Experiências com o baricentro
|
|
|
- Luiz Guilherme Cunha Tomé
- 9 Há anos
- Visualizações:
Transcrição
1 ARTEFATOS Experiências com o baricentro Deborah Raphael IME - USP No acervo da Matemateca do Instituto de Matemática e Estatística da USP, temos várias peças que exploram o centro de massa, do ponto de vista físico e matemático. Algumas experiências são muito fáceis de serem reproduzidas em sala de aula e o material necessário é mínimo. Sugerimos aqui atividades a serem realizadas quando o professor estiver apresentando o baricentro de um triângulo. A proposta é motivar o aluno, mostrando várias propriedades físicas para então explorar a matemática envolvida. Os conceitos A palavra de origem grega baricentro (barus = peso) designa inicialmente o centro dos pesos. Arquimedes foi o primeiro a estudar o baricentro de dois pontos de massas m 1 e m 2. Definimos aqui o baricentro como o ponto O tal que moa+ m OB= Em Matemática essa noção foi generalizada para um sistema com n pontos e também para o caso de o número de pontos ser infinito (uma curva, uma superfície, um sólido, etc.). A idéia de fazer a média das massas ponderadas é a mesma; na generalização, uma integral substitui a somatória e uma função densidade substitui a massa de cada ponto. O baricentro assim definido é também chamado centro de massa. Observamos que o que é usualmente designado por centro de gravidade não é o mesmo que centro de massa. Na definição de centro de gravidade leva-se em consideração o campo gravitacional em cada ponto. Se o campo for constante, o centro de massa coincide com o centro de gravidade. REVISTA DO PROFESSOR DE MATEMÁTICA 63,
2 Imaginamos que as atividades a seguir serão desenvolvidas no planeta Terra e com objetos muito pequenos em relação às dimensões do planeta. Assim, é muito sensato supor o campo gravitacional constante, permitindo a identificação entre centro de massa e centro de gravidade. Atividade Material necessário Caixas de papelão (grosso), régua, tesoura, barbante, um prego na parede, uma chave de fenda. Descrição da atividade 1. O problema a ser apresentado é o de encontrar o centro de massa de figuras planas (polígonos). Pode-se começar com uma régua (retangular), desafiando os alunos a equilibrarem a régua na ponta de um dedo e explicando que o ponto onde se coloca o dedo é o centro de massa. Como achar esse ponto numa placa poligonal qualquer? 2. Os alunos, divididos em grupos, devem cortar as placas de papelão. Várias figuras serão cortadas no papelão; sugerimos, para cada grupo, ao menos um retângulo, triângulos variados (ao menos um isósceles e um escaleno), um polígono irregular de quatro ou cinco lados. As figuras não devem ter menos que 200 centímetros quadrados. É interessante que os grupos tenham figuras diferentes, sobretudo o polígono irregular. 3. São propostas duas maneiras de achar o centro de massa de uma placa, usando propriedades físicas. i) Pendurando a placa em um prego, o centro de massa está na reta perpendicular ao solo que passa pelo prego. Fazendo um pequeno furo perto da borda da figura plana, pode-se pendurá-la no prego (ela deve ficar solta, girando livremente em torno do prego). Amarra-se em seguida um peso ao barbante (um fio de prumo). Fazendo uma argolinha na ponta livre do barbante e pendurando no prego, o barbante fica esticado em frente à placa. O centro de massa está na reta indicada pelo barbante (marcar na figura essa reta). 34 SOCIEDADE BRASILEIRA DE MATEMÁTICA
3 Fazendo outro furinho na figura e repetindo o procedimento, encontramos outra reta. O centro de massa é a intersecção das duas retas. ii) A placa fica em equilíbrio sobre uma reta se o centro de massa da placa estiver sobre a reta. Pode-se utilizar um batente de janela ou uma ripa de madeira ou ainda um perfil de metal: a idéia é ter uma régua em cima da qual vamos equilibrar a placa (a face na qual a placa se equilibra deve ter não mais que 3 mm). Colocando a placa sobre a régua, o equilíbrio é alcançado quando o centro de massa da placa estiver sobre a reta. Traçamos na placa a reta e repetimos o procedimento buscando outra reta. A intersecção das duas retas novamente é o centro de massa. 