Distribuição de Probabilidade de Poisson
|
|
|
- Isadora Salgado Deluca
- 9 Há anos
- Visualizações:
Transcrição
1 1 Distribuição de Probabilidade de Poisson Ernesto F. L. Amaral Magna M. Inácio 07 de outubro de 2010 Tópicos Especiais em Teoria e Análise Política: Problema de Desenho e Análise Empírica (DCP 859B4)
2 DISTRIBUIÇÃO DE PROBABILIDADE DE POISSON 2 A distribuição de probabilidade de Poisson é importante porque é usada para se descrever o comportamento de eventos raros (com pequenas probabilidades). Esta é uma distribuição de probabilidade discreta que se aplica a ocorrências de eventos ao longo de intervalos especificados. A variável aleatória x é o número de ocorrências do evento no intervalo. O intervalo pode ser de tempo, distância, área, volume ou alguma unidade similar. Probabilidade de ocorrência do evento x em um intervalo é:
3 REQUISITOS PARA DISTRIBUIÇÃO DE POISSON 3 A variável aleatória x é o número de ocorrências de um evento ao longo de algum intervalo. As ocorrências devem ser aleatórias. As ocorrências devem ser independentes umas das outras. As ocorrências devem ser uniformemente distribuídas sobre o intervalo em uso.
4 PARÂMETROS DA DISTRIBUIÇÃO DE POISSON 4 Probabilidade de ocorrência do evento x: Média na distribuição de Poisson: μ Desvio padrão na distribuição de Poisson: ζ = μ
5 POISSON BINOMIAL 5 Uma distribuição de Poisson difere de uma distribuição binomial em alguns aspectos fundamentais. A distribuição binomial é afetada pelo tamanho n da amostra e pela probabilidade p, enquanto a distribuição de Poisson é afetada apenas pela média μ. Na distribuição binomial, os valores possíveis da variável aleatória x são 0, 1,..., n. Porém, numa distribuição de Poisson, os valores possíveis de x são 0, 1, 2,..., sem qualquer limite superior.
6 DEBILIDADE DO MODELO DE POISSON 6 A regressão de Poisson leva em consideração a heterogeneidade observada (isto é, diferenças observadas entre os membros da amostra), ao especificar a taxa média (μ i ) como uma função de x k s observados. Na prática, o modelo de Poisson raramente possui bom ajuste, devido à grande dispersão (overdispersion) dos dados. O modelo subestima a quantidade de dispersão na variável dependente. Com três variáveis independentes, o modelo de Poisson é:
7 MODELO BINOMIAL NEGATIVO 7 O modelo de regressão binomial negativo trata desta debilidade do modelo de Poisson, ao adicionar um parâmetro α que reflete a heterogeneidade não-observada entre as observações. O modelo binomial negativo adiciona um erro (ε) que é assumido como não correlacionado com os x s: O modelo assume que E(δ)=1, o que é similar a E(ε)=0, no modelo de mínimos quadrados ordinários. Temos então:
8 VALORES DE ALFA NO MODELO BINOMIAL NEGATIVO 8 Na distribuição binomial negativa, o parâmetro α determina o grau de dispersão das predições. A dispersão das contagens preditas para um determinado valor de x é maior do que no modelo de Poisson. Há uma maior probabilidade de contagem de zero. Maiores valores de α resultam em maior dispersão dos dados. Se α=0, o modelo binomial negativo se torna similar ao modelo de Poisson, o que acaba sendo o teste central para verificar sobre-dispersão (overdispersion).
9 EXEMPLOS DE VALORES DE ALFA 9 Painel B possui maior valor de α, por isso há maior dispersão dos dados.
10 MODELOS DE CONTAGEM DE ZERO INFLACIONADO 10 O modelo binomial negativo melhora a subestimação de zeros do modelo de Poisson, com o aumento da variância condicional (ε), sem mudar a média condicional (μ). Os modelos de contagem de zero inflacionado (zero-inflated count models) corrigem a falha do modelo de Poisson, ao levar em consideração a dispersão e excesso de zeros. Isto é realizado ao mudar a estrutura da média, permitindo que zeros sejam gerados em dois processos distintos.
