Correção Prova-2 LPL
|
|
|
- Matheus Aveiro Stachinski
- 9 Há anos
- Visualizações:
Transcrição
1 Correção Prova-2 LPL Felipe Lunkes Fin e Deiwys Grumovski Joinville, 30 de Agosto de Utilizando o método de demonstração por absurdo ou indireta, demonstre a validade do argumento (s p), a partir das premissas: 1. p q 2. q r 3. s t 4. r Isto é, esta sequência deduz (, consiste de um teorema) (s p)? 1. p q 2. q r 3. s t 4. r 5. (s p) Negou-se o teorema a ser demonstrado 6. ( s p) Usando 5 por Condicional 7. s p Usando 6 por De Morgan 8. s p Usando 7 por Dupla Negação 9. p Usando 8 por Simplicação 10. q 1,9 por Silogismo Disjuntivo 11. r Usando 2,10 por Modus Ponens 12. r r 4,11 por Conjunção Inconsistência Logo, o terorema (s p) é válido 2. Demonstrar que o conjunto das proposições abaixo geram uma contradição (isto é, derivam uma inconsistência do tipo ( x x)). a) 1 p q 2 q 3 r s 4 p (s t) t r
2 1. p q 2. q 3. r s 4. p (s t) 5. (t r) Negou-se o teorema a ser demonstrado 6. p 1,2 por Silogismo Disjuntivo 7. s t 4,6 por Modus Ponens 8. r t 3,7 por Silogismo Hipotético 9. t r 8 por Contraposição 10. (t r) (t r) 5,9 por Conjunção Inconsistência Logo, o teorema (t r) é valido. b) 1 t p 2 t r 3 q r 4 p s q q 1. t p 2. t r 3. q r 4. p s q 5. q Negou-se o teorema a ser demonstrado 6. (p s) q 4 por Condicional 7. ( p s) q 6 por De Morgan 8. ( p q) ( s q) Aplicando a distributividade em 7 9. p q 8 por Simplicação 10. p 5,9 por Silogismo Disjuntivo 11. t 2 por Simplicação 12. t p 1 por Condicional 13. p 11,12 por Silogismo Disjuntivo 14. p p 10,13 por Conjunção Inconsistência Logo, o teorema q é válido. 3. Aplique o método da Resolução nos itens a) e b) da questão anterior. Indique passo-a-passo, indicando o resolvente λ e as novas cláusulas obtidas. A árvore de prova é dispensável. a) 1. p q 2. q 3. r s ( r) s r s r s 4. p (s t) p ( s t) ( p) ( s t) p s t 5. (t r) ( t r) t r t r
3 Notação Clausal: C1 = { p, q} C2 = { q} C3 = {r, s} C4 = {p, s, t} C5 = {t} C6 = { r} C7 = Resolvente(C1,C2) = {{ p, q} q} {{ q} q} = { p} com λ /q C7 = { p} C8 = Resolvente(C3,C6) = {{r, s} r} {{ r} r} = {s} com λ /r C8 = {s} C9 = Resolvente(C4,C7) = {{p, s, t} p} {{ p} p} = { s, t} com λ /p C9 = { s, t} C10 = Resolvente(C8,C9) = {{s} s} {{ s, t} s} = { t} com λ /s C10 = { t} C11 = Resolvente(C5,C10) = {{t} t} {{ t} t} = {} = com λ /t C11 = b) 1. t p t p 2. t r 3. q r q r 4. p s q (p s) q ( p s) q ( p q) ( s q) 5. q Notação Clausal: C1 = { t, p} C2 = {t} C3 = {r} C4 = { q, r} C5 = { p, q} C6 = { s, q} C7 = { q} C8 = Resolvente(C1,C2) = {{ t, p} t} {{t} t} = {p} com λ / t C8 = {p} C9 = Resolvente(C5,C8) = {{ p, q} p} {{p} p} = {q} com λ / p C9 = {q} C10 = Resolvente(C7,C9) = {{ q} q} {{q} q} = com λ / q 4. Faça as interpretações (φ) e justique (explique) o valor lógico das fórmulas abaixo segundo os domínios: a) x(x + 2) 2 = x 2 + 4x + 4 para x N
4 x = 0, (0 + 2) 2 = = 4 V x = 1, (1 + 2) 2 = = 9 V x = 2, (2 + 2) 2 = = 16 V Logo, V V V... = V assim, concluímos que φ( x(x + 2) 2 = x 2 + 4x + 4) é uma fórmula verdadeira. b) x(3x 2-2x - 1) = 0 para x R x = -1, (3( 1) 2 2.( 1) 1) = 0 0 = 0 V x = 0, (3(0) 2 2.(0) 1) = 0 1 = 0 F x = 1, (3(1) 2 2.(1) 1) = 0 0 = 0 V Logo, V F V... = V assim, concluímos que φ( x(3x 2-2x - 1) = 0) é também uma fórmula verdadeira. 