transcrição
1 Estabilidade Conhecimentos Básicos
2 Unidades NOME SÍMBOLO FATOR MULTIPLICADOR (UND) Exa E Peta P Terá T Giga G mega M quilo K hecto H deca Da 10 Deci D , 1 centi C , 01 Mili M , 001 micro µ , nano N , Pico P , femto F , Atto A ,
3 Conversão de Unidades UNIDADE EQUIVALENCIA 1 MPa 1 N/mm 2 1 MPa 1 x 10 6 N/m 2 1 GPa 1 x 10 9 N/m 2 1 m 100 cm 1 cm 0,01 m 1 kgf 9,81 N 1 kgf 2,20 lb 1 polegada (ou 1 ) 2,54 cm 1 m cm 2
4 Trigonometria senα EF cosα OF tgα AB cot gα DC secα OB cos secα OC OE R 1
5 Triângulo retângulo senα cosα tgα secα α cateto oposto hipotenusa cateto oposto cateto adjacente hipotenusa cateto adjacente c arctg b ; α c a cateto adjacente hipotenusa c b c arcsen a b a a b ; α arccos b a ; **Relação fundamental da trigonometria: sen 2 x + cos 2 x 1
6 a. Razões Trigonométricas Especiais b. Triângulo qualquer Lei dos Senos: a sena b senb c senc 2R a 2 b 2 + c 2 2bc.cos A; Lei dos Cossenos: b c 2 2 a a c + b 2 2 2ac.cos B; 2ab.cos C. Figura 1.3 Triângulo qualquer
7 Alfabeto Grego ω Ω Ômega µ Μ Mi ψ Ψ Psi λ Λ Lambda χ Χ Chi κ Κ Capa φ Φ Phi ι Ι Iota υ Υ Upsilon θ Θ Teta τ Τ Thau η Η Eta σ Σ Sigma ζ Ζ Zeta ρ Ρ Rô ε Ε Épsilon π Π PI δ Delta ο Ο Ômicron γ Γ Gama ξ Ξ Csi β Β Beta ν Ν Ni α Α Alfa Minúscula Maiúscula Minúscula Maiúscula Símbolo Nome Símbolo Nome
8 Propriedades Geométricas das Figuras Planas O dimensionamento e a verificação da capacidade resistente de barras, como de qualquer elemento estrutural dependem de grandezas chamadas tensões, as quais se distribuem ao longo das seções transversais de um corpo.
9 As principais propriedades geométricas de figuras planas são: Área (A) Momento de Inércia (I) Momento estático (M) Módulo de resistência (W) Centro de gravidade (CG) Raio de giração (i)
10 Área (A) A área de uma figura plana é a superfície limitada pelo seu contorno. Para contornos complexos, a área pode ser obtida aproximando-se a forma real pela justaposição de formas geométricas de área conhecida (retângulos, triângulos, etc). A unidade de área é [L] 2 (unidade de comprimento ao quadrado). A área é utilizada para a determinação das tensões normais (tração e compressão) e das tensões de transversais ou de corte (cisalhamento).
11 Momento Estático (M) Momento estático de um elemento de uma superfície plana em relação a um eixo é o produto da área do elemento pela sua distância ao eixo considerado. Logo: O momento estático do elemento em relação ao eixo x será: M x y da O momento estático do elemento em relação ao eixo y será: M y x da
12 Figura 1 Momento Estático (M)
13 Momento estático de uma superfície plana em relação a um eixo é a soma dos momentos estáticos, em relação ao mesmo eixo, dos elementos que formam a superfície total. Logo: O momento estático da superfície em relação ao eixo x será: M x A M x A y da O momento estático da superfície em relação ao eixo y será: M y A M y A x da Momento estático é uma grandeza escalar com dimensão M [L] 3, podendo ser positivo, negativo ou nulo. É utilizado para a determinação das tensões transversais que ocorrem em uma peça submetida à flexão.
14 O Momento Estático de uma superfície composta por várias figuras conhecidas é o somatório dos Momentos Estáticos de cada figura. Determinar o Momento Estático das figuras abaixo:
15 Elemento Vazado
16 Centro de Gravidade ou Baricentro (CG) Figura 2 Centro de Gravidade ou Baricentro (CG)
17 Portanto, atração exercida pela Terra sobre um corpo rígido pode ser representada por uma única força P. Esta força, chamada peso do corpo, é aplicada no seu baricentro, ou cento de gravidade (CG). O centro de gravidade pode localizar-se dentro ou fora da superfície. Sendo CG o centro de gravidade de uma superfície plana de área A definido pelo par ordenado (x,y) tem-se as seguintes expressões: Mx y cg. A e My x cg. A
18 que exprimem o chamado teorema dos momentos estáticos e possibilitam determinar o centro de gravidade da superfície plana, ou seja: y cg My/A e x cg Mx. A Ou y cg M A y y da A A x CG A M A x A x da A
19 onde: x cg distância do CG da figura até o eixo y escolhido arbitrariamente; y cg distância do CG da figura até o eixo x escolhido arbitrariamente; M x momento estático da figura em relação ao eixo x; M y momento estático da figura em relação ao eixo y; A área da Figura.