11 DOIS GRUPOS NO MODELO DE ZERO INFLACIONADO 11 O modelo zero inflacionado permite que um grupo de indivíduos tenha sempre probabilidade igual a um, ao aumentar a variância condicional e a probabilidade de contagem de zeros [P(0)=1]. O modelo zero inflacionado assume que há dois grupos latentes (não-observados): Um indivíduo no grupo sempre-zero tem um resultado zero com probabilidade igual a 1 [P(0)=1]. Um indivíduo no grupo não-sempre-zero pode ter um resultado zero, mas há uma probabilidade não-zero que haja uma contagem positiva: 0<P(0)<1 ou 0<P(>0)<1
Estatística e Probabilidade Aula 06 Distribuições de Probabilidades. Prof. Gabriel Bádue
Estatística e Probabilidade Aula 06 Distribuições de Probabilidades Prof. Gabriel Bádue Teoria A distribuição de Poisson é uma distribuição discreta de probabilidade, aplicável a ocorrências de um evento
Capítulo 5 Distribuições de Probabilidades. Seção 5-1 Visão Geral. Visão Geral. distribuições de probabilidades discretas
Capítulo 5 Distribuições de Probabilidades 5-1 Visão Geral 5-2 Variáveis Aleatórias 5-3 Distribuição de Probabilidade Binomial 5-4 Média, Variância e Desvio Padrão da Distribuição Binomial 5-5 A Distribuição
PROBABILIDADE E ESTATÍSTICA. Profa. Dra. Yara de Souza Tadano
PROBABILIDADE E ESTATÍSTICA Profa. Dra. Yara de Souza Tadano [email protected] Aula 7 11/2014 Variáveis Aleatórias Variáveis Aleatórias Probabilidade e Estatística 3/41 Variáveis Aleatórias Colete
AULA 07 Distribuições Discretas de Probabilidade
1 AULA 07 Distribuições Discretas de Probabilidade Ernesto F. L. Amaral 31 de agosto de 2010 Metodologia de Pesquisa (DCP 854B) Fonte: Triola, Mario F. 2008. Introdução à estatística. 10 ª ed. Rio de Janeiro:
Teoria das Filas aplicadas a Sistemas Computacionais. Aula 09
Teoria das Filas aplicadas a Sistemas Computacionais Aula 09 Universidade Federal do Espírito Santo - Departamento de Informática - DI Laboratório de Pesquisas em Redes Multimidia - LPRM Teoria das Filas
ESTATÍSTICA. x(s) W Domínio. Contradomínio
Variáveis Aleatórias Variáveis Aleatórias são funções matemáticas que associam números reais aos resultados de um Espaço Amostral. Uma variável quantitativa geralmente agrega mais informação que uma qualitativa.
Modelos Bayesianos. Ernesto F. L. Amaral Magna M. Inácio
1 Modelos Bayesianos Ernesto F. L. Amaral Magna M. Inácio 09 de dezembro de 2010 Tópicos Especiais em Teoria e Análise Política: Problema de Desenho e Análise Empírica (DCP 859B4) Objetivos 2 Apresentar
Distribuições de Probabilidade
Distribuições de Probabilidade 1 Aspectos Gerais 2 Variáveis Aleatórias 3 Distribuições de Probabilidade Binomiais 4 Média e Variância da Distribuição Binomial 5 Distribuição de Poisson 1 1 Aspectos Gerais
AULA 8. DISTRIBUIÇÕES DE VARIÁVEIS CONTÍNUAS Uniforme, Exponencial e Normal 19/05/2017
AULA 8 DISTRIBUIÇÕES DE VARIÁVEIS CONTÍNUAS Uniforme, Exponencial e Normal 19/05/2017 As funções de distribuição (acumulada) e de densidade para v.a. contínuas = =. Se a densidade f(x)for continua no seu
Teoria das Filas aplicadas a Sistemas Computacionais. Aula 08
Teoria das Filas aplicadas a Sistemas Computacionais Aula 08 Universidade Federal do Espírito Santo - Departamento de Informática - DI Laboratório de Pesquisas em Redes Multimidia - LPRM Teoria das Filas
Cap. 6 Variáveis aleatórias contínuas