5. Seja o enunciado:... para todo caminho denido de x até z e arco entre z e y, então há um caminho entre x e y. Sabe-se que todo arco entre x e y é também um caminho entre x e y. Sabe-se ainda que há arcos denidos pelas cláusulas/fórmulas: arco(a,b), arco(a,c), arco(b,d) e arco(c,d). Prove que é possível ir de um ponto a a d denido por caminho(a,d) como verdade. caminho(x,z) arco(z, y) caminho(x,y), logo, com quanticadores: I x y z(caminho(x, z) arco(z, y) caminho(x, y)) II x y(arco(x, y) caminho(x, y) III arco(a,b) IV arco(a,c) V arco(b,d) VI arco(c,d) 1. x y z(caminho(x, z) arco(z, y) caminho(x, y)) 2. x y(arco(x, y) caminho(x, y)) 3. arco(a,b) 4. arco(a,c) 5. arco(b,d) 6. arco(c,d) 7. arco(a,b) caminho(a,b) Usando 2 por Particularização Universal 8. caminho(a,b) 3,7 por Modus Ponens 9. arco(b,d) caminho(b,d) Usando 2 por Particuarização Universal 10. caminho(b,d) 5,9 por Modus Ponens 11. caminho(a,b) arco(b,d) 5,8 por Conjunção 12. caminho(a,b) arco(b,d) caminho(a,d) Usando 1 com Particularização Universal x/a, y/d e z/b 13. caminho (a,d) 11,12 por Modus Ponens CQD Conforme se Queria Demonstrar. (Isto é, há uma prova para caminho(a,d)). Outro método: Usando a Resolução as fórmulas 1 e 2 sendo transformadas nas seguintes cláusulas: Notação Clausal:
5 1. caminho(x,z) arco(z,y) caminho(x,z) 2. arco(x,y) caminho(x,y) 3. arco(a,b) 4. arco(a,c) 5. arco(b,d) 6. arco(c,d) 7. caminho(a,b) (negação da prova) C1 = { caminho(x,z), arco(z,y), caminho(x,z)} C2 = { arco(x,y), caminho(x,y)} C3 = { arco(a,b) } C4 = { arco(a,c) } C5 = { arco(b,d) } C6 = { arco(c,d) } C7 = { caminho(a,d) } C8 = arco(a,b) caminho(a,b) Instância x/a e y/b em 2 C8 = { arco(a,b), caminho(a,b) } C9 = Resolvente(C3,C8) = {{arco(a,b) - arco(a,b)} { arco(a,b), caminho(a,b) - arco(a,b) } = {caminho(a,b)} com λ /arco(a,b) C9 = { caminho(a,b) } C10 = arco(b,d) caminho(b,d) Instância x/a e y/d em 2 C10 = { arco(b,d), caminho(b,d) } C11 = Resolvente(C5,C10) = {{ arco(b,d) } - arco(b,d)} { arco(b,d), caminho(b,d) } - arco(b,)} = {caminho(b,d)} com λ /arco(b,d) C11 = {caminho(b,d)} C12 = caminho(a,b) arco(b,d) caminho(a,d) Instância x/a y/d z/d em 1 C12 = { caminho(a,b), arco(b,d), caminho(a,d) } C13 = Resolvente(C9,C12) = {{caminho(a,b) - caminho(a,b)} {{ caminho(a,b), arco(b,d), caminho(a,d)} - caminho(a,b) } = { arco(b,d) caminho(a,d)} com λ /caminho(a,b) C13 = { arco(b,d) caminho(a,d)} C14 = Resolvente(C5,C13) = {arco(b,d) - arco(b,d)} {{ arco(b,d) caminho(a,d) } - arco(b,d)} = {caminho(a,d)} com λ /arco(b,d) C14 = {caminho(a,d)} C15 = Resolvente(C7,C14) = {{ caminho(a,d)} - caminho(a,d)} {{caminho(a,d)} - caminho(a,d)} C15= Conforme queríamos demonstrar. Leia-se "instância"por Particularização Universal
6 6. Prove esta implicação lógica usando as propriedades da LPO: x(ax bx) x(ax) x(bx) 1. x(ax bx) 2. a(1) b(1) Particularização Existencial com x=1 (um átomo qualquer de um Domínio qualquer) 3. a(1) 2 por Simplicação 4. b(1) 2 por Simplicação 5. x a(x) 3 por Generalização Existencial 6. x b(x) 4 por Generalização Existencial 7. x(ax) x(bx) 5,6 por Conjunção Logo x(ax bx) x(ax) x(bx) 7. Idem quanto: x y (q(x,y)) y x (q(x,y)) 1. x y (q(x,y)) 2. y(q(x,y)) 1 Por Particularização Existencial 3. q(x,y) 2 por Particularização Universal 4. x(q(x,y)) 3 Por Generalização Existencial 5. y x(q(x,y)) 4 Por Generalização Universal Logo x x(q(x,y)) y x(q(x,y)) Apenas lembrar que: 1. q(x,y) era uma fórmula atômica (sem operadores) 2. A Generalização Universal tem esta restrição, apenas para fórmulas atômicas. Caso alguém encontre algum erro... por gentileza me comunique.