20 Propriedades do centro de gravidade O momento estático de uma superfície em relação a qualquer eixo baricêntrico (que passe pelo CG) é nulo. Se existe um eixo de simetria na peça, então o CG está contido neste eixo.
21 Centro de gravidade de área composta Qualquer polígono pode ser decomposto em retângulos ou triângulos, cujos CGs podem ser facilmente determinados. Figura 2 Centro de Gravidade de área composta (CG)
22 O centro de gravidade de uma superfície composta por várias figuras, é expresso por: n i i n i i i CG A x A x 1 1 n i i n i i i CG A y A y 1 1
23 Exemplos: 1 - Determinar o centro de gravidade da figura abaixo:
24 Solução
25 1 - Determinar o centro de gravidade da figura abaixo:
26 Momento de inércia de uma superfície O momento de inércia de uma superfície plana em relação a um eixo é a soma dos momentos de inércia dos elementos que a constituem, em relação ao mesmo eixo. O momento de inércia da superfície em relação ao eixo x será: Ix Σy 2. da O momento de inércia do elemento em relação ao eixo y será: Iy Σx 2. da
27 A unidade do momento de inércia é [L]2 [L]2[L]4. O momento de inércia é uma característica geométrica importantíssima no dimensionamento dos elementos estruturais, pois fornece, em valores numéricos, a resistência da peça. Quanto maior for o momento de inércia da seção transversal de uma peça, maior a sua resistência.
28 Módulo de Resistência (W) Define-se módulo resistente de uma superfície plana em relação aos eixos que contém o CG como sendo a razão entre o momento de inércia relativo ao eixo que passa pelo CG da figura e a distância máxima entre o eixo e a extremidade da seção estudada. W y I x CG máx W x I y CG máx
29 onde: Icg momento de inércia da peça em relação ao CG da figura x, y distância entre o eixo do CG da figura e a extremidade da peça. A unidade do módulo resistente é: [L] 3 O módulo resistente é utilizado para o dimensionamento de peças submetidas à flexão.
30 Raio de Giração (r) Define-se raio de giração como sendo a raiz quadrada da relação entre o momento de inércia e a área da superfície. A unidade do raio de giração é o comprimento. O raio de giração é utilizado para o estudo da flambagem. Para o raio de giração em relação ao eixo x temos: I x r 2 x. A, logo: r x I x / A Para o raio de giração em relação ao eixo y temos: I y r 2 y. A, logo: r y I y / A
31 Momento de Inércia (I) a. O momento de inércia de uma superfície plana em relação a um eixo é a soma dos momentos de inércia dos elementos que a constituem, em relação ao mesmo eixo. ] Módulo de Resistência (W) Define-se módulo resistente de uma superfície plana em relação aos eixos que contém o CG como sendo a razão entre o momento de inércia relativo ao eixo que passa pelo CG da figura e a distância máxima entre o eixo e a extremidade da seção estudada.
32 A figura representa a seção transversal de uma viga T. Para a figura, determinar: a) o centro de gravidade; b) o momento de inércia em relação ao eixo x; c) os módulos Resistentes superior e inferior; d) o raio de giração.
33 Solução do exemplo da Viga T Para facilitar a determinação das propriedades geométricas de figuras compostas, convém montar a seguinte tabela: Centro de gravidade (CG) Como o eixo de referência passa pela base da figura, então yinf 4,65cm e ysup 2,35cm. Na coluna Icgi (cm4) foi determinado o momento de inércia de cada figura, passando pelo respectivo centro de gravidade. Por se tratar de retângulos, utilizou-se a expressão Ix bh3/12. Em seguida, deve-se proceder à translação destes momentos de inércia para eixo x de referência para determinar a sua somatória.
34 A translação de eixos é feita por meio da expressão: Ix Icg+ y2. A Obtido o momento de inércia total em relação ao eixo x, deve-se agora proceder à translação para o eixo x que passa pelo centro de gravidade da figura, por meio da seguinte expressão: O momento de inércia da figura em relação ao seu centro de gravidade éicg 101,55cm4. Em seguida, calculam-se os momentos resistentes: Finalmente, determina-se o raio de giração.
35 Exercícios: Determinar as características geométricas das figuras abaixo: a) área; b) centro de gravidade (xcg, ycg); c) momento de inércia em relação ao eixo x; c) momento de inércia em relação ao eixo y; d) módulo resistente superior e inferior; e) raio de giração.