4. Cada grupo escolhe uma placa, determina o centro de massa e o marca. Faz também outras marcas (usando cores diferentes) para confundir a outra equipe. As placas são trocadas e o objetivo é descobrir qual das marcas está sobre o centro de massa. Para isso sugerimos utilizar duas propriedades físicas. a) Se fizermos a placa girar sobre a mesa, ela sempre tenta girar em torno do seu centro de massa. b) Fazendo um furo na marca onde deve estar o centro de massa e inserindo a chave de fenda no furo, seguramos a chave e giramos a placa (mantendo a placa perpendicular ao solo). Se o furo estiver realmente no centro de massa, a placa gira livremente, sem solavanco (colocando a chave fora do centro de massa e fazendo girar, dá para sentir a diferença). Um desafio interessante é pedir aos alunos que construam uma placa cujo centro de massa esteja fora da figura. Num primeiro momento podem achar isso impossível. Formatos como lua crescente ou um bumerangue têm essa propriedade. Tendo feito essas experiências, é mais fácil entender por que o baricentro é importante. Fica mais claro que esse ponto é fundamental no estudo do equilíbrio e do movimento. É natural que os matemáticos tentem determiná-lo! REVISTA DO PROFESSOR DE MATEMÁTICA 63,
4 Explorando a Matemática Neste ponto é interessante introduzir a definição do baricentro de um triângulo. Estamos procurando um ponto no qual o triângulo fique equilibrado. Dado um triângulo ABC qualquer, traçamos a mediana relativa ao lado AB pelo ponto médio O. Repare que todo segmento paralelo ao lado AB é cortado pela mediana em duas partes iguais e, portanto, o centro de massa de cada um desses segmentos está na mediana. Pensando no triângulo como a união desses segmentos, esperamos que o centro de massa do triângulo também esteja nessa mediana. O mesmo raciocínio se aplica a todas as medianas e, portanto, parece razoável definir o baricentro do triângulo como sendo o encontro das medianas. Os alunos podem agora tomar uma placa triangular, marcar o encontro das medianas e repetir os experimentos para verificar que, de fato, sempre encontramos o mesmo ponto. Será que, sabendo achar o baricentro de um triângulo, é possível determinar o baricentro de qualquer polígono? A resposta é sim e há vários procedimentos possíveis. Vamos começar com um polígono irregular de quatro lados. Será que o centro de massa estará no encontro das diagonais? Experimentando com as placas, os alunos percebem que isso nem sempre é verdade. Então, como proceder? Temos duas sugestões que podem ser exploradas. 1) Traçando uma das diagonais obtemos dois triângulos e, como já se sabe achar o baricentro de um triângulo, achamos os dois baricentros: B 1 e. E agora? Traçamos uma reta ligando os dois baricentros. O baricentro do polígono deve estar nessa reta. Dá para perceber isso usando o experimento ii) cada um dos triângulos pode ser equilibrado sobre essa reta; logo, juntando os dois triângulos, o equilíbrio se mantém. 36 SOCIEDADE BRASILEIRA DE MATEMÁTICA
5 Encontramos então uma reta na qual está o centro de massa. Se repetirmos o procedimento utilizando a outra diagonal, encontramos outra reta na qual está o centro de massa. A intersecção das retas é o centro de massa. 2) Este segundo procedimento envolve cálculo de áreas e proporções. Novamente X vamos tomar um polígono irregular de 4 lados, XYZW, e dividi-lo em dois triângulos Y B T 1 (XYW) e T 2 (YWZ) com baricentros 1 C B 1 e, respectivamente. Já sabemos que o segmento B 1 contém o centro de massa C. Além disso, temos também: W Z Área T 1 x B 1 C = Área T 2 x C. Calculando as áreas dos triângulos, obtemos o centro de massa do polígono. Ambos os procedimentos podem ser generalizados para polígonos com qualquer número de lados. Por exemplo, no caso de um pentágono, ligando dois vértices não adjacentes, obtemos um triângulo e um quadrilátero. Encontramos os centros de massa de cada um desses polígonos e procedemos de forma análoga ao descrito anteriormente em 1) e 2). A autora Deborah Raphael faz parte do grupo de professores responsáveis pela Matemateca/IME/USP [email protected] REVISTA DO PROFESSOR DE MATEMÁTICA 63,
V = 12 A = 18 F = = 2 V=8 A=12 F= = 2
Por: Belchior, Ismaigna e Jannine Relação de Euler Em todo poliedro convexo é válida a relação seguinte: V - A + F = 2 em que V é o número de vértices, A é o número de arestas e F, o número de faces. Observe
PREPARATÓRIO PROFMAT/ AULA 8 Geometria
PREPARATÓRIO PROFMAT/ AULA 8 Geometria QUESTÕES DISCURSIVAS Questão 1. (PROFMAT-2012) As figuras a seguir mostram duas circunferências distintas, com centros C 1 e C 2 que se intersectam nos pontos A e
Professor Alexandre Assis. Lista de exercícios de Geometria
1. A figura representa três círculos idênticos no interior do triângulo retângulo isósceles ABC. 3. Observando a figura a seguir, determine (em cm): a) o valor de x. b) a medida do segmento AN, sabendo
Se os tubos opostos forem de mesmo comprimento, teremos as várias possibilidades de paralelogramos, incluindo o retângulo.
