PROFMAT Exame de Qualificação Gabarito
|
|
|
- Elza de Paiva Bacelar
- 9 Há anos
- Visualizações:
Transcrição
1 PROFMAT Exame de Qualificação Gabarito 1. (10pts) Um corpo está contido num ambiente de temperatura constante. Decorrido o tempo (em minutos), seja a diferença entre a temperatura do corpo e do ambiente. Segundo a Lei do Resfriamento de Newton, é uma função decrescente de, com a propriedade de que um decréscimo relativo no intervalo de tempo depende apenas da duração desse intervalo (mas não do momento em que essa observação se iniciou). Isto posto, responda à seguinte pergunta: Num certo dia, a temperatura ambiente era de 30 o. A água, que fervia a 100 o numa panela, cinco minutos depois de apagado o fogo ficou com a temperatura de 60 o. Qual era a temperatura da água 15 minutos após apagado o fogo? Pela Lei do Resfriamento de Newton, a função, em que é o momento em que o fogo foi apagado, cumpre as hipóteses do Teorema de Caracterização das funções de tipo exponencial. Logo existe uma constante, com, tal que, onde. Temos Logo. O problema nos diz que Portanto e daí vem. Segue-se que e que. Portanto, 15 minutos após o fogo ser apagado, a temperatura da água é de aproximadamente graus. Alternativamente, pode-se usar a informação sobre o decréscimo relativo constante de diretamente. Temos e. Portanto e, assim, Pela propriedade mencionada, o que nos conduz a Em seguida usamos novamente a mesma informação, obtendo
2 o que nos conduz a, e o resultado segue. 2. (a) (5pts) Dado um número mínimo cuja área é?, quanto medem os lados do retângulo de perímetro (b) (10pts) Justifique matematicamente por que não se pode responder o item (a) se trocarmos mínimo por máximo. (a) Sejam e as dimensões de um retângulo de área. Então, ou seja, a média geométrica de e, dada por, é igual a. A média geométrica desses dois números positivos é sempre maior do que ou igual a sua média geométrica, e a igualdade se dá se, e somente se, (o que, por conseguinte, resulta em ). Então o perímetro, que é 4 vezes a média aritmética, é mínimo e igual a quando o retângulo é um quadrado de lados iguais a. (b) Basta mostrar que não existe retângulo de perímetro máximo com área fixada. Para isso, é suficiente mostrar que existem retângulos com essa área de perímetro tão grande quanto se queira. Por exemplo, para cada número natural tomamos o retângulo de lados e. Evidentemente a área desse retângulo é Por outro lado, seu perímetro é, que é maior do que. Assim, dado qualquer número sempre se pode achar tal que o perímetro de é maior do que, bastando tomar tal que.
3 3. Uma moeda honesta é lançada sucessivas vezes. (a) (10pts) Se a moeda for lançada 4 vezes, qual é a probabilidade de que o número observado de caras seja ímpar? E se a moeda for lançada 5 vezes? (b) (5pts) Observando o resultado do item (a), formule uma conjectura sobre a probabilidade de se observar um número ímpar de caras em lançamentos da moeda. (c) (10pts) Demonstre, utilizando indução finita, a conjectura do item (b). (a) Para quatro lançamentos, (1 cara) (3 caras). Logo, a probabilidade de um número ímpar de caras é. Para cinco lançamentos, (1 cara), (3 caras), (5 caras). Logo, para 5 lançamentos a probabilidade de um número ímpar de caras é igual a. (b) A conjectura é que para todo natural a probabilidade de se obter um número ímpar de caras em lançamentos é (e, automaticamente, a probabilidade se obter um número par de caras também é igual a ). (c) Verifiquemos se a conjectura é verdadeira para. A probabilidade de um número ímpar de caras em 1 lançamento é a probabilidade de ocorrer uma cara em 1 lançamento, e isso é exatamente igual a. Portanto a conjectura vale neste caso. Agora supomos que a conjectura é verdadeira para e vamos verificá-la para. Um número ímpar de caras em lançamentos ou tem um número ímpar de caras nos primeiros lançamentos e uma coroa no último lançamento ou tem um número par de caras nos primeiros lançamentos e uma cara no último lançamento. Então (n o ímpar de caras em lançamentos) (n o ímpar de caras em lançamentos) (coroa) + (n o par de caras em lançamentos) (cara). Obs. O que estamos buscando no item (c) é a soma dos coeficientes, com ímpar, dividida por. Se olharmos para a expansão de, usando o binômio de Newton, veremos que ela é a soma dos coeficientes, com par, subtraída dos coeficientes, com ímpar. Como o resultado é zero, a soma dos coeficientes pares é igual à dos coeficientes ímpares. Por outro lado,, e é a soma de todos os coeficientes. Assim, a soma dos coeficientes ímpares, dividida por, deve ser metade desse valor, isto é,. Essa solução não usa indução finita diretamente.