36
37
38 Próxima Aula: Tensão e Deformação
Características Geométricas de Figuras Planas PROF. ESP. DIEGO FERREIRA
Características Geométricas de Figuras Planas PROF. ESP. DIEGO FERREIRA A Figura abaixo ilustra uma barra reta de seção transversal constante, chamada barra prismática. O lado da barra que contém o comprimento
Assunto: Características Geométricas das Figuras Planas Prof. Ederaldo Azevedo Aula 6 e-mail: [email protected] O dimensionamento e a verificação da capacidade resistente de barras, como de
INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DO RIO GRANDE DO NORTE NATAL CENTRAL. Curso Superior em Tecnologia das Construções
1. REVISÃO GERAL Alguns conceitos são de fundamental importância para o bom desenvolvimento do aluno no curso de Estabilidade das Construções, uma vez que esta disciplina abrange conceitos matemáticos
Parte A FÓRMULAS Spiegel_II_01-06.indd 11 Spiegel_II_01-06.indd :17: :17:08
Parte A FÓRMULAS Seção I: Constantes, Produtos e Fórmulas Elementares Alfabeto Grego e Constantes Especiais 1 Alfabeto grego Nome Letras Gregas Grego Minúsculas Maiúsculas Alfa Α Beta Β Gama Γ Delta Δ
RELAÇÕES TRIGONOMÈTRICAS
TÉCNICO EM EDIFICAÇÕES MÓDULO 01 RELAÇÕES TRIGONOMÈTRICAS NOTAS DE AULA: - Prof. Borja 2016.2 MÓDULO 1 Relações Trigonométricas OBJETIVOS Ao final deste módulo o aluno deverá ser capaz de: resolver problemas
RESOLUÇÕES ONLINE UNIDADES DE MEDIDAS
UNIDADES DE MEDIDAS Todas as Unidades de Medidas que são nomes próprios devem ser escritas em maiúsculas quando abreviadas. Se forem escritas por extenso, sempre escrever em minúscula no singular exceto
7 RESISTÊNCIA AO ESFORÇO O TRANSVERSO PROGRAMA
7 RESISTÊNCIA AO ESFORÇO O TRANSERSO ESTRUTURAS DE BETÃO ARMADO I PROGRAMA 1.Introdução ao betão armado 2.Bases de Projecto e Acções 3.Propriedades dos materiais: betão e aço 4.Durabilidade 5.Estados limite
REVISÃO MATEMÁTICA. 1. Unidades de medida Medida de comprimento - metro (m)
REVISÃO MATEMÁTICA 1. Unidades de medida 1.1. Medida de comprimento - metro (m) O metro é uma unidade básica para a representação de medidas de comprimento no sistema internacional de unidades (SI). Sheila
Unisanta - Tópicos de Mecânica - Prof. Damin - Aula n.º - Data / / FLEXÃO SIMPLES. Introdução: Y lado tracionado X. lado tracionado.
FLEÃO SIMPLES. Introdução: (Boanerges, 1980-S.D.) Como a força cortante não altera as tensões normais estamos aqui examinando as flexões pura normal e simples normal. Observando a seção transversal em
CARACTERÍSTICAS GEOMÉTRICAS DAS SEÇÕES TRANSVERSAIS
CARACTERÍSTICAS GEOMÉTRICAS DAS SEÇÕES TRANSVERSAIS CARACTERÍSTICAS GEOMÉTRICAS DAS SEÇÕES TRANSVERSAIS Para o dimensionamento de peças estruturais, é imprescindível a determinação das características
Aceleração metro por seg. ao quadrado m/s 2
Sistemas de Unidades. SISTEMAS DE UNIDADES. Grandezas físicas Define-se como uma grandeza como sendo tudo aquilo que pode ser mensurado. No dia a dia são utilizadas de forma natural enumeras grandezas
UNINOVE Universidade Nove de Julho. Aula 06 Continuação/Revisão Prof: João Henrique
1 Aula 06 Continuação/Revisão Prof: João Henrique Sumário Pilares de Seção Transversal em forma de L e U... 1 Principais propriedades de figuras planas... 2 Área (A)... 2 Momento Estático (Me)... 2 Centro
As principais propriedades geométricas de figuras planas são:
Tema IV. CRCTERÍSTICS GEOMÉTRICS DE FIGURS PLNS 4.1. Itrodução O dimesioameto e a verificação da capacidade resistete de barras, como de qualquer elemeto estrutural depedem de gradezas chamadas tesões,
Polígrafo Mecânica para Engenharia Civil
Universidade Federal do Pampa (UFP/UFSM) Centro de Tecnologia de Alegrete - CTA Curso de Engenharia Civil Polígrafo Mecânica para Engenharia Civil Prof Almir Barros da S. Santos Neto Polígrafo elaborado
SIMBOLOGIA DE MECÂNICA DOS SOLOS
SIMBOLOGIA DE MECÂNICA DOS SOLOS l. INTRODUÇÃO Este texto apresenta uma listagem das grandezas definidas no quadro geral de unidades de medida aprovadas pelo Decreto n 81.621 de 03 / 05 / 78 e que são
Características Geométricas
Prof. Daniel Dias A: área da seção transversal do perfil (cm²) x g, y g : coordenadas do centro de gravidade I x : momento de inércia em relação ao eixo x (cm²) I y ; momento de inércia em relação ao eixo
TM Estática II
TM 332 - Estática II Emílio Eiji Kavamura, MSc Departamento de Engenaharia Mecânica UFPR TM-332, 2012 [email protected] (UFPR) Estática 2012 1 / 78 Roteiro da aula Centróides e Baricentros Formas
DEPARTAMENTO DE ENGENHARIA MECÂNICA. ) uma base ortonormal positiva de versores de V. Digamos que a lei de transformação do operador T seja dada por:
PME-00 - Mecânica dos Sólidos a ista de Exercícios Apresentar as unidades das seguintes grandezas, segundo o Sistema nternacional de Unidades (S..: a comprimento (l; i rotação (θ; b força concentrada (P;
Relembrando: Ângulos, Triângulos e Trigonometria...