3.3 Cálculo proposicional clássico
81 3.3 Cálculo proposicional clássico 3.3.1 Estrutura dedutiva Neste parágrafo serão apresentados, sem preocupação com excesso de rigor e com riqueza de detalhes, alguns conceitos importantes relativos
Lógica predicados. Lógica predicados (continuação)
Lógica predicados (continuação) Uma formula está na forma normal conjuntiva (FNC) se é uma conjunção de cláusulas. Qualquer fórmula bem formada pode ser convertida para uma FNC, ou seja, normalizada, seguindo
Lógica de Predicados. Correção dos Exercícios
Lógica de Predicados Correção dos Exercícios Conteúdo Correção Exercícios Tradução Lógica - Português (Rosen 55) Tradução Português Lógica(Rosen 56) Exercícios Rosen 58 1) Transcreva as proposições para
Lógica Proposicional Parte II. Raquel de Souza Francisco Bravo 25 de outubro de 2016
Lógica Proposicional Parte II e-mail: [email protected] 25 de outubro de 2016 Argumento Válido Um argumento simbólica como: pode ser ser representado em forma P 1 P 2 P 3 P n Q Onde P 1, P 2,,P n são proposições
Sistema dedutivo. Sistema dedutivo
Sistema dedutivo Estudaremos um sistema dedutivo axiomático axiomas lógicos e axiomas não lógicos (ou esquemas de axiomas) e regras de inferência (ou esquemas de regra) do tipo de Hilbert para a lógica
Fundamentos de Lógica Matemática
Webconferência 5-22/03/2012 Prova por resolução Prof. L. M. Levada http://www.dc.ufscar.br/ alexandre Departamento de Computação (DC) Universidade Federal de São Carlos (UFSCar) 2012/1 Introdução É possível
Fundamentos de Lógica Matemática
Webconferência 3-01/03/2012 Inferência Lógica Prof. L. M. Levada http://www.dc.ufscar.br/ alexandre Departamento de Computação (DC) Universidade Federal de São Carlos (UFSCar) 2012/1 Objetivos Análise
Lógica. Cálculo Proposicional. Introdução
Lógica Cálculo Proposicional Introdução Lógica - Definição Formalização de alguma linguagem Sintaxe Especificação precisa das expressões legais Semântica Significado das expressões Dedução Provê regras
Dedução Natural e Sistema Axiomático Pa(Capítulo 6)
Dedução Natural e Sistema Axiomático Pa(Capítulo 6) LÓGICA APLICADA A COMPUTAÇÃO Professor: Rosalvo Ferreira de Oliveira Neto Estrutura 1. Definições 2. Dedução Natural 3. Sistemas axiomático Pa 4. Lista
assim são válidas devido à sua estrutura e ao significado dos quantificadores universal e existencial
LÓGICA DE PREDICADOS Na ló predicados uma wff verdadeira significa uma wff vá lida, isto é, uma wff que seja válida em qualquer interpretação possível. AXIOMAS E REGRAS DE INFERêNCIA: wffs predicativas
Lógica Matemática UNIDADE II. Professora: M. Sc. Juciara do Nascimento César
Lógica Matemática UNIDADE II Professora: M. Sc. Juciara do Nascimento César 1 1 - Álgebra das Proposições 1.1 Propriedade da Conjunção Sejam p, q e r proposições simples quaisquer e sejam t e c proposições
Fundamentos de Lógica Matemática
Webconferência 6-29/03/2012 Introdução à Lógica de Predicados Prof. L. M. Levada http://www.dc.ufscar.br/ alexandre Departamento de Computação (DC) Universidade Federal de São Carlos (UFSCar) 2012/1 Introdução
Lógica Proposicional (Consequência lógica / Dedução formal)
Faculdade de Tecnologia Senac Pelotas Curso Superior de Tecnologia em Análise e Desenvolvimento de Sistemas Matemática Aplicada Prof. Edécio Fernando Iepsen Lógica Proposicional (Consequência lógica /
Lógica de Predicados. Correção dos Exercícios Regras de Inferência
Lógica de Predicados Correção dos Exercícios Regras de Inferência O que foi visto até agora... Predicado Proposição Quantificadores Conjuntos Quantificadores com restrição Operações Lógicas com predicados
Fundamentos da Computação 1. Introdução a Argumentos
Fundamentos da Computação 1 Introdução a s Se você tem um senha atualizada, então você pode entrar na rede Você tem uma senha atualizada Se você tem um senha atualizada, então você pode entrar na rede
NHI Lógica Básica (Lógica Clássica de Primeira Ordem)
NHI2049-13 (Lógica Clássica de Primeira Ordem) página da disciplina na web: http://professor.ufabc.edu.br/~jair.donadelli/logica O assunto O que é lógica? Disciplina que se ocupa do estudo sistemático
Lógica Proposicional. LEIC - Tagus Park 2 o Semestre, Ano Lectivo 2007/08. c Inês Lynce c Luísa Coheur