Ernesto Rosa Poliedros de canudinhos rígidos possuem muitas vantagens: são fáceis de se fazer com sucata como tubinhos de canetas, bambus etc. (mas no mercado há tubos plásticos à venda), são ótimos nas
MATEMÁTICA. Geometria Espacial
MATEMÁTICA Geometria Espacial Professor : Dêner Rocha Monster Concursos 1 Geometria Espacial Conceitos primitivos São conceitos primitivos (e, portanto, aceitos sem definição) na Geometria espacial os
Geometria Espacial PRISMA RETO DE BASE TRIANGULAR (OU PRISMA TRIANGULAR)
Espacial 1 PRISMAS Os prismas são sólidos geométricos bastante recorrentes em Espacial. Podemos definir o prisma da seguinte forma: PRISMA RETO DE BASE TRIANGULAR (OU PRISMA TRIANGULAR) Prisma é um sólido
Qual é a posição do Centro de Massa de um corpo de material homogêneo que possui um eixo de simetria
Valter B. Dantas Imagem e texto protegida por direitos autorais. Copia proibida. Geometria das Massas Centro de Massa de um Sistema Contínuo de Partículas Qual é a posição do Centro de Massa de um corpo
Figura 1. Duas partículas de diferentes massas perfeitamente apoiadas pelo bastão = (1)
PRÁTICA 13: CENTRO DE MASSA Centro de massa (ou centro de gravidade) de um objeto pode ser definido como o ponto em que ele pode ser equilibrado horizontalmente. Seu significado físico tem muita utilidade
Aula 1. Exercício 1: Exercício 2:
Aula 1 Exercício 1: Com centro em A e raio de medida m achamos dois pontos B e C na reta, esses dois pontos são os centros das circunferências pedidas (2 soluções ). Exercício 2: Com centro em B e raio
SOLUCÃO DAS ATIVIDADES COM VARETAS
SOLUCÃO DAS ATIVIDADES COM VARETAS Em todas as atividades é usado o Material: Varetas. Nos casos específicos onde o trabalho é realizado com varetas congruentes será especificado como Material: varetas
Exercícios sobre Estudo dos Polígonos
Exercícios sobre Estudo dos Polígonos Material de apoio do Extensivo 1. (Uerj) Ao observar, em seu computador, um desenho como o apresentado a seguir, um estudante pensou tratar-se de uma curva. Porém,
Triângulos DEFINIÇÃO ELEMENTOS
Triângulos DEFINIÇÃO Do latim - triangulu, é um polígono de três lados e três ângulos. Os três ângulos de um triângulo são designados por três letras maiúsculas, B e C e os lados opostos a eles, pelas
Geometria Plana - Aula 05
Geometria Plana - Aula 05 Elaine Pimentel Universidade Federal de Minas Gerais, Departamento de Matemática Geometria Plana Especialização 2008 - p. 1 Esquema da aula Quadrilátero - definição e. Quadriláteros
DESENHO TÉCNICO ( AULA 02)
DESENHO TÉCNICO ( AULA 02) Posições da reta e do plano no espaço A geometria, ramo da Matemática que estuda as figuras geométricas, preocupa-se também com a posição que os objetos ocupam no espaço. A reta
» Teorema (CROSSBAR) Seja ABC um triângulo e seja X um ponto em seu interior. Então todo raio AX corta o lado BC.
» Teorema (CROSSBAR) Seja ABC um triângulo e seja X um ponto em seu interior. Então todo raio AX corta o lado BC. Iniciamos, nesta seção, o estudo sistemático da geometria dos quadriláteros. Dentre os
Áreas parte 1. Rodrigo Lucio Silva Isabelle Araújo
Áreas parte 1 Rodrigo Lucio Silva Isabelle Araújo Introdução Desde os egípcios, que procuravam medir e demarcar suas terras, até hoje, quando topógrafos, engenheiros e arquitetos fazem seus mapeamentos
MATEMÁTICA APLICADA À AGRIMENSURA PROF. JORGE WILSON
MATEMÁTICA APLICADA À AGRIMENSURA PROF. JORGE WILSON [email protected] DEFINIÇÕES GEOMETRIA PLANA Ponto: Um elemento do espaço que define uma posição. Reta: Conjunto infinito de pontos. Dois pontos são
INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DO RIO GRANDE DO NORTE. Professor: João Carmo
INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DO RIO GRANDE DO NORTE Professor: João Carmo DEFINIÇÃO Triângulo ou trilátero é um polígono de três lados. Observações: a) O triângulo não possui diagonais;
MATEMÁTICA PLANEJAMENTO 4º BIMESTRE º B - 11 Anos
PREFEITURA MUNICIPAL DE IPATINGA ESTADO DE MINAS GERAIS SECRETARIA MUNICIPAL DE EDUCAÇÃO DEPARTAMENTO PEDAGÓGICO/ SEÇÃO DE ENSINO FORMAL Centro de Formação Pedagógica CENFOP MATEMÁTICA PLANEJAMENTO 4º
Apostila de Matemática II 3º bimestre/2016. Professora : Cristiane Fernandes
Apostila de Matemática II 3º bimestre/2016 Professora : Cristiane Fernandes Pirâmide A pirâmide é uma figura geométrica espacial, um poliedro composto por uma base (triangular, pentagonal, quadrada, retangular,
A PAVIMENTAÇÃO DO PLANO
1 A PAVIMENTAÇÃO DO PLANO I) O modelo prático : Uma experiência prática muito conhecida por todos é a colocação de azulejos e ladrilhos nas paredes e pisos. É bastante intuitivo o senso comum a respeito
Triângulos e quadriláteros - o triângulo, formado por três segmentos (3 lados); - o quadrilátero, formado por quatro segmentos (4 lados).