Relembrando: Ângulos, Triângulos e Trigonometria... Este texto é apenas um resumo. Procure estudar esses assuntos em um livro apropriado. Ângulo é a região de um plano delimitada pelo encontro de duas
Estado duplo ou, Estado plano de tensões.
Estado duplo ou, Estado plano de tensões. tensão que atua em um ponto é função do plano pelo qual se faz o estudo. Esta afirmação pode ficar mais clara quando analisa, por exemplo, um ponto de uma barra
CUFSA - FAFIL Graduação em Matemática TRIGONOMETRIA (Resumo Teórico)
1 INTRODUÇÃO CUFSA - FAFIL Graduação em Matemática TRIGONOMETRIA (Resumo Teórico) ARCOS: Dados dois pontos A e B de uma circunferência, definimos Arco AB a qualquer uma das partes desta circunferência
Unidade de Aprendizagem 1. Física I C. O que é a Física? Professor: Mário Forjaz Secca. Departamento t de Física
Unidade de Aprendizagem 1 O que é a Física? Física I C Departamento t de Física Professor: Mário Forjaz Secca O Que é a Física? disciplina científica que estuda a energia e a matéria e as suas interacções
1) Determine a energia de deformação (energia interna) da estrutura abaixo. Rigidez flexional = 4200 knm²
CE2 ESTABILIDADE DAS CONSTRUÇÕES II LISTA DE EXERCÍCIOS PREPARATÓRIA PARA O ENADE 1) Determine a energia de deformação (energia interna) da estrutura abaixo. Rigidez flexional 42 knm² Formulário: equação
Definições Hierarquia de Chomsky Exemplos de gramáticas. Gramáticas. Objetivo de ensinar o inglês pelo computador e conseguir um tradutor de línguas
Definições Hierarquia de Chomsky Exemplos de gramáticas 1 Gramáticas Conceito introduzido pela lingüística Objetivo de ensinar o inglês pelo computador e conseguir um tradutor de línguas Fracasso da tradução
O centróide de área é definido como sendo o ponto correspondente ao centro de gravidade de uma placa de espessura infinitesimal.
CENTRÓIDES E MOMENTO DE INÉRCIA Centróide O centróide de área é definido como sendo o ponto correspondente ao centro de gravidade de uma placa de espessura infinitesimal. De uma maneira bem simples: centróide
FESP Faculdade de Engenharia São Paulo. Prof. Douglas Pereira Agnelo Prof. Dr. Alfonso Pappalardo Jr.
FESP Faculdade de Engenharia São Paulo Avaliação: A2 Data: 15/set/ 2014 CE2 Estabilidade das Construções II Prof. Douglas Pereira Agnelo Prof. Dr. Alfonso Pappalardo Jr. Duração: 85 minutos Nome: Matrícula
ESTRUTURAS METÁLICAS E DE MADEIRAS PROF.: VICTOR MACHADO
ESTRUTURAS METÁLICAS E DE MADEIRAS PROF.: VICTOR MACHADO UNIDADE II - ESTRUTURAS METÁLICAS VIGAS DE ALMA CHEIA INTRODUÇÃO No projeto no estado limite último de vigas sujeitas à flexão simples calculam-se,
Resistência dos. Materiais. Capítulo 3. - Flexão
Resistência dos Materiais - Flexão cetatos baseados nos livros: - Mechanics of Materials - Beer & Jonhson - Mecânica e Resistência dos Materiais V. Dias da Silva Índice Flexão Pura Flexão Simples Flexão
Trigonometria no Triângulo Retângulo
Trigonometria no Triângulo Retângulo Prof. Márcio Nascimento [email protected] Universidade Estadual Vale do Acaraú Centro de Ciências Exatas e Tecnologia Curso de Licenciatura em Matemática Disciplina:
RESISTÊNCIA DOS MATERIAIS AULAS 01
Engenaria da Computação 1 4º / 5 Semestre RESISTÊNCI DOS MTERIIS ULS 01 Prof Daniel Hasse Características Geométricas de Figuras Planas SÃO JOSÉ DOS CMPOS, SP ula 01 Figuras Planas I 1- FIGURS PLNS Nesta
Relações Trigonométricas nos Triângulos
Relações Trigonométricas nos Triângulos Introdução - Triângulos Um triângulo é uma figura geométric a plana, constituída por três lados e três ângulos internos. Esses ângulos, tradicionalmente, são medidos
Mecânica Geral. Prof. Evandro Bittencourt (Dr.) Engenharia de Produção e Sistemas UDESC. 27 de fevereiro de 2008
Mecânica Geral Prof Evandro Bittencourt (Dr) Engenharia de Produção e Sistemas UDESC 7 de fevereiro de 008 Sumário 1 Prof Evandro Bittencourt - Mecânica Geral - 007 1 Introdução 11 Princípios Fundamentais
RESISTÊNCIA DOS MATERIAIS I Curso de Eletromecânica
Centro Federal de Educação Tecnológica de Santa Catarina CEFET/SC Unidade Araranguá RESISTÊNCIA DOS MATERIAIS I Curso de Eletromecânica Prof. Fernando H. Milanese, Dr. Eng. [email protected] Conteúdo