Estatística para Cursos de Engenharia e Informática Pedro Alberto Barbetta / Marcelo Menezes Reis / Antonio Cezar Bornia São Paulo: Atlas, 004 Cap. 6 Variáveis aleatórias contínuas APOIO: Fundação de Apoio
Cap. 6 Variáveis aleatórias contínuas
Estatística para Cursos de Engenharia e Informática Pedro Alberto Barbetta / Marcelo Menezes Reis / Antonio Cezar Bornia São Paulo: Atlas, 2004 Cap. 6 Variáveis aleatórias contínuas APOIO: Fundação de
VERIFICAÇÃO DOS RECURSOS NECESSÁRIOS. Capítulo 1 VARIÁVEIS E AMOSTRAS 1
PREFÁCIO VERIFICAÇÃO DOS RECURSOS NECESSÁRIOS xiii DO EXCEL... xv Capítulo 1 VARIÁVEIS E AMOSTRAS 1 VARIÁ VEIS 4 NÚMERO DE VARIÁVEIS 5 CLASSIFICAÇÃO DAS VARIÁVEIS 6 ESCALA DE MEDIÇÃO DAS VARIÁVEIS 7 POPULAÇÃO
CONHECIMENTOS ESPECÍFICOS
fonte de graus de soma de quadrado variação liberdade quadrados médio teste F regressão 1 1,4 1,4 46,2 resíduo 28 0,8 0,03 total 2,2 A tabela de análise de variância (ANOVA) ilustrada acima resulta de
AULA 09 Regressão. Ernesto F. L. Amaral. 17 de setembro de 2012
1 AULA 09 Regressão Ernesto F. L. Amaral 17 de setembro de 2012 Faculdade de Filosofia e Ciências Humanas (FAFICH) Universidade Federal de Minas Gerais (UFMG) Fonte: Triola, Mario F. 2008. Introdução à
Segunda Lista de Exercícios Cálculo de Probabilidades II Prof. Michel H. Montoril
Exercício 1. Uma urna contém 4 bolas numeradas: {1, 2, 2, 3}. Retira-se dessa urna duas bolas aleatoriamente e sem reposição. Sejam 1 : O número da primeira bola escolhida; 2 : O número da segunda bola
Distribuições de Probabilidade Contínuas 1/19
all Distribuições de Probabilidade Contínuas Professores Eduardo Zambon e Magnos Martinello UFES Universidade Federal do Espírito Santo DI Departamento de Informática CEUNES Centro Universitário Norte
Avaliação e Desempenho Aula 5
Avaliação e Desempenho Aula 5 Aula passada Revisão de probabilidade Eventos e probabilidade Independência Prob. condicional Aula de hoje Variáveis aleatórias discretas e contínuas PMF, CDF e função densidade
SUMÁRIO. 1.1 Introdução, Conceitos Fundamentais, 2
SUMÁRIO 1 CONCEITOS BÁSICOS, 1 1.1 Introdução, 1 1.2 Conceitos Fundamentais, 2 1.2.1 Objetivo, 2 1.2.2 População e amostra, 2 1.3 Processos estatísticos de abordagem, 2 1.4 Dados estatísticos, 3 1.5 Estatística
Distribuições de Probabilidade
Distribuições de Probabilidade 7 6 5 4 3 2 1 0 Normal 1 2 3 4 5 6 7 8 9 10 11 Exemplos: Temperatura do ar 20 18 16 14 12 10 8 6 4 2 0 Assimetrica Positiva 1 2 3 4 5 6 7 8 9 10 11 Exemplos: Precipitação
Universidade Federal do Ceará
Universidade Federal do Ceará Faculdade de Economia Vicente Lima Crisóstomo Fortaleza, 2011 1 Sumário Introdução Estatística Descritiva Probabilidade Distribuições de Probabilidades Amostragem e Distribuições
Bioestatística e Computação I
Bioestatística e Computação I Distribuições Teóricas de Probabilidade Maria Virginia P Dutra Eloane G Ramos Vania Matos Fonseca Pós Graduação em Saúde da Mulher e da Criança IFF FIOCRUZ Baseado nas aulas
Probabilidade e Modelos Probabilísticos
Probabilidade e Modelos Probabilísticos 2ª Parte: modelos probabilísticos para variáveis aleatórias contínuas, modelo uniforme, modelo exponencial, modelo normal 1 Distribuição de Probabilidades A distribuição
AULA 05 Teste de Hipótese
1 AULA 05 Teste de Hipótese Ernesto F. L. Amaral 03 de setembro de 2012 Faculdade de Filosofia e Ciências Humanas (FAFICH) Universidade Federal de Minas Gerais (UFMG) Fonte: Triola, Mario F. 2008. Introdução