Capítulo 2 Lógica Proposicional Lógica para Programação LEIC - Tagus Park 2 o Semestre, Ano Lectivo 2007/08 c Inês Lynce c Luísa Coheur Programa Apresentação Conceitos Básicos Lógica Proposicional ou Cálculo
Lógica. Fernando Fontes. Universidade do Minho. Fernando Fontes (Universidade do Minho) Lógica 1 / 65
Lógica Fernando Fontes Universidade do Minho Fernando Fontes (Universidade do Minho) Lógica 1 / 65 Outline 1 Introdução 2 Implicações e Equivalências Lógicas 3 Mapas de Karnaugh 4 Lógica de Predicados
Lógica e Matemática Discreta
Lógica e Matemática Discreta Proposições Prof clezio 26 de Abril de 2017 Curso de Ciência da Computação Inferência Lógica Uma inferência lógica, ou, simplesmente uma inferência, é uma tautologia da forma
Lógica para Computação Primeiro Semestre, Aula 10: Resolução. Prof. Ricardo Dutra da Silva
Lógica para Computação Primeiro Semestre, 2015 DAINF-UTFPR Aula 10: Resolução Prof. Ricardo Dutra da Silva A resolução é um método de inferência em que: as fórmulas devem estar na Forma Clausal; deduções
LÓGICA EM COMPUTAÇÃO
CEC CENTRO DE ENGENHARIA E COMPUTAÇÃO UNIVERSIDADE CATÓLICA DE PETRÓPOLIS LÓGICA EM COMPUTAÇÃO TAUTOLOGIA - EQUIVALÊNCIA E INFERÊNCIA VERSÃO: 0.1 - MARÇO DE 2017 Professor: Luís Rodrigo E-mail: [email protected]
Lógica dos Conectivos: demonstrações indiretas
Lógica dos Conectivos: demonstrações indiretas Renata de Freitas e Petrucio Viana IME, UFF 5 de novembro de 2014 Sumário Acrescentando premissas. Estratégias indiretas. Principais exemplos. Um problema
Lógica Computacional DCC/FCUP 2017/18
2017/18 Raciocínios 1 Se o André adormecer e alguém o acordar, ele diz palavrões 2 O André adormeceu 3 Não disse palavrões 4 Ninguém o acordou Será um raciocínio válido? Raciocínios Forma geral do raciocínio
Prof. João Giardulli. Unidade III LÓGICA
Prof. João Giardulli Unidade III LÓGICA Objetivo Apresentar os seguintes conceitos: argumento; verificação da validade. Argumento: Algumas definições (dicionário): 1. Raciocínio através do qual se tira
Lógica dos Conectivos: demonstrações indiretas
Lógica dos Conectivos: demonstrações indiretas Renata de Freitas e Petrucio Viana IME, UFF 18 de junho de 2015 Sumário Olhe para as premissas Olhe para a conclusão Estratégias indiretas Principais exemplos
JOÃO NUNES de SOUZA. LÓGICA para CIÊNCIA da COMPUTAÇÃO. Uma introdução concisa
JOÃO NUNES de SOUZA LÓGICA para CIÊNCIA da COMPUTAÇÃO Uma introdução concisa 21 de maio de 2008 1 A linguagem da Lógica Proposicional Introdução Alfabeto da Lógica Proposicional Definição 1.1 (alfabeto)
Capítulo 3 Lógica de Primeira Ordem
Capítulo 3 Lógica de Primeira Ordem Lógica para Programação LEIC - Tagus Park 1 o Semestre, Ano Lectivo 2007/08 c Inês Lynce and Luísa Coheur Bibliografia Martins J.P., Lógica para Programação, Capítulo
Demonstrações. Terminologia Métodos
Demonstrações Terminologia Métodos Técnicas de Demonstração Uma demonstração é um argumento válido que estabelece a verdade de uma sentença matemática. Técnicas de Demonstração Demonstrações servem para:
Cálculo proposicional
O estudo da lógica é a análise de métodos de raciocínio. No estudo desses métodos, a lógica esta interessada principalmente na forma e não no conteúdo dos argumentos. Lógica: conhecimento das formas gerais
Lógica e Metodologia Jurídica
Lógica e Metodologia Jurídica Argumentos e Lógica Proposicional Prof. Juliano Souza de Albuquerque Maranhão [email protected] Argumento Sequência de sentenças......uma das quais se afirma verdadeira
Matemática Discreta - 04
Universidade Federal do Vale do São Francisco Curso de Engenharia da Computação Matemática Discreta - 04 Prof. Jorge Cavalcanti [email protected] www.univasf.edu.br/~jorge.cavalcanti www.twitter.com/jorgecav
LÓGICA EM COMPUTAÇÃO
CEC CENTRO DE ENGENHARIA E COMPUTAÇÃO UNIVERSIDADE CATÓLICA DE PETRÓPOLIS LÓGICA EM COMPUTAÇÃO TAUTOLOGIA - EQUIVALÊNCIA E INFERÊNCIA VERSÃO: 4 - ABRIL DE 2018 Professor: Luís Rodrigo E-mail: [email protected]
Uma proposição é uma frase que pode ser apenas verdadeira ou falsa. Exemplos:
1 Noções Básicas de Lógica 1.1 Proposições Uma proposição é uma frase que pode ser apenas verdadeira ou falsa. 1. Os sapos são anfíbios. 2. A capital do Brasil é Porto Alegre. 3. O tomate é um tubérculo.