UFJF - Professores Elson Toledo e Alexandre Cury MAC003 - Resistência dos Materiais II LISTA DE EXERCÍCIOS 03
UFJF - Professores Elson Toledo e Alexandre Cury MAC003 - Resistência dos Materiais II LISTA DE EXERCÍCIOS 03 1. Em um ponto crítico de uma peça de aço de uma máquina, as componentes de tensão encontradas
Relações Métricas nos Triângulos. Joyce Danielle de Araújo
Relações Métricas nos Triângulos Joyce Danielle de Araújo Trigonometria A palavra trigonometria é de origem grega, onde: Trigonos = Triângulo Metrein = Mensuração - Relação entre ângulos e distâncias;
Nota de aula 8 - Estado Plano de Tensões - Resistência dos Materiais II
Nota de aula 8 - Estado Plano de Tensões - Resistência dos Materiais II Flávia Bastos (retirado da apostila do Prof. Elson Toledo) MAC - Faculdade de Engenharia - UFJF o. semestre de 011 Flávia Bastos
Resistência dos Materiais
Resistência dos Materiais Prof. Antonio Dias Antonio Dias / Resistência dos Materiais 1 Introdução Resistência dos Materiais Antonio Dias 2017 Intr. - 3 Princípios e conceitos fundamentais - cronologia
RESISTÊNCIA DE MATERIAIS II
INSTITUTO SUPERIOR TÉCNICO Departamento de Engenharia Civil e Arquitectura Secção de Mecânica Estrutural, Estruturas e Construção Ano lectivo de 2003/2004 2 o teste e o exame Lisboa, 23 de Junho de 2004
CARACTERÍSTICAS GEOMÉTRICAS DE SUPERFÍCIES PLANAS
CARACTERÍSTICAS GEOMÉTRICAS DE SUPERFÍCIES PLANAS Baricentro geométrico: Maneira prática de se determinar o baricentro geométrico: fio de prumo fio de prumo O Centro de Gravidade está na intersecção das
Grego. A pronúncia. Pevmpto mavqhma. Sistema de transliteração
5.... Pevmpto mavqhma Escola Secundária Manuel Teixeira Gomes Portimão 2010-2011 Departamento de Línguas [Românicas e Clássicas] 12.º ano Turma E Curso Científico-Humanístico de Línguas e Humanidades Docente:
Minicurso Básico - L A TEX Aula 3 Apresentação: Jéssyca Cristine, Leandro Chiarini, Rafael Aguiar e Rebeca Chuffi
Universidade de Brasília Departamento de Matemática PET-MAT Minicurso Básico - L A TEX Aula 3 Apresentação: Jéssyca Cristine, Leandro Chiarini, Rafael Aguiar e Rebeca Chuffi O objetivo desta aula é introduzir
Física 2 - Aula 3. frof. Afonso Henriques Silva Leite. 1 de setembro de Nesta aula, serão apresentados os seguintes conceitos:
Física 2 - Aula 3. frof. Afonso Henriques Silva Leite 1 de setembro de 2016 1 Plano da aula. Nesta aula, serão apresentados os seguintes conceitos: Determinação do torque pelos métodos da decomposição
Aula do cap. 03 Vetores. Halliday
ula do cap. 03 Vetores. Conteúdo: Grandezas Escalares e Vetoriais dição de Vetores Método do Paralelogramo Decomposição de Vetores Vetores Unitários e dição Vetorial. Produto Escalar Referência: Halliday,
Resistência dos Materiais
- Flexão Acetatos e imagens baseados nos livros: - Mechanics of Materials - Beer & Jonhson - Mecânica e Resistência dos Materiais V. Dias da Silva - Resistência dos Materiais, R.C. Hibbeler Índice Flexão
Métodos Quantitativos
Métodos Quantitativos Unidade 4. Estatística inferencial Parte II 1 Sumário Seção Slides 4.1 Correlação entre variáveis quantitativas 03 11 4.2 Teste de significância 12 19 4.3 Regressão linear 20 27 4.4
TENSÕES DE FLEXÃO e de CISALHAMENTO EM VIGAS
DIRETORIA ACADÊMICA DE CONSTRUÇÃO CIVIL Tecnologia em Construção de Edifícios Disciplina: Construções em Concreto Armado TENSÕES DE FLEXÃO e de CISALHAMENTO EM VIGAS Notas de Aula: Edilberto Vitorino de
Universidade Federal de Pelotas Centro de Engenharias. Resistência dos Materiais II. Capítulo 2 Torção
Capítulo 2 Torção 2.1 Revisão Torque é um momento que tende a torcer um elemento em torno de seu eixo longitudinal. Se o ângulo de rotação for pequeno, o comprimento e o raio do eixo permanecerão inalterados.
REVISÃO DE CONCEITOS BÁSICOS
Carlos Aurélio Nadal Doutor em Ciências Geodésicas Professor Titular do Departamento de Geomática - Setor de Ciências da Terra Unidades de medidas que utilizavam o corpo humano 2,54cm 30,48cm 0,9144m 66cm
MÓDULO 45 TRIGONOMETRIA II. Ciências da Natureza, Matemática e suas Tecnologias MATEMÁTICA. 1. Considere a equação. (3 2 cos 2 x) 1 + tg 2. 6 tg = 0.