RESPOSTAS - PROVA ESTATÍSTICA AGENTE PF 2018
RESPOSTAS - PROVA ESTATÍSTICA AGENTE PF 018 Determinado órgão governamental estimou que a probabilidade p de um ex-condenado voltar a ser condenado por algum crime no prazo de 5 anos, contados a partir
Coleta e Modelagem dos Dados de Entrada
Slide 1 Módulo 02 Coleta e Modelagem dos Dados de Entrada Prof. Afonso C. Medina Prof. Leonardo Chwif Três Etapas Coleta Tratamento Inferência Coleta dos Dados 1. Escolha adequada da variável de estudo
AULA 07 Inferência a Partir de Duas Amostras
1 AULA 07 Inferência a Partir de Duas Amostras Ernesto F. L. Amaral 10 de setembro de 2012 Faculdade de Filosofia e Ciências Humanas (FAFICH) Universidade Federal de Minas Gerais (UFMG) Fonte: Triola,
Funções Geradoras de Variáveis Aleatórias. Simulação Discreta de Sistemas - Prof. Paulo Freitas - UFSC/CTC/INE
Funções Geradoras de Variáveis Aleatórias 1 Funções Geradoras de Variáveis Aleatórias Nos programas de simulação existe um GNA e inúmeras outras funções matemáticas descritas como Funções Geradoras de
AULA 07 Regressão. Ernesto F. L. Amaral. 05 de outubro de 2013
1 AULA 07 Regressão Ernesto F. L. Amaral 05 de outubro de 2013 Centro de Pesquisas Quantitativas em Ciências Sociais (CPEQS) Faculdade de Filosofia e Ciências Humanas (FAFICH) Universidade Federal de Minas
AULAS 14 E 15 Modelo de regressão simples
1 AULAS 14 E 15 Modelo de regressão simples Ernesto F. L. Amaral 30 de abril e 02 de maio de 2013 Avaliação de Políticas Públicas (DCP 046) Fonte: Wooldridge, Jeffrey M. Introdução à econometria: uma abordagem
Variáveis Aleatórias Discretas e Distribuição de Probabilidade
Variáveis Aleatórias Discretas e Distribuição de Probabilidades - parte IV 2012/02 1 Distribuição Poisson Objetivos Ao final deste capítulo você deve ser capaz de: Ententer suposições para cada uma das
1 Introdução aos Métodos Estatísticos para Geografia 1
1 Introdução aos Métodos Estatísticos para Geografia 1 1.1 Introdução 1 1.2 O método científico 2 1.3 Abordagens exploratória e confirmatória na geografia 4 1.4 Probabilidade e estatística 4 1.4.1 Probabilidade
AULA 04 Teste de hipótese
1 AULA 04 Teste de hipótese Ernesto F. L. Amaral 03 de outubro de 2013 Centro de Pesquisas Quantitativas em Ciências Sociais (CPEQS) Faculdade de Filosofia e Ciências Humanas (FAFICH) Universidade Federal
Distribuição de Probabilidade. Prof.: Joni Fusinato
Distribuição de Probabilidade Prof.: Joni Fusinato [email protected] [email protected] Modelos de Probabilidade Utilizados para descrever fenômenos ou situações que encontramos na natureza, ou
Probabilidade II. Departamento de Estatística. Universidade Federal da Paraíba
Probabilidade II Departamento de Estatística Universidade Federal da Paraíba Prof. Tarciana Liberal (UFPB) Aula Distribuição t de Student 02/14 1 / 1 A distribuição t de Student é uma das distribuições
Capítulo 3. Introdução à Probabilidade E à Inferência Estatística
Capítulo 3 Introdução à Probabilidade E à Inferência Estatística definições e propriedades: Propriedade 5: A probabilidade condicional reflete como a probabilidade de um evento pode mudar se soubermos
AULA 17 MÉTODO DE DIFERENÇA EM DIFERENÇAS
1 AULA 17 MÉTODO DE DIFERENÇA EM DIFERENÇAS Ernesto F. L. Amaral 09 de maio de 2013 Técnicas Avançadas de Avaliação de Políticas Públicas (DCP 098) Fonte: Curso Técnicas Econométricas para Avaliação de