CONSTRUINDO O PENSAMENTO GEOMÉTRICO O plano e as figuras planas Muito do que está à nossa volta nos dá a idéia de plano, como a superfície de uma folha de papel ou de uma chapa de aço. Para resolver problemas
Agora vamos rever alguns conceitos básicos. da Geometria, estudados ao longo do Telecurso Observe a figura abaixo e resolva a seguinte questão:
A UA UL LA Revisão II Geometria Introdução Agora vamos rever alguns conceitos básicos da Geometria, estudados ao longo do Telecurso 2000. Observe a figura abaixo e resolva a seguinte questão: Uma formiga
Triângulos classificação
Triângulos classificação Quanto aos ângulos Acutângulo: possui três ângulos agudos. Quanto aos lados Equilátero: três lados de mesma medida. Obs.: os três ângulos internos têm medidas de 60º. Retângulo:
O mercado se manteve equilibrado. O malabarista perdeu o equilíbrio e caiu. Minha vida anda meio desequilibrada.
1) PROBLEMATIZAÇÃO: Exercício ajuda a recuperar equilíbrio do corpo Pessoas que sofrem constantemente com tonturas ou vertigens, sintomas típicos de alguma disfunção do sistema vestibular - como a labirintite,
Distância entre dois pontos, média e mediana
Distância entre dois pontos, média e mediana 1. (Pucrj 014) Considere o quadrado ABCD como na figura. Assuma que A (5,1) e B (13,6). a) Determine a medida do lado do quadrado ABCD. b) (modificado) Determine
Polígonos PROFESSOR RANILDO LOPES 11.1
Polígonos PROFESSOR RANILDO LOPES 11.1 Polígonos Polígono é uma figura geométrica plana e fechada formada apenas por segmentos de reta que não se cruzam no mesmo plano. Exemplos 11.1 Elementos de um polígono
Poliedross. ANOTAÇÕES EM AULA Capítulo 23 Poliedros 1.5 CONEXÕES COM A MATEMÁTICA
Poliedross 1.5 Superfície poliédrica fechada Uma superfície poliédrica fechada é composta de um número finito (quatro ou mais) de superfícies poligonais planas, de modo que cada lado de uma dessas superfícies
Oficina Geoplano. As atividades apresentadas têm o objetivo de desenvolver as seguintes habilidades:
Oficina Geoplano 1. Introdução O objetivo desta oficina é trabalhar com os alunos alguns conceitos ligados a medidas de comprimento e área de figuras planas, bem como investigar o Teorema de Pitágoras.
Primeiramente é importante destacar um aspecto referente a definições, nomenclatura e classificações.
FIGURAS BIDIMENSIONAIS Primeiramente é importante destacar um aspecto referente a definições, nomenclatura e classificações. O termo "polígono", por exemplo, aparece em alguns textos como uma figura plana
Conceitos e Controvérsias
Conceitos e Controvérsias QUAL É A SOMA DOS ÂNGULOS (internos ou externos) DE UM POLÍGONO (convexo ou não)? Elon Lages Lima IMPA Introdução Todos sabem que a soma dos ângulos internos de um triângulo vale
Ângulos, Triângulos e Quadriláteros. Prof Carlos
Ângulos, Triângulos e Quadriláteros. Prof Carlos RECORDANDO... Ângulos formados por duas retas paralelas cortadas por uma transversal 2 1 3 4 6 5 7 8 Correspondentes: 1 e 5, 2 e 6, 3 e 7, 4 e 8. Alternos
Material Teórico - Módulo de Geometria Espacial 2 - Volumes e Áreas de Prismas e Pirâmides. Terceiro Ano - Médio
Material Teórico - Módulo de Geometria Espacial 2 - Volumes e Áreas de Prismas e Pirâmides Pirâmides Terceiro Ano - Médio Autor: Prof. Angelo Papa Neto Revisor: Prof. Antonio Caminha M. Neto 12 de agosto
Exercício 1) Uma praça circular tem 200 m de raio. Quantos metros de grade serão necessários para cerca-la?
O círculo e o número π As formas circulares aparecem com freqüência nas construções e nos objetos presente em nosso mundo. As formas circulares estão presentes: nas moedas, nos discos, roda do carro...
Geometria plana. Índice. Polígonos. Triângulos. Congruência de triângulos. Semelhança de triângulos. Relações métricas no triângulo retângulo
Índice Geometria plana Polígonos Triângulos Congruência de triângulos Semelhança de triângulos Relações métricas no triângulo retângulo Quadriláteros Teorema de Tales Esquadros de madeira www.ser.com.br
GEOMETRIA. Esse quadradinho no ângulo O significa que é um ângulo reto e sua medida equivale a 90 graus.