Ciências da Natureza, Matemática e suas Tecnologias MATEMÁTICA. Considere a equação TRIGONOMETRIA II ( cos ) + tg MÓDULO 5 tg = 0. a) Determine todas as soluções no intervalo [0, [. b) Para as soluções
MEMORIAL DE CÁLCULO / 1-0. PLATAFORMA PARA ANDAIME SUSPENSO 0,60 m X 3,00 m MODELO RG PFM 3.1
MEMORIAL DE CÁLCULO 071211 / 1-0 PLATAFORMA PARA ANDAIME SUSPENSO 0,60 m X 3,00 m MODELO RG PFM 3.1 FABRICANTE: Metalúrgica Rodolfo Glaus Ltda ENDEREÇO: Av. Torquato Severo, 262 Bairro Anchieta 90200 210
Estruturas de Aço e Madeira Aula 14 Peças de Madeira em Compressão Simples Centrada
Estruturas de Aço e Madeira Aula 14 Peças de Madeira em Compressão Simples Centrada - Limites de Esbeltez; - Peças Curtas e Medianamente Esbeltas; - Peças Esbeltas; - Compressão Normal e Inclinada em Relação
1ª Avaliação. 1) Obtenha a fórmula que define a função linear f, sabendo que (3) 7 f =.
1ª Avaliação 1) Obtenha a fórmula que define a função linear f, sabendo que (3) 7 f. ) Determine o domínio da função abaio. f ( ) 3 3 8 9 + 14 3) Determine o domínio da função abaio. f ( ) 1 ( 3)( ) 4)
Flexão. Tensões na Flexão. e seu sentido é anti-horário. Estudar a flexão em barras é estudar o efeito dos momentos fletores nestas barras.
Flexão Estudar a flexão em barras é estudar o efeito dos momentos fletores nestas barras. O estudo da flexão que se inicia, será dividido, para fim de entendimento, em duas partes: Tensões na flexão; Deformações
CAPÍTULO 3 ESFORÇO CORTANTE
CAPÍTULO 3 ESFORÇO CORTANTE 1 o caso: O esforço cortante atuando em conjunto com o momento fletor ao longo do comprimento de uma barra (viga) com cargas transversais. É o cisalhamento na flexão ou cisalhamento
São as vigas que são fabricadas com mais de um material.
- UNIVERSIDADE FEDERAL FLUMINENSE ESCOLA DE ENGENHARIA INDUSTRIAL METALÚRGICA DE VOLTA REDONDA PROFESSORA: SALETE SOUZA DE OLIVEIRA BUFFONI DISCIPLINA: RESISTÊNCIA DOS MATERIAIS Tensões em Vigas Tópicos
Seção 7 (Flexão) - Exemplos dados em aula
UFPR - MECÂNICA DOS SÓLIDOS I Seção 7 (Flexão) - Exemplos dados em aula Prof. Marcos S. Lenzi May 24, 2016 Exemplo 7.1 - Considere uma barra de aço com seção tranversal retangular conforme mostrado abaixo
FENÔMENOS DE TRANSPORTE
FENÔMENOS DE TRANSPORTE Sistemas de Unidades Prof. Miguel Toledo del Pino, Dr. DEFINIÇÕES Os sistemas habitualmente utilizados são do tipo: F L T : F: força L: comprimento T: tempo M L T : M: massa 1 DEFINIÇÕES
Conceitos de vetores. Decomposição de vetores
Conceitos de vetores. Decomposição de vetores 1. Introdução De forma prática, o conceito de vetor pode ser bem assimilado com auxílio da representação matemática de grandezas físicas. Figura 1.1 Grandezas
Programa. Centroide Momentos de Inércia Teorema dos Eixos Paralelos. 2 Propriedades Geométricas de Áreas Planas
Propriedades Geométricas de Áreas Planas Programa 2 Propriedades Geométricas de Áreas Planas Centroide Momentos de Inércia Teorema dos Eixos Paralelos L Goliatt, M Farage, A Cury (MAC/UFJF) MAC-015 Resistência
Resistência dos Materiais I - Caderno de Consultas
Resistência dos Materiais I - Caderno de Consultas Instruções: Resolva as questões com clareza e ordem. A interpretação dos enunciados faz parte da prova. Não sendo indicado o contrário, use aproximações
Pontifícia Universidade Católica do Rio de Janeiro / PUC-Rio Departamento de Engenharia Mecânica. ENG1705 Dinâmica de Corpos Rígidos.
Pontifícia Universidade Católica do Rio de Janeiro / PUC-Rio Departamento de Engenharia Mecânica ENG1705 Dinâmica de Corpos Rígidos (Período: 2016.1) Notas de Aula Capítulo 1: VETORES Ivan Menezes [email protected]
Trigonometria. Reforço de Matemática Básica - Professor: Marcio Sabino - 1 Semestre 2015
Trigonometria Reforço de Matemática ásica - Professor: Marcio Sabino - 1 Semestre 015 1. Trigonometria O nome Trigonometria vem do grego trigo-non triângulo + metron medida. Esta é um ramo da matemática
1. Inverta a relação tensão deformação para materiais elásticos, lineares e isotrópicos para obter a relação em termos de deformação.