Coleta e Modelagem dos Dados de Entrada
Coleta e Modelagem dos Dados de Entrada Capítulo 2 Páginas 24-52 Este material é disponibilizado para uso exclusivo de docentes que adotam o livro Modelagem e Simulação de Eventos Discretos em suas disciplinas.
Modelos Probabilísticos Teóricos Discretos e Contínuos. Bernoulli, Binomial, Poisson, Uniforme, Exponencial, Normal
Modelos Probabilísticos Teóricos Discretos e Contínuos Bernoulli, Binomial, Poisson, Uniforme, Exponencial, Normal Distribuição de Probabilidades A distribuição de probabilidades de uma variável aleatória:
RESUMO DO CAPÍTULO 3 DO LIVRO DE WOOLDRIDGE ANÁLISE DE REGRESSÃO MÚLTIPLA: ESTIMAÇÃO
RESUMO DO CAPÍTULO 3 DO LIVRO DE WOOLDRIDGE ANÁLISE DE REGRESSÃO MÚLTIPLA: ESTIMAÇÃO Regressão simples: desvantagem de apenas uma variável independente explicando y mantendo ceteris paribus as demais (ou
rio de Guerra Eletrônica EENEM 2008 Estatística stica e Probabilidade Aleatórias Discretas
ITA - Laboratório rio de Guerra Eletrônica EENEM 2008 Estatística stica e Probabilidade Aula 03: Variáveis Aleatórias Discretas Qual a similaridade na natureza dessas grandezas? Tempo de espera de um ônibus
Endogeneidade, Variáveis Instrumentais e Modelos de Equações Estruturais
1 Endogeneidade, Variáveis Instrumentais e Modelos de Equações Estruturais Ernesto F. L. Amaral Magna M. Inácio 21 de outubro de 2010 Tópicos Especiais em Teoria e Análise Política: Problema de Desenho
EAD Simulação. Aula 5 Parte 1: Tipo de Variável & Distribuição de Probabilidade. Profa. Dra. Adriana Backx Noronha Viana
EAD0652 - Simulação Aula 5 Parte 1: & de Probabilidade Profa. Dra. Adriana Backx Noronha Viana Framework Estrutura para aplicação do processo de Simulação Saída Processamento Entrada Possibilidades nos
Processos Estocásticos
Processos Estocásticos Luis Henrique Assumpção Lolis 26 de maio de 2014 Luis Henrique Assumpção Lolis Processos Estocásticos 1 Conteúdo 1 Introdução 2 Definição 3 Especificando um processo aleatório 4
Introdução à Probabilidade e à Estatística (BCN ) Prova 2 (A) 16/08/2018 Correção
Introdução à Probabilidade e à Estatística (BCN0406-1) Prova 2 (A) 16/08/2018 Correção (1.pt) 1. Dadas as seguintes probabilidades associadas à variável aleatória X: -1 1 2 p() 1/2 1/3 1/6 a) Calcule a
Modelos básicos de distribuição de probabilidade
Capítulo 6 Modelos básicos de distribuição de probabilidade Muitas variáveis aleatórias, discretas e contínuas, podem ser descritas por modelos de probabilidade já conhecidos. Tais modelos permitem não
Aula 2 Uma breve revisão sobre modelos lineares
Aula Uma breve revisão sobre modelos lineares Processo de ajuste de um modelo de regressão O ajuste de modelos de regressão tem como principais objetivos descrever relações entre variáveis, estimar e testar
AULAS 14 E 15 Modelo de regressão simples
1 AULAS 14 E 15 Modelo de regressão simples Ernesto F. L. Amaral 18 e 23 de outubro de 2012 Avaliação de Políticas Públicas (DCP 046) Fonte: Wooldridge, Jeffrey M. Introdução à econometria: uma abordagem
AULA 29 Aplicação do método de diferença em diferenças
1 AULA 29 Aplicação do método de diferença em diferenças Ernesto F. L. Amaral 29 de novembro de 2011 Avaliação de Políticas Públicas (DCP 046) EXPERIMENTO NATURAL 2 Em economia, muitas pesquisas são feitas
A figura 5.1 ilustra a densidade da curva normal, que é simétrica em torno da média (µ).