Resumo de Filosofia. Preposição frase declarativa com um certo valor de verdade
Resumo de Filosofia Capítulo I Argumentação e Lógica Formal Validade e Verdade O que é um argumento? Um argumento é um conjunto de proposições em que se pretende justificar ou defender uma delas, a conclusão,
Universidade Aberta do Brasil - UFPB Virtual Curso de Licenciatura em Matemática
Universidade Aberta do Brasil - UFPB Virtual Curso de Licenciatura em Matemática Argumentação em Matemática Prof. Lenimar Nunes de Andrade e-mail: [email protected] ou [email protected] versão 1.0
Matemática Discreta. Lógica Proposicional. Profa. Sheila Morais de Almeida. agosto DAINF-UTFPR-PG
Matemática Discreta Lógica Proposicional Profa. Sheila Morais de Almeida DAINF-UTFPR-PG agosto - 2016 Tautologias Tautologia é uma fórmula proposicional que é verdadeira para todos os possíveis valores-verdade
Unidade II. A notação de que a proposição P (p, q, r,...) implica a proposição Q (p, q, r,...) por:
LÓGICA Objetivos Apresentar regras e estruturas adicionais sobre o uso de proposições. Conceituar implicação lógica, tautologias, e as propriedade sobre proposições. Apresentar os fundamentos da dedução,
Lógica e Metodologia Jurídica
Lógica e Metodologia Jurídica Argumentos e Lógica Proposicional Prof. Juliano Souza de Albuquerque Maranhão [email protected] Quais sentenças abaixo são argumentos? 1. Bruxas são feitas de madeira.
Semana 3 MCTB J Donadelli. 1 Técnicas de provas. Demonstração indireta de implicação. indireta de. Demonstração por vacuidade e trivial
Semana 3 por de por de 1 indireta por de por de Teoremas resultados importantes, Os rótulos por de por de Teoremas resultados importantes, Os rótulos Proposições um pouco menos importantes, por de por
Lógica Computacional
Lógica Computacional Modus Ponens e Raciocínio Hipotético Introdução e eliminação da Implicação e da Equivalência Completude e Coerência do Sistema de Dedução Natural 24 Outubro 2016 Lógica Computacional
MATEMÁTICA 3 MÓDULO 1. Lógica. Professor Renato Madeira
MATEMÁTICA 3 Professor Renato Madeira MÓDULO 1 Lógica SUMÁRIO 1. Proosição. Negação 3. Conectivos 4. Condicionais 4.1. Relação de imlicação 4.. Relação de equivalência 5. Álgebra das roosições 6. Quantificadores
MD Lógica de Proposições Quantificadas Cálculo de Predicados 1
Lógica de Proposições Quantificadas Cálculo de Predicados Antonio Alfredo Ferreira Loureiro [email protected] http://www.dcc.ufmg.br/~loureiro MD Lógica de Proposições Quantificadas Cálculo de Predicados
2 Lógica Fuzzy. 2 Lógica Fuzzy. Sintaxe da linguagem
2 Lógica Fuzzy 2.1 Cálculo proposicional (lógica proposicional) 2.2 Lógica de Predicados 2.3 Lógica de múltiplos valores 2.4 Lógica Fuzzy Proposições fuzzy Inferência a partir de proposições fuzzy condicionais
INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA
INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA PARA A COMPUTAÇÃO PROF. DANIEL S. FREITAS UFSC - CTC - INE Prof. Daniel S. Freitas - UFSC/CTC/INE/2007 p.1/81 1 - LÓGICA E MÉTODOS DE PROVA 1.1) Lógica Proposicional
Conteúdo. Correção Exercícios Revisão para Prova
Conteúdo Correção Exercícios Revisão para Prova Rosen 58 1) Transcreva as proposições abaixo para o português, em que o domínio para cada variável consista nos números reais. a) x y (x
Para provar uma implicação se p, então q, é suficiente fazer o seguinte:
Prova de Implicações Uma implicação é verdadeira quando a verdade do seu antecedente acarreta a verdade do seu consequente. Ex.: Considere a implicação: Se chove, então a rua está molhada. Observe que
Universidade do Vale do Rio dos Sinos - UNISINOS. Apostila da Disciplina de. Lógica. Prof. João Carlos Gluz