Mecânica dos Sólidos I Lista de xercícios III Tensões, Deformações e Relações Constitutivas.. Inverta a relação tensão deformação para materiais elásticos, lineares e isotrópicos para obter a relação em
Assunto: Principios da Resistencia dos Materiais Prof. Ederaldo Azevedo Aula 5 e-mail: [email protected] 6.2 Tensão: Tensão: é ao resultado da ação de cargas sobre uma área da seção analisada
1) Qual propriedade de um material reproduz a lei de Hooke? Escrever a expressão que traduz a lei. 2) Um cilindro de 90,0 cm de comprimento (figura) está submetido a uma força de tração de 120 kn. Uma
Exame Final de EDI-38 Concreto Estrutural I Prof. Flávio Mendes Neto Dezembro de 2006 Sem consulta (duração máxima: 4 horas)
1 Exame Final de EDI-38 Concreto Estrutural I rof. Flávio Mendes Neto Dezembro de 2006 Sem consulta (duração máxima: 4 horas) Esta prova tem 4 páginas e 5 questões (divididas em 9 itens). Considere os
Curso de Grego Prof. William Bottazzini Rezende. A pronúncia do grego e outras notas
Curso de Grego Prof. William Bottazzini Rezende A pronúncia do grego e outras notas Introdução As três pronúncias mais comuns para o grego antigo são: a) A pronúncia erasmiana (também chamada de etacista),
TORÇÃO. Prof. Dr. Carlos A. Nadal
TORÇÃO Prof. Dr. Carlos A. Nadal Tipo de esforços a) Tração b) Compressão c) Flexão d) Torção e) Compressão f) flambagem Esforços axiais existe uma torção quando uma seção transversal de uma peça está
Flexão Vamos lembrar os diagramas de força cortante e momento fletor
Flexão Vamos lembrar os diagramas de força cortante e momento fletor Elementos longos e retos que suportam cargas perpendiculares a seu eixo longitudinal são denominados vigas. Vigas são classificadas
1º S I M U L A D O - ITA IME - M A T E M Á T I C A
Professor: Judson Santos / Luciano Santos Aluno(a): nº Data: / /0 º S I M U L A D O - ITA IME - M A T E M Á T I C A - 0 0) Seja N o conjunto dos inteiros positivos. Dados os conjuntos A = {p N; p é primo}
EME 311 Mecânica dos Sólidos
1 INTRODUÇÃO EME 311 Mecânica dos Sólidos - CPÍTULO 01 - Prof a. Patricia Email: [email protected] IEM Instituto de Engenharia Mecânica UNIFEI Universidade Federal de Itajubá 1.1 Visão Global da
PME Mecânica dos Sólidos II 6 a Lista de Exercícios
Eercícios Sugeridos (Livro Teto) PME-3211 - Mecânica dos Sólidos II 6 a Lista de Eercícios Referência: Gere, J.M. & Goodno, B.J., Mecânica dos Materiais, Cengage Learning, 2010, 858 p. Deformação Plana:
Disciplina: Mecânica Geral - Estática
Disciplina: Mecânica Geral - Estática IV. Propriedades Mecânicas de Figuras Planas Parte 1: Momento de Primeira Ordem ou Estático Prof. Dr. Eng. Fernando Porto Momentos de Primeira Ordem O momento de primeira
REVISAO GERAL. GRANDEZA ESCALAR É caracterizada por um número real. Como, por exemplo, o tempo, a massa, o volume, o comprimento, etc.