Capítulo 5 Distribuição Normal Muitas variáveis aleatórias contínuas, tais como altura, comprimento, peso, entre outras, podem ser descritas pelo modelo Normal de probabilidades. Este modelo é, sem dúvida,
Probabilidade e Estatística
Probabilidade e Estatística Aula 6 Distribuições Contínuas (Parte 02) Leitura obrigatória: Devore, Capítulo 4 Chap 6-1 Distribuições de Probabilidade Distribuições de Probabilidade Distribuições de Probabilidade
Sumário. CAPÍTULO 1 Conceitos preliminares 1. CAPÍTULO 2 Descrição de dados: análise monovariada 47
CAPÍTULO 1 Conceitos preliminares 1 Introdução........................................................1 O que é estatística?.................................................. 4 Papel dos microcomputadores.........................................
1 Distribuições Discretas de Probabilidade
1 Distribuições Discretas de Probabilidade A distribuição discreta descreve quantidades aleatórias (dados de interesse) que podem assumir valores particulares e os valores são finitos. Por exemplo, uma
Variáveis Aleatórias Discretas e Distribuições de 3Probabilidade
Variáveis Aleatórias Discretas e Distribuições de 3Probabilidade Variáveis Aleatórias Discretas e Distribuições de Probabilidade Objetivos do aprendizado 3 Como determinar se um experimento é Binomial.
3 Modelo Matemático Definições Iniciais. Denote-se, em geral, o desvio-padrão do processo por σ = γσ 0, sendo σ 0 o
Modelo Matemático 57 3 Modelo Matemático Este trabalho analisa o efeito da imprecisão na estimativa do desvio-padrão do processo sobre o desempenho do gráfico de S e sobre os índices de capacidade do processo.
Variável Aleatória. Gilson Barbosa Dourado 6 de agosto de 2008
Variável Aleatória Gilson Barbosa Dourado [email protected] 6 de agosto de 2008 Denição de Variável Aleatória Considere um experimento E e seu espaço amostral Ω = {a 1, a 2,..., a n }. Variável aleatória
Análise de Regressão EST036
Análise de Regressão EST036 Michel Helcias Montoril Instituto de Ciências Exatas Universidade Federal de Juiz de Fora Regressão sem intercepto; Formas alternativas do modelo de regressão Regressão sem
ANÁLISE ESTATÍSTICA DA RELAÇÃO ENTRE A ATITUDE E O DESEMPENHO DOS ALUNOS
ANÁLISE ESTATÍSTICA DA RELAÇÃO ENTRE A ATITUDE E O DESEMPENHO DOS ALUNOS Nível de significância No processo de tomada de decisão sobre uma das hipóteses levantadas num estudo, deve-se antes de tudo definir
Lista Probabilidade Estatística Aplicada à Engenharia de Produção Prof. Michel H. Montoril
Exercício 1. Seja X uma variável aleatória com distribuição normal, com média µ X = 10 e desvio padrão σ X = 1.5, e seja Y outra variável aleatória normalmente distribuída, com média µ Y = 2 e desvio padrão
Ralph S. Silva
ANÁLISE ESTATÍSTICA MULTIVARIADA Ralph S Silva http://wwwimufrjbr/ralph/multivariadahtml Departamento de Métodos Estatísticos Instituto de Matemática Universidade Federal do Rio de Janeiro Sumário Revisão:
Regressão linear simples
Regressão linear simples Universidade Estadual de Santa Cruz Ivan Bezerra Allaman Introdução Foi visto na aula anterior que o coeficiente de correlação de Pearson é utilizado para mensurar o grau de associação
Regressão. PRE-01 Probabilidade e Estatística Prof. Marcelo P. Corrêa IRN/Unifei