Universidade do Vale do Rio dos Sinos - UNISINOS Apostila da Disciplina de Lógica Prof. João Carlos Gluz São Leopoldo, março de 2009 UNISINOS Lógica Apostila 1 Sumário CAPÍTULO 1 LÓGICA PROPOSICIONAL...1
Lógica Proposicional Métodos de Validação de Fórmulas. José Gustavo de Souza Paiva. Introdução
Lógica Proposicional Métodos de Validação de Fórmulas José Gustavo de Souza Paiva Introdução Análise dos mecanismos que produzem e verificam os argumentos válidos apresentados na linguagem da lógica Três
n. 11 Argumentos e Regras de Inferência
n. 11 Argumentos e Regras de Inferência A lógica formal lida com um tipo particular de argumento, denominado de argumento dedutivo, que nos permite deduzir uma conclusão Q, com base num conjunto de proposições
Lógica Formal. Matemática Discreta. Prof Marcelo Maraschin de Souza
Lógica Formal Matemática Discreta Prof Marcelo Maraschin de Souza Implicação As proposições podem ser combinadas na forma se proposição 1, então proposição 2 Essa proposição composta é denotada por Seja
Fórmulas Bem Formadas (wff) Prioridade dos Conectivos. Prioridade dos Conectivos. Semântica do CR. Semântica do CR
1 Fórmulas Bem Formadas (wff) 1. um átomo é uma wff 2. se α e β são wff e X uma variável livre, então são também wff: INTELIGÊNCIA ARTIFICIAL LÓGICA RELACIONAL (PARTE II) Huei Diana Lee wff lê-se α não
Lógica Proposicional
Lógica Proposicional Lógica Proposicional Profa. Sheila Morais de Almeida DAINF-UTFPR-PG junho - 2018 Sheila Almeida (DAINF-UTFPR-PG) Lógica Proposicional junho - 2018 1 / 55 Este material é preparado
Lógica e Metodologia Jurídica
Lógica e Metodologia Jurídica Argumentos e Lógica Proposicional Prof. Juliano Souza de Albuquerque Maranhão [email protected] Puzzle 2 pessoas A e B fazem uma oferta um ao outro. O problema é identificar
n. 16 DEMONSTRAÇÃO CONDICIONAL E DEMONSTRAÇÃO INDIRETA ou DEMONSTRAÇÃO POR ABSURDO DEMONSTRAÇÃO CONDICIONAL
n. 16 DEMONSTRAÇÃO CONDICIONAL E DEMONSTRAÇÃO INDIRETA ou DEMONSTRAÇÃO POR ABSURDO DEMONSTRAÇÃO CONDICIONAL Para demonstrar a validade de um argumento podemos utilizar outro método, conhecido como Demonstração
Lógica Texto 11. Texto 11. Tautologias. 1 Comportamento de um enunciado 2. 2 Classificação dos enunciados Exercícios...
Lógica para Ciência da Computação I Lógica Matemática Texto 11 Tautologias Sumário 1 Comportamento de um enunciado 2 1.1 Observações................................ 4 2 Classificação dos enunciados 4 2.1
Exemplo 7 1 I. p q: Se o time joga bem, então o time ganha o campeonato. q s: Se o time ganha o campeonato então. s: Os torcedores não estão felizes.
Exemplo 7 1 I p q: Se o time joga bem, então o time ganha o campeonato }{{}}{{} p q p r: Se o time não joga bem, então o técnico é o culpado }{{}}{{} p r q s: Se o time ganha o campeonato então }{{} q
Gabarito da Avaliação 3 de Lógica Computacional 1
Questões iguais em todas as provas: Gabarito da Avaliação 3 de Lógica Computacional 1 1. (5 pts) Utilize a Regra DC para mostrar que é válido o seguinte argumento: p q r, s ~r ~t, s u p u De acordo com
Lista 2 - Bases Matemáticas
Lista 2 - Bases Matemáticas (Última versão: 14/6/2017-21:00) Elementos de Lógica e Linguagem Matemática Parte I 1 Atribua valores verdades as seguintes proposições: a) 5 é primo e 4 é ímpar. b) 5 é primo
LÓGICA PROPOSICIONAL
FACULDADE PITÁGORAS Curso Superior em Tecnologia Redes de Computadores e Banco de dados Matemática Computacional Prof. Ulisses Cotta Cavalca LÓGICA PROPOSICIONAL Belo Horizonte/MG
Técnicas de Demonstração. Raquel de Souza Francisco Bravo 17 de novembro de 2016
Técnicas de Demonstração e-mail: [email protected] 17 de novembro de 2016 Técnicas de Demonstração O que é uma demonstração? É a maneira pela qual uma proposição é validada através de argumentos formais.