MECÂNICA APLICADA 5º Período de Engenharia Civil REVISAO GERAL GRANDEZA ESCALAR É caracterizada por um número real. Como, por exemplo, o tempo, a massa, o volume, o comprimento, etc. GRANDEZA VETORIAL
FUNÇÕES TRIGONOMÉTRICAS. Teorema de Pitágoras Razões trigonométricas Circunferência trigonométrica
FUNÇÕES TRIGONOMÉTRICAS Teorema de Pitágoras Razões trigonométricas Circunferência trigonométrica Teorema de Pitágoras Em qualquer triângulo retângulo, o quadrado da medida da hipotenusa é igual à soma
CONCEITOS BÁSICOS - REVISÃO
CONCEITOS BÁSICOS - REVISÃO GA116 Sistemas de Referência e Tempo Profª. Érica S. Matos Departamento de Geomática Setor de Ciências da Terra Universidade Federal do Paraná -UFPR Sempre houve a necessidade
Capítulo 2 Vetores. 1 Grandezas Escalares e Vetoriais
Capítulo 2 Vetores 1 Grandezas Escalares e Vetoriais Eistem dois tipos de grandezas: as escalares e as vetoriais. As grandezas escalares são aquelas que ficam definidas por apenas um número real, acompanhado
Alfabeto Grego. Edson de Faria Francisco. São Bernardo do Campo, fevereiro de letras (maiúsculas e minúsculas) nome transliteração pronúncia
letras (maiúsculas e minúsculas) Alfabeto Grego Edson de Faria Francisco. São Bernardo do Campo, fevereiro de 2014. nome transliteração pronúncia 1 alfa a a 2 beta b b 3 gama g g 4 delta d d 5 épsilon
Introdução ao Cálculo Vetorial
Introdução ao Cálculo Vetorial Segmento Orientado É o segmento de reta com um sentido de orientação. Por exemplo AB onde: A : origem e B : extremidade. Pode-se ter ainda o segmento BA onde: B : origem
Escola de Engenharia Universidade Presbiteriana Mackenzie Departamento de Engenharia Elétrica
PROBLEMA 01 (Sussekind, p.264, prob.9.3) Determinar, pelo Método dos Nós, os esforços normais nas barras da treliça. vãos: 2m x 2m PROBLEMA 02 (Sussekind, p.264, prob.9.5) Determinar, pelo Método dos Nós,
RESISTÊNCIA DOS MATERIAIS II FLEXÃO PARTE III
RESISTÊNCIA DOS MATERIAIS II FLEXÃO PARTE III Prof. Dr. Daniel Caetano 2012-2 Objetivos Conceituar a flexão assimétrica Conceituar a flexão oblíqua Determinar a posição da linha neutra em barras sob flexão
Mecânica Técnica. Aula 2 Lei dos Senos e Lei dos Cossenos. Prof. MSc. Luiz Eduardo Miranda J. Rodrigues
Aula 2 Lei dos Senos e Lei dos Cossenos Tópicos Abordados Nesta Aula Cálculo de Força Resultante. Operações Vetoriais. Lei dos Senos. Lei dos Cossenos. Grandezas Escalares Uma grandeza escalar é caracterizada
Lista de Exercício 3 Elastoplasticidade e Análise Liimite 18/05/2017. A flexão na barra BC ocorre no plano de maior inércia da seção transversal.
Exercício 1 Para o sistema estrutural da figura 1a, para o qual os diagramas de momento fletor em AB e força normal em BC da solução elástica são indicados na figura 1b, estudar pelo método passo-a-passo
Barras prismáticas submetidas a momento fletor e força cortante
Barras prismáticas submetidas a momento fletor e força cortante Introdução Os esforços mais comuns de incidência em vigas estruturais são a força cortante e o momento fletor, os quais são causados por
MATEMÁTICA APLICADA À AGRIMENSURA PROF. JORGE WILSON
MATEMÁTICA APLICADA À AGRIMENSURA PROF. JORGE WILSON [email protected] DEFINIÇÕES GEOMETRIA PLANA Ponto: Um elemento do espaço que define uma posição. Reta: Conjunto infinito de pontos. Dois pontos são
Disciplina: Sistemas Estruturais Assunto: Principios da Estática e da Mecânica Prof. Ederaldo Azevedo Aula 2 e-mail: [email protected] 2. PRINCIPIOS BÁSICOS DA ESTÁTICA E DA MECÂNICA A ciência
Universidade Federal de Pelotas Centro de Engenharias. Resistência dos Materiais I. Capítulo 6 Flexão
Capítulo 6 Flexão 6.1 Deformação por flexão de um elemento reto A seção transversal de uma viga reta permanece plana quando a viga se deforma por flexão. Isso provoca uma tensão de tração de um lado da
MEMORIAL DE CÁLCULO / 1-0. PLATAFORMA PARA ANDAIME SUSPENSO 0,60 m X 6,00 m MODELO RG PFM 6.1
MEMORIAL DE CÁLCULO 072011 / 1-0 PLATAFORMA PARA ANDAIME SUSPENSO 0,60 m X 6,00 m MODELO RG PFM 6.1 FABRICANTE: Metalúrgica Rodolfo Glaus Ltda ENDEREÇO: Av. Torquato Severo, 262 Bairro Anchieta 90200 210
Problema resolvido 4.2
Problema resolvido 4.2 A peça de máquina de ferro fundido é atendida por um momento M = 3 kn m. Sabendo-se que o módulo de elasticidade E = 165 GPa e desprezando os efeitos dos adoçamentos, determine (a)
Exemplo Aplicando a proporcionalidade existente no Teorema de Tales, determine o valor dos segmentos AB e BC na ilustração a seguir:
GEOMETRIA PLANA TEOREMA DE TALES O Teorema de Tales pode ser determinado pela seguinte lei de correspondência: Se duas retas transversais são cortadas por um feixe de retas paralelas, então a razão entre
Universidade de São Paulo Escola Politécnica - Engenharia Civil PEF - Departamento de Engenharia de Estruturas e Fundações
Universiae e São Paulo Escola Politécnica - Engenharia Civil PEF - Departamento e Engenharia e Estruturas e Funações - Conceitos Funamentais e Dimensionamento e Estruturas e Concreto: Vigas, Lajes e Pilares
RESISTÊNCIA DOS MATERIAIS II TORÇÃO PARTE I
RESISTÊNCIA DOS MATERIAIS II TORÇÃO PARTE I Prof. Dr. Daniel Caetano 2014-2 Objetivos Compreender a deformação por torção Compreender os esforços de torção Determinar distribuição de tensões de cisalhamento