Regressão PRE-01 Probabilidade e Estatística Prof. Marcelo P. Corrêa IRN/Unifei Regressão Introdução Analisar a relação entre duas variáveis (x,y) através da equação (equação de regressão) e do gráfico
Simulação com Modelos Teóricos de Probabilidade
Simulação com Modelos Teóricos de Probabilidade p. 1/21 Algumas distribuições teóricas apresentam certas características que permitem uma descrição correta de variáveis muito comuns em processos de simulação.
AULA 16 - Distribuição de Poisson e Geométrica
AULA 16 - Distribuição de Poisson e Geométrica Susan Schommer Introdução à Estatística Econômica - IE/UFRJ Distribuição de Poisson Em muitas situações nos deparamos com a situação em que o número de ensaios
SUMÁRIO. Prefácio, Espaço amostrai, Definição de probabilidade, Probabilidades finitas dos espaços amostrais fin itos, 20
SUMÁRIO Prefácio, 1 3 1 CÁLCULO DAS PROBABILIDADES, 15 1.1 Introdução, 15 1.2 Caracterização de um experimento aleatório, 15 1.3 Espaço amostrai, 16 1.4 Evento, 17 1.5 Eventos mutuamente exclusivos, 17
Unidade III ESTATÍSTICA. Prof. Fernando Rodrigues
Unidade III ESTATÍSTICA Prof. Fernando Rodrigues Medidas de dispersão Estudamos na unidade anterior as medidas de tendência central, que fornecem importantes informações sobre uma sequência numérica. Entretanto,
Distribuição de Probabilidade. Prof. Ademilson
Distribuição de Probabilidade Prof. Ademilson Distribuição de Probabilidade Em Estatística, uma distribuição de probabilidade descreve a chance que uma variável pode assumir ao longo de um espaço de valores.
Filho, não é um bicho: chama-se Estatística!
Paulo Jorge Silveira Ferreira Filho, não é um bicho: chama-se Estatística! Estatística aplicada uma abordagem prática FICHA TÉCNICA EDIÇÃO: Paulo Ferreira TÍTULO: Filho, não é um bicho: chama-se Estatística!
Modelo de Regressão Múltipla
Modelo de Regressão Múltipla Modelo de Regressão Linear Simples Última aula: Y = α + βx + i i ε i Y é a variável resposta; X é a variável independente; ε representa o erro. 2 Modelo Clássico de Regressão
UNIVERSIDADE FEDERAL DA PARAÍBA. Variáveis Aleatórias. Departamento de Estatística Luiz Medeiros
UNIVERSIDADE FEDERAL DA PARAÍBA Variáveis Aleatórias Departamento de Estatística Luiz Medeiros Introdução Como sabemos, características de interesse em diversas áreas estão sujeitas à variação; Essa variabilidade
Curso(s): Licenciaturas em Engenharia (1º ciclo) Aulas Teóricas 30h. Ano Curricular Semestre: 2º ano 1º semestre Aulas Teórico-Práticas 45h
UNIVERSIDADE CATÓLICA PORTUGUESA F A C U L D A D E D E E NGE N H ARIA Disciplina de Estatística Contexto da Disciplina Horas de Trabalho do Aluno Curso(s): Licenciaturas em Engenharia (1º ciclo) Aulas
MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL DE PELOTAS PRÓ-REITORIA DE GRADUAÇÃO
ANEXO 1 - Plano de Ensino MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL DE PELOTAS PRÓ-REITORIA DE GRADUAÇÃO PLANO DE ENSINO Ano Semestre letivo 2017 01 1. Identificação Código 1.1 Disciplina: Métodos Estatísticos
Estatística Aplicada II. } Correlação e Regressão
Estatística Aplicada II } Correlação e Regressão 1 Aula de hoje } Tópicos } Correlação e Regressão } Referência } Barrow, M. Estatística para economia, contabilidade e administração. São Paulo: Ática,
F (x) = P (X x) = Σ xi xp(x i ) E(X) = x i p(x i ).