GEOMETRIA Ângulos É a abertura existente entre duas semi-retas que tem a mesma origem. Ângulo reto é formado por duas semi-retas perpendiculares, ou seja, uma horizontal e uma vertical sendo o ponto de
Teorema de Pitágoras
Teorema de Pitágoras Luan Arjuna 1 Introdução Uma das maiores preocupações dos matemáticos da antiguidade era a determinação de comprimentos: desde a altura de um edifício até a distância entre duas cidades,
Geometria plana. Índice. Polígonos. Triângulos. Congruência de triângulos. Semelhança de triângulos. Relações métricas no triângulo retângulo
Índice Geometria plana Polígonos Triângulos Congruência de triângulos Semelhança de triângulos Relações métricas no triângulo retângulo Quadriláteros Teorema de Tales Esquadros de madeira www.ser.com.br
ATIVIDADES COM GEOPLANO ISOMÉTRICO
ATIVIDADES COM GEOPLANO ISOMÉTRICO Observações. Os pinos ou pregos do geoplano isométrico são chamados de pontos. A menor distância entre dois pontos consecutivos é estabelecida como a unidade de comprimento
Geometria Euclidiana Plana
CURSO INTRODUTÓRIO DE MTEMÁTIC PR ENGENHRI 016. Geometria Euclidiana Plana Parte II Danielly Guabiraba Dantas - Engenharia Civil Rafael lves da Silva - Engenharia Civil Introdução Desde os egípcios, que
b) Quando o visor mostrava, girou-se um dos discos C ou U de uma unidade e o número de controle não se alterou. Qual passou a ser o número do visor?
1 1. Na figura um aparelho com três discos C (centenas), D (dezenas) e U (unidades), nos quais aparecem, em ordem, os algarismos de 0 a 9. O seu visor mostra um número CDU, a partir do qual é calculado
Matemática GEOMETRIA PLANA. Professor Dudan
Matemática GEOMETRIA PLANA Professor Dudan Ângulos Geometria Plana Ângulo é a região de um plano concebida pelo encontro de duas semirretas que possuem uma origem em comum, chamada vértice do ângulo. A
Geometria Euclidiana Plana
CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA 014. Geometria Euclidiana Plana Parte II Joyce Danielle de Araújo - Engenharia de Produção Vitor Bruno - Engenharia Civil Introdução Desde os egípcios,
Apostila de Geometria Descritiva. Anderson Mayrink da Cunha GGM - IME - UFF
Apostila de Geometria Descritiva Anderson Mayrink da Cunha GGM - IME - UFF Novembro de 2013 Sumário Sumário i 1 Poliedros e sua Representação 1 1.1 Tipos de Poliedros.............................. 1 1.1.1
A respeito da soma dos ângulos internos e da soma dos ângulos externos de um quadrilátero, temos os seguintes resultados:
Quadriláteros Nesta aula vamos estudar os quadriláteros e os seus elementos: lados, ângulos internos, ângulos externos, diagonais, etc. Além disso, vamos definir e observar algumas propriedades importantes
ESCOLA SECUNDÁRIA DE ALBERTO SAMPAIO. 1- Ângulos Definição: Chama-se ângulo à porção de plano limitada por duas semirretas com a mesma origem.
ESCOLA SECUNDÁRIA DE ALBERTO SAMPAIO 1ª Ficha Informativa MATEMÁTICA - A 10º Ano 2012/2013 1- Ângulos Definição: Chama-se ângulo à porção de plano limitada por duas semirretas com a mesma origem. Definição:
A origem das fórmulas das áreas de Figuras Planas
A origem das fórmulas das áreas de Figuras Planas Dentro da geometria quando nos é requerido o cálculo que envolve a área de uma figura plana, primeiro é preciso reconhecer qual a figura estamos trabalhando
U. E. PROF. EDGAR TITO - Turma: 2º ano A Prof. Ranildo Lopes Obrigado pela preferência de nossa ESCOLA!
1 U. E. PROF. EDGAR TITO - Turma: 2º ano A Prof. Ranildo Lopes Obrigado pela preferência de nossa ESCOLA! http://ueedgartito.wordpress.com RESUMO DE GEOMETRIA ESPACIAL São conceitos primitivos ( e, portanto,
Quantos cones cabem em um cilindro?
Reforço escolar M ate mática Quantos cones cabem em um cilindro? Dinâmica 4 2º Série 3º Bimestre Aluno Matemática 2 Série do Ensino Médio Geométrico Geometria Espacial: Prismas e Cilindros. PRIMEIRA ETAPA
d) Por dois pontos distintos passa uma única reta
INTRODUÇÃO À GEOMETRIA Ponto, reta e plano Você já tem ideia intuitiva sobre ponto, reta e plano. Vejamos alguns exemplos: Um furo de agulha num papel dá ideia de ponto. Uma corda bem esticada dá ideia
ATIVIDADE 2 ATIVIDADE 5
http://umlivroaberto.com ATIVIDADE 2 Na sua opinião, qual das seis imagens (A), (B), (C), (D), (E) e (F) a seguir melhor representa um lobo? Por quê? ATIVIDADE 5 Nesta atividade vamos explorar a geometria
Coordenadas Cartesianas
1 Coordenadas Cartesianas 1.1 O produto cartesiano Para compreender algumas notações utilizadas ao longo deste texto, é necessário entender o conceito de produto cartesiano, um produto entre conjuntos
REBATIMENTOS 3- OS REBATIMENTOS E A MUDANÇA DE DIEDROS DE PROJECÇÃO
REBATIMENTOS 1- NOÇÃO Sabemos que dois planos se intersectam segundo uma recta. Quando temos dois planos, se fizermos um deles rodar em torno da recta de intersecção até ficar coincidente com o outro,
O quadrado e outros quadriláteros
Acesse: http://fuvestibular.com.br/ A UUL AL A O quadrado e outros quadriláteros Para pensar No mosaico acima, podemos identificar duas figuras bastante conhecidas: o quadrado, de dois tamanhos diferentes,
Aula 6 Polígonos. Objetivos. Introduzir o conceito de polígono. Estabelecer alguns resultados sobre paralelogramos.