Lógica Proposicional e Dedução Natural 1/48. Douglas O. Cardoso docardoso.github.io
Lógica Proposicional e Dedução Natural [email protected] docardoso.github.io Lógica Proposicional e Dedução Natural 1/48 Roteiro 1 Uma Introdução Intuitiva 2 Proposições 3 DN: regras básicas
Conhecimento e Raciocínio Lógica Proposicional
Conhecimento e Raciocínio Lógica Proposicional Agente Baseado em Conhecimento ou Sistema Baseado em Conhecimento Representa conhecimento sobre o mundo em uma linguagem formal (KB) Raciocina sobre o mundo
Lógica Proposicional. 1- O que é o Modus Ponens?
1- O que é o Modus Ponens? Lógica Proposicional R: é uma forma de inferência válida a partir de duas premissas, na qual se se afirma o antecedente do condicional da 1ª premissa, pode-se concluir o seu
Lista 1 - Bases Matemáticas
Lista 1 - Bases Matemáticas Elementos de Lógica e Linguagem Matemática Parte I 1 Atribua valores verdades as seguintes proposições: a) 5 é primo e 4 é ímpar. b) 5 é primo ou 4 é ímpar. c) (Não é verdade
JOÃO NUNES de SOUZA. LÓGICA para CIÊNCIA da COMPUTAÇÃO. Uma introdução concisa
JOÃO NUNES de SOUZA LÓGICA para CIÊNCIA da COMPUTAÇÃO Uma introdução concisa 2 de junho de 2009 1 A linguagem da Lógica Proposicional Errata Caso você encontre algum erro nesse capítulo ou tenha algum
UNIP Ciência da Computação Prof. Gerson Pastre de Oliveira
Aula 6 Lógica Matemática Álgebra das proposições e método dedutivo As operações lógicas sobre as proposições possuem uma série de propriedades que podem ser aplicadas, considerando os conectivos inseridos
LÓGICA - 2. ~ q. Argumentos Regras de inferência. Proposições: 1) Recíproca 2) Contrária 3) Contra positiva. 1) Proposição recíproca de p q :
LÓGICA - 2 Proposições: 1) Recíproca 2) Contrária 3) Contra positiva 1) Proposição recíproca de p q : q p 2) Proposição contrária de p q : ~ p 3) Proposição contra positiva de p q : ~ p ex. Determinar:
impossível conclusão falso premissas verdadeiro
Argumento Definição: Um argumento é uma sequência de enunciados(proposições) na qual um dos enunciados é a conclusão e os demais são premissas, as quais servem para provar ou, pelo menos, fornecer alguma
Dedução Natural LÓGICA APLICADA A COMPUTAÇÃO. Professor: Rosalvo Ferreira de Oliveira Neto
Dedução Natural LÓGICA APLICADA A COMPUTAÇÃO Professor: Rosalvo Ferreira de Oliveira Neto Estrutura 1. Definições 2. Dedução Natural 3. Lista Um dos objetivos principais da lógica é o estudo de estruturas
Departamento de Engenharia Informática da Universidade de Coimbra
Departamento de Engenharia Informática da Universidade de Coimbra Estruturas Discretas 2013/14 Folha 1 - TP Lógica proposicional 1. Quais das seguintes frases são proposições? (a) Isto é verdade? (b) João
Lógica Proposicional. p : Hoje não é sexta-feira. q : Todo homem é mortal. r : Existem pessoas inseguras.
Tópicos Introdução à Lógica Edna A. Hoshino DCT - UFMS fevereiro de 2011 1 Tabela-Verdade Equivalências Proposicionais Formas Normais 2 Variáveis e Predicados Quantificadores 3 para predicados e quantificadores
Programação em Lógica. UCPEL/CPOLI/BCC Lógica para Ciência da Computação Luiz A M Palazzo Maio de 2010
Programação em Lógica UCPEL/CPOLI/BCC Lógica para Ciência da Computação Luiz A M Palazzo Maio de 2010 Roteiro Introdução Conceitos Básicos Linguagens Lógicas Semântica de Modelos Semântica de Prova Programação
Vimos que a todo o argumento corresponde uma estrutura. Por exemplo ao argumento. Se a Lua é cúbica, então os humanos voam.