Variável Aleatória Uma variável aleatória é uma variável numérica, cujo valor medido pode variar de uma réplica para outra do experimento. Exemplos: (i) Variáveis aleatórias contínuas: corrente elétrica,
MOQ 13 PROBABILIDADE E ESTATÍSTICA. Professor: Rodrigo A. Scarpel
MOQ 3 PROBABILIDADE E ESTATÍSTICA Professor: Rodrigo A. Scarpel [email protected] www.mec.ita.br/~rodrigo Programa do curso: Semanas 2 3 4 5 6 7 8 9 0 2 3 4 5 e 6 Introdução à probabilidade (eventos, espaço
Seja (X,Y) uma v.a. bidimensional contínua ou discreta. Define-se valor esperado condicionado de X para um dado Y igual a y da seguinte forma:
46 VALOR ESPERADO CONDICIONADO Seja (X,Y) uma v.a. bidimensional contínua ou discreta. Define-se valor esperado condicionado de X para um dado Y igual a y da seguinte forma: Variável contínua E + ( X Y
Cap. 8 - Variáveis Aleatórias
Variáveis Aleatórias Discretas: A de Poisson e Outras ESQUEMA DO CAPÍTULO 8.1 A DISTRIBUIÇÃO DE POISSON 8.2 A DISTRIBUIÇÃO DE POISSON COMO APROXIMAÇÃO DA DISTRIBUIÇÃO BINOMIAL 8.3 O PROCESSO DE POISSON
Modelos Probabiĺısticos Discretos
Discretos Prof. Gilberto Rodrigues Liska UNIPAMPA 19 de Setembro de 2017 Material de Apoio e-mail: [email protected] Gilberto R. Liska ( UNIPAMPA ) Notas de Aula 19 de Setembro de 2017 1 /
Aula 2 Tópicos em Econometria I. Porque estudar econometria? Causalidade! Modelo de RLM Hipóteses
Aula 2 Tópicos em Econometria I Porque estudar econometria? Causalidade! Modelo de RLM Hipóteses A Questão da Causalidade Estabelecer relações entre variáveis não é suficiente para a análise econômica.
DISTRIBUIÇÕES BERNOULLI, BINOMIAL E POISSON
DISTRIBUIÇÕES BERNOULLI, BINOMIAL E POISSON http://www.uel.br/pessoal/lscunha/ Universidade Estadual de Londrina 05 de julho de 2017 Distribuição Bernoulli Exemplo Nos experimentos de Bernoulli, o espaço
EELT-7035 Processos Estocásticos em Engenharia. Variáveis Aleatórias. EELT-7035 Variáveis Aleatórias Discretas. Evelio M. G.
EELT-7035 Processos Estocásticos em Engenharia Variáveis Aleatórias Discretas 21 de março de 2019 Variáveis Aleatórias Variável aleatória, X( ): função que mapeia o espaço amostral (S) em números pertencentes
Análise de Regressão Linear Simples e
Análise de Regressão Linear Simples e Múltipla Carla Henriques Departamento de Matemática Escola Superior de Tecnologia de Viseu Introdução A análise de regressão estuda o relacionamento entre uma variável
Análise de regressão linear simples. Diagrama de dispersão
Introdução Análise de regressão linear simples Departamento de Matemática Escola Superior de Tecnologia de Viseu A análise de regressão estuda o relacionamento entre uma variável chamada a variável dependente