MÓULO 1 - UL 6 ula 6 Polígonos Objetivos Introduzir o conceito de polígono. Estabelecer alguns resultados sobre paralelogramos. Introdução efinição 14 hamamos de polígono uma figura plana formada por um
Associamos a esse paralelepípedo um número real, chamado volume, e definido por. V par = a b c.
Volumes Paralelepípedo Retângulo Dado um retângulo ABCD num plano α, consideremos um outro plano β paralelo à α. À reunião de todos os segmentos P Q perpendiculares ao plano α, com P sobre ABCD e Q no
3) O ponto P(a, 2) é equidistante dos pontos A(3, 1) e B(2, 4). Calcular a abscissa a do ponto P.
Universidade Federal de Pelotas Cálculo com Geometria Analítica I Prof a : Msc. Merhy Heli Rodrigues Lista 2: Plano cartesiano, sistema de coordenadas: pontos e retas. 1) Represente no plano cartesiano
CURSO DE MATEMÁTICA BÁSICA PROGRAMA DE EDUCAÇÃO TUTORIAL CENTRO DE ENGENHARIA DA MOBILIDADE
CURSO DE MATEMÁTICA BÁSICA Trigonometria Aula 0: Matrizes e Determinantes Trigonometria Deduzindo da própria palavra, trigonometria é a parte da geometria que estabelece relações métricas e angulares entre
MESTRADO PROFISSIONAL EM ENSINO DA MATEMÁTICA DA PONTIFÍCIA UNIVERSIDADE CATÓLICA DE SÃO PAULO LIETH MARIA MAZIERO
MESTRADO PROFISSIONAL EM ENSINO DA MATEMÁTICA DA PONTIFÍCIA UNIVERSIDADE CATÓLICA DE SÃO PAULO LIETH MARIA MAZIERO Produto Final da Dissertação apresentada à Pontifícia Universidade Católica de São Paulo
Geometria Analítica I
Geom. Analítica I Respostas do Módulo I - Aula 3 1 Geometria Analítica I 14/0/011 Respostas dos Exercícios do Módulo I - Aula 3 Aula 3 1. Procedendo como na definição da equação paramétrica da reta (página
Aula 31.1 Conteúdo: Fundamentos da Geometria: Ponto, Reta e Plano. FORTALECENDO SABERES CONTEÚDO E HABILIDADES DINÂMICA LOCAL INTERATIVA MATEMÁTICA
CONTEÚDO E HABILIDADES FORTALECENDO SABERES DESAFIO DO DIA Aula 31.1 Conteúdo: Fundamentos da Geometria: Ponto, Reta e Plano. 2 CONTEÚDO E HABILIDADES FORTALECENDO SABERES DESAFIO DO DIA Habilidades: Identificar
MÓDULO INICIAL RESOLUÇÃO DE PROBLEMAS
Escola Básica e Secundária Dr. Ângelo Augusto da Silva Matemática A e B 0.º ano MÓDULO INICIAL RESOLUÇÃO DE PROBLEMAS. Supõe que todos os alunos da tua turma se vão cumprimentar com um aperto de mão. Quantos
Duração: 90 minutos (3 valores) Sabe-se que a b. Atendendo à gura, calcule a medida do ângulo D indicado.
aculdade de Ciências Departamento de Matemática e Informática Licenciatura em Informática, Diurno 1 0 Teste de undamentos de Geometria. Correcção. ariante Duração: 90 minutos 18.0.01 1. ( valores) Sabe-se
Lista de exercícios de Geometria Espacial 2017 Prof. Diego. Assunto 1 Geometria Espacial de Posição
Assunto 1 Geometria Espacial de Posição (01). Considere um plano a e um ponto P qualquer no espaço. Se por P traçarmos a reta perpendicular a a, a intersecção dessa reta com a é um ponto chamado projeção
MINI-CURSO Geometria Espacial com o GeoGebra Profa. Maria Alice Gravina Instituto de Matemática da UFRGS
MINI-CURSO Geometria Espacial com o GeoGebra Profa. Maria Alice Gravina [email protected] Instituto de Matemática da UFRGS Neste minicurso vamos trabalhar com os recursos do GeoGebra 3D e discutir possibilidades
DESENHO GEOMÉTRICO Matemática - Unioeste Definição 1. Poligonal é uma figura formada por uma sequência de pontos (vértices)
DESENHO GEOMÉTRICO Matemática - Unioeste - 2010 1 Polígonos Definição 1. Poligonal é uma figura formada por uma sequência de pontos (vértices) A 1, A 2,..., A n e pelos segmentos (lados) A 1 A 2, A 2 A
O origami no ensino da Matemática
O origami no ensino da Matemática A construção de um origami parte sempre da dobragem de uma folha de papel num quadrado perfeito. Ao voltarmos a dobrar este quadrado podemos obter triângulos e outros
A reta numérica. Praciano-Pereira, T
A reta numérica Praciano-Pereira, T Sobral Matemática 3 de fevereiro de 205 Textos da Sobral Matemática Editor Tarcisio Praciano-Pereira, [email protected] - reta numérica Se diz duma reta na qual
2) Na figura abaixo, sabe se que RS // DE e que AE = 42 cm. Nessas condições, determine as medidas x e y indicadas.