Matemática Discreta ESTiG\IPB 2012/13 Cap1 Lógica pg 10 Lógica formal (continuação) Vamos a partir de agora falar de lógica formal, em particular da Lógica Proposicional e da Lógica de Predicados. Todos
Elementos de Lógica Matemática. Uma Breve Iniciação
Elementos de Lógica Matemática Uma Breve Iniciação Proposições Uma proposição é uma afirmação passível de assumir valor lógico verdadeiro ou falso. Exemplos de Proposições 2 > 1 (V); 5 = 1 (F). Termos
n. 5 Implicações Lógicas Def.: Diz-se que uma proposição P (p, q, r, ) implica V V V V F F F V V F F V
n. 5 Implicações Lógicas A implicação lógica trata de um conjunto de afirmações, proposições simples ou compostas, cujo encadeamento lógico resultará em uma conclusão, a ser descoberta. Tal conclusão deverá
SCC Capítulo 2 Lógica de Predicados
SCC-630 - Capítulo 2 Lógica de Predicados João Luís Garcia Rosa 1 1 Departamento de Ciências de Computação Instituto de Ciências Matemáticas e de Computação Universidade de São Paulo - São Carlos http://www.icmc.usp.br/~joaoluis
A sintaxe do cálculo de predicados (II), cap. 7 de Introdução à Lógica (Mortari 2001) Luiz Arthur Pagani
A sintaxe do cálculo de predicados (II), cap. 7 de Introdução à Lógica (Mortari 2001) Luiz Arthur Pagani 1 1 Linguagens de primeira ordem (Onde se usa linguagem, vou preferir língua; porque o primeiro
Lógica para Computação
Lógica para Computação Prof. Celso Antônio Alves Kaestner, Dr. Eng. celsokaestner (at) utfpr (dot) edu (dot) br Sistemas Dedutivos Um Sistema Dedutivo (SD) tem por objetivo obter, a partir de um conjunto
Lógica e Matemática Discreta
Lógica e Matemática Discreta Proposições Prof clezio 20 de Março de 2018 Curso de Ciência da Computação Proposições e Conectivos Conceito de proposição Definição: Chama-se proposição a todo conjunto de
Predicados e Quantificadores
Predicados e Quantificadores Profa. Sheila Morais de Almeida DAINF-UTFPR-PG junho - 2018 Sheila Almeida (DAINF-UTFPR-PG) Predicados e Quantificadores junho - 2018 1 / 57 Este material é preparado usando
Lógica para Computação
Aula 07 - Lógica Proposicional 1 Faculdade de Informática - PUCRS August 27, 2015 1 Este material não pode ser reproduzido ou utilizado de forma parcial sem a permissão dos autores. Sinopse Nesta aula,
Regras de Inferência. Matemática Discreta. Profa. Sheila Morais de Almeida DAINF-UTFPR-PG. março
Matemática Discreta Regras de Inferência Profa. Sheila Morais de Almeida DAINF-UTFPR-PG março - 2017 Argumentos Válidos em Lógica Proposicional Considere o argumento: Se João pensa, então João existe.
Uma proposição composta é uma contradição, se for sempre falsa, independentemente do valor lógico das proposições simples que a compõem.
Tautologia Uma proposição composta é uma tautologia, se for sempre verdadeira, independentemente do valor lógico das proposições simples que a compõem. Exemplos: Contradição Uma proposição composta é uma
Fundamentos de Lógica Lógica Proposicional
Fundamentos de Lógica Lógica Proposicional Antonio Alfredo Ferreira Loureiro [email protected] http://www.dcc.ufmg.br/~loureiro Alguns fatos históricos Primeiros grandes trabalhos de lógica escritos
PCS 2428 / PCS 2059 lnteligência Artificial. Lógica Proposicional. Agentes Baseados em Conhecimento. Agentes Baseados em Conhecimento
gentes aseados em Conhecimento PCS 8 / PCS 059 lnteligência rtificial Prof. Dr. Jaime Simão Sichman Prof. Dra. nna Helena Reali Costa Lógica Proposicional Como representar conhecimento e como utilizar
Coordenação Prof. Aurimenes Alves. Proposições: 1) Recíproca 2) Contrária 3) Contra positiva
@ LÓGICA - 2 Proposições: 1) Recíproca 2) Contrária 3) Contra positiva 1) Proposição recíproca de p q : q p 2) Proposição contrária de p q: ~ p 3) Proposição contra positiva de p q: ~ p ex. Determinar:
MATEMÁTICA DISCRETA LISTA DE EXERCÍCIOS 3
MATEMÁTICA DISCRETA LISTA DE EXERCÍCIOS 3 1. Construa tabelas-verdade para as expressões abaixo. Note quaisquer tautologias ou contradições. a) A (B A) b) A B B' A' c) (A B') (A B)' d) [(A B) C'] A' C