4 4. é um quadrado, é o ponto médio do lado e é o ponto médio do lado. Os segmentos e cortam-se em. (a) (5pts) Mostre que. (b) (5pts) Calcule a razão. (c) (5pts) Se calcule a área do quadrilátero. Obs: Para mostrar os itens (b) e (c) você pode usar o resultado do item (a) mesmo que não o tenha demonstrado. (a) Há várias maneiras de se calcular essa proporção. Vejamos duas: Primeira: Bastará mostrar que. Como é perpendicular a, então os triângulos e são semelhantes. Logo, Isso implica Como e, todos os termos do lado direito podem ser colocados em função de e a igualdade segue. Segunda: De fato não é necessário usar a perpendicularidade, pois a afirmação vale mesmo que seja um paralelogramo. Seja o ponto médio de. O segmento corta em que é o ponto médio de. Então e. Como os triângulos e são semelhantes, segue que (b) Aproveitando a construção da segunda solução de (a), a mesma semelhança de triângulos nos dá. E, sendo, segue que. (c) Usaremos [polígono ] para denotar a área do polígono Evidentemente Queremos calcular. Mas por causa da semelhança entre os triângulos e, compartilhando o ângulo oposto a e, respectivamente,
5 Portanto. 5. Na figura abaixo, é um cubo de aresta 1. e são arestas e a face está contida em um plano horizontal. Seja o tetraedro. Seja um ponto da aresta (diferente de e de ) e o plano paralelo a que passa por. A intersecção de com é o quadrilátero, como mostrado na figura. (a) (5pts) Mostre que é um retângulo. (b) (5pts) Mostre que o perímetro de ponto. é igual a, independentemente do H G E F Q P X D M N C A B (a) Primeiro mostremos que e são paralelos a e, portanto, são paralelos entre si. Mostraremos para, sendo análogo o caso de. Mas isso segue de que, que implica semelhante a e, portanto, paralelo a. Da mesma forma, demonstra-se que e são paralelos a. Isto mostra que os lados opostos de são iguais. Mas, de fato, são perpendiculares, pois é ortogonal a. Logo, é um retângulo. (b) Como todas as diagonais das faces têm o mesmo tamanho, as faces do tetraedro são triângulos equiláteros. Em particular, é equilátero e, portanto, é equilátero. Sendo assim, é igual a. Por outro lado, também é equilátero, implicando que também o é. Logo. Então De maneira inteiramente análoga, perímetro de é igual a.. Logo o
6 6. Um truque de adivinhação de números. (a) (5pts) Descreva e justifique métodos práticos para obter os restos da divisão por 9, 10 e 11, respectivamente, de um número natural escrito no sistema decimal. (b) (5pts) Ache as soluções mínimas de cada uma das seguintes congruências: i. ii. iii. (c) (10pts) Um mágico pede a sua audiência para escolher um número natural de pelo menos dois algarismos e menor do que 1000, e de lhe revelar apenas os restos, e da divisão de por 9, 10 e 11, respectivamente (tarefa fácil, pelo item (a)). Sem nenhuma outra informação ele consegue descobrir. Explique como ele consegue fazer isto. (d) (5pts) Supondo que a plateia tenha dado as seguintes informações ao mágico:, e, qual foi o valor de que o mágico achou? (a) Escrevamos um número na sua representação decimal:. Restos da divisão por 9: Como, temos que Logo o resto da divisão de por 9 é igual ao resto da divisão de por 9. Podemos repetir o mesmo procedimento a etc. Restos da divisão por 10: Como, temos que logo o resto da divisão de por 10 é. Restos da divisão por 11: Como temos que { logo o resto da divisão de por 11 é igual ao resto da divisão de por 11, ao qual podemos aplicar novamente a regra acima etc. (b) A congruência é equivalente à congruência, cuja solução mínima é claramente. A congruência é equivalente à congruência, cuja solução mínima é claramente. A congruência é equivalente à congruência, cuja solução mínima é claramente. (c) O mágico tem que resolver o seguinte sistema de congruências: {
7 O Teorema Chinês dos Restos nos diz que o sistema tem uma única solução módulo, dada pela expressão em que, e são as soluções das equações diofantinas do item (b). Logo e só existe um valor de satisfazendo essa equação e a restrição de que. (d) Temos que achar natural em tal que. Então Observação. O item (d) poderia ser resolvido de maneira menos educada como segue. Escrevamos o número na sua representação decimal. As informações sobre os restos dadas,, e, nos conduzem às seguintes congruências:,, e, que resolvidas por tentativas nos dão o resultado, e.
MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL. ENQ Gabarito
MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL ENQ 016. Gabarito Questão 01 [ 1,00 ] A secretaria de educação de um município recebeu uma certa quantidade de livros para distribuir entre as escolas
MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL. ENQ Gabarito
MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL ENQ 2018.1 Gabarito Questão 01 [ 1,25 ::: (a)=0,50; (b)=0,75 ] Isótopos radioativos de um elemento químico estão sujeitos a um processo de decaimento
Material Teórico - Módulo: Vetores em R 2 e R 3. Módulo e Produto Escalar - Parte 2. Terceiro Ano - Médio
Material Teórico - Módulo: Vetores em R 2 e R 3 Módulo e Produto Escalar - Parte 2 Terceiro Ano - Médio Autor: Prof. Angelo Papa Neto Revisor: Prof. Antonio Caminha M. Neto Nesta segunda parte, veremos
Simulado 1 Matemática IME Soluções Propostas
Simulado 1 Matemática IME 2012 Soluções Propostas 1 Para 0, temos: para cada um dos elementos de, valores possíveis em (não precisam ser distintos entre si, apenas precisam ser pertencentes a, pois não
Álgebra Linear I - Aula 2. Roteiro
Álgebra Linear I - Aula 2 1. Produto escalar. Ângulos. 2. Desigualdade triangular. 3. Projeção ortugonal de vetores. Roteiro 1 Produto escalar Considere dois vetores = (u 1, u 2, u 3 ) e v = (v 1, v 2,
Agrupamento de Escolas de Águeda Escola Básica Fernando Caldeira
Agrupamento de Escolas de Águeda Escola Básica Fernando Caldeira Currículo da disciplina de Matemática - 7ºano Unidade 1 Números inteiros Propriedades da adição de números racionais