Lista de exercícios Prof Wladimir 1 ano A, B, C, D 1) A figura abaixo nos mostra duas avenidas que partem de um mesmo ponto A e cortam duas ruas paralelas. Na primeira avenida, os quarteirões determinados
(A) 30 (B) 6 (C) 200 (D) 80 (E) 20 (A) 6 (B) 10 (C) 15 (D) 8 (E) 2 (A) 15 (B) 2 (C) 6 (D) 27 (E) 4 (A) 3 (B) 2 (C) 6 (D) 27 (E) 4
TEOREMA DE TALES 1. Na figura abaixo as retas r, s e t são (A) 0 (B) 6 (C) 00 (E) 0. Três retas paralelas são cortadas por duas Se AB = cm; BC = 6 cm e XY = 10 cm a medida, em cm, de XZ é: (A) 0 (B) 10
MATEMÁTICA. O aluno achou interessante e continuou a escrever, até a décima linha. Somando os números dessa linha, ele encontrou:
MATEMÁTICA Passando em uma sala de aula, um aluno verificou que, no quadro-negro, o professor havia escrito os números naturais ímpares da seguinte maneira: 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 O aluno
Questão 1 Determine a medida da mediana relativa ao lado AC do triângulo de vértices A( 2,4), B(1,1) e C(6,3).
Sistemas de coordenadas cartesianas e distâncias Questão 1 Determine a medida da mediana relativa ao lado AC do triângulo de vértices A( 2,4)1,1) e C(6,3). Questão 2 Os pontos A(2,7) 3,0) 16,5) são colineares?
Prof..: Rogério de Souza Lima. Questão 1 Uma chapa de alumínio com 1,3 m2 de área será totalmente recortada em pedaços, cada um deles com 25 cm2
CENTRO UNIVERSITÁRIO NOSSA SENHORA DO PATROCÍNIO CEUNSP LISTA DE EXERCÍCIO 1 Matemática e Geometria Aplicada à Arquitetura e Urbanismo. TURMA: 82211 Prof..: Rogério de Souza Lima Questão 1 Uma chapa de
Lista 3 com respostas
Lista 3 com respostas Professora Nataliia Goloshchapova MAT0105-1 semestre de 2018 Exercício 1. Sendo que w = ( u v) ( u + v), determine o ângulo entre os vetores u e v, sabendo que u = v = w = 1 e u v
Nome N. Turma. Geometria (8º Ano Revisões) Compilação de Exercícios do Banco de Itens
A G R U P A M E N T O D E E S C O L A S 172 303 MÃES D ÁGUA SEDE - Escola Básica e Secundária Mães d Água Nome N. Turma Geometria (8º Ano Revisões) Compilação de Exercícios do Banco de Itens 1 1. Quais
MATEMÁTICA MÓDULO 16 CONE E CILINDRO. Professor Haroldo Filho
MATEMÁTICA Professor Haroldo Filho MÓDULO 16 CONE E CILINDRO 1. CILINDRO CIRCULAR Considere dois planos paralelos, α e β, seja R um círculo no plano α, seja s uma reta secante aos dois planos que não intersecta
Módulo Unidades de Medidas de Comprimentos e Áreas. Exercícios Diversos de Áreas de Figuras. 6 ano/e.f.
Módulo Unidades de Medidas de Comprimentos e Áreas Exercícios Diversos de Áreas de Figuras. 6 ano/e.f. Unidades de Medidas de Comprimentos e Áreas. Exercícios Diversos de Áreas de Figuras. 1 Exercícios
MATEMÁTICA SEM FRONTEIRAS PROVA-ENSAIO 2011 RESOLUÇÃO
redepoc.wordpress.com MATEMÁTICA SEM FRONTEIRAS PROVA-ENSAIO 2011 RESOLUÇÃO Questão 1 Língua Estrangeira Irène não tem nem irmão,nem irmã, portanto Jeanne, Gilles e Irène possuem mães diferentes. Emile
Pirâmides: Neste momento, continuaremos a estudar a geometria espacial dos sólidos geométricos, enfatizando agora as pirâmides.
Pirâmides: Neste momento, continuaremos a estudar a geometria espacial dos sólidos geométricos, enfatizando agora as pirâmides. A seguir, algumas representações de pirâmides: Essa forma espacial é bastante
1 Geometria Analítica Plana
UNIVERSIDADE ESTADUAL DO PARANÁ CAMPUS DE CAMPO MOURÃO Curso: Matemática, 1º ano Disciplina: Geometria Analítica e Álgebra Linear Professora: Gislaine Aparecida Periçaro 1 Geometria Analítica Plana A Geometria
C D U controle Posição inicial C gira para C gira para U gira para U gira para
OBMEP 013 a Fase 1 N3Q1 a) Quando o visor mostra 804, o número de controle é 10 + 8 0 + 4 =. b) Quando o visor mostra 690, o número de controle é 10 + 6 9 + 0 = 7. Mostramos na tabela abaixo todas as possibilidades
Aula Exemplos e aplicações - continuação. Exemplo 8. Nesta aula continuamos com mais exemplos e aplicações dos conceitos vistos.
Aula 1 Nesta aula continuamos com mais exemplos e aplicações dos conceitos vistos. 1. Exemplos e aplicações - continuação Exemplo 8 Considere o plano π : x + y + z = 3 e a reta r paralela ao vetor v =
Grupo de exercícios I.2 - Geometria plana- Professor Xanchão
Grupo de exercícios I - Geometria plana- Professor Xanchão 1 (G1 - utfpr 013) Um triângulo isósceles tem dois lados congruentes (de medidas iguais) e o outro lado é chamado de base Se em um triângulo isósceles
GEOMETRIA PLANA. Segmentos congruentes: Dois segmentos ou ângulos são congruentes quando têm as mesmas medidas.
PARTE 01 GEOMETRIA PLANA Introdução A Geometria está apoiada sobre alguns postulados, axiomas, definições e teoremas, sendo que essas definições e postulados são usados para demonstrar a validade de cada
5. Desenhos geométricos
17 Exercícios: 1. Na folha A4 impressa escreva o alfabeto com letras maiúsculas e minúsculas e a numeração de 0 a 9, com letras verticias. Faça ainda a legenda da folha 2. Na folha A4 impressa escreva
Formação Continuada em MATEMÁTICA Fundação CECIERJ/Consócio CEDERJ Matemática 9º Ano 4º Bimestre/2013 Plano de Trabalho
Formação Continuada em MATEMÁTICA Fundação CECIERJ/Consócio CEDERJ Matemática 9º Ano 4º Bimestre/2013 Plano de Trabalho POLÍGONOS E ÁREAS Tarefa 2 Grupo 1 Cursista: Tatiana Manhães da Costa. Tutora: Andréa
1. Área do triângulo
UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA Geometria Plana II Prof.:
POLÍGONOS TRIÂNGULOS E QUADRILÁTEROS
7º ANO POLÍGONOS TRIÂNGULOS E QUADRILÁTEROS Polígonos Nuno Marreiros Antes de começar Não é possível pois uma circunferência não é formada por segmentos de reta. Nem tudo o que parece é Segmento de reta
Equilátero Isósceles Escaleno
TRIÂNGULOS Triângulo são polígonos formados por três lados. Os polígonos, por sua vez, são figuras geométricas formadas por segmentos de reta que, dois a dois, tocam-se em seus pontos extremos, mas que
MATEMÁTICA ENSINO FUNDAMENTAL
CEEJA MAX DADÁ GALLIZZI PRAIA GRANDE - SP APRESENTAÇÃO Nesta apostila, a intenção é que você adquira a capacidade de visualizar e nomear, pontos, retas, planos, ângulos e reconhecer triângulos. É uma pequena
ATIVIDADES COM VARETAS
ATIVIDADES COM VARETAS Em todas as atividades é usado o Material: Varetas. Nos casos específicos onde o trabalho é realizado com varetas congruentes será especificado como Material: varetas do mesmo comprimento.
Exemplo Aplicando a proporcionalidade existente no Teorema de Tales, determine o valor dos segmentos AB e BC na ilustração a seguir:
GEOMETRIA PLANA TEOREMA DE TALES O Teorema de Tales pode ser determinado pela seguinte lei de correspondência: Se duas retas transversais são cortadas por um feixe de retas paralelas, então a razão entre
Geometria. Nome: N.ª: Ano: Turma: POLÍGONOS = POLI (muitos) + GONOS (ângulos)
MATEMÁTICA 3º CICLO FICHA 16 Geometria regular inscrito numa circunferência Nome: N.ª: Ano: Turma: Data: / / 20 POLÍGONOS = POLI (muitos) + GONOS (ângulos) é uma figura plana limitada por segmentos de
Exercícios Obrigatórios
Exercícios Obrigatórios 1) (UFRGS) Na figura 1, BC é paralelo a DE e, na figura 2, GH é paralelo a IJ. x E y J a C H a (a) ab e a/b (b) ab e b/a (c) a/b e ab (d) b/a e ab (e) a/b e 1/b Então x e y valem,
Pontos correspondentes: A e D, B e E, C e F; Segmentos correspondentes: AB e DE, BC e EF, AC e DF.
Teorema de Tales O Teorema de Tales possui diversas aplicações no cotidiano, que devem ser demonstradas a fim de verificar sua importância. O Teorema diz que retas paralelas, cortadas por transversais,
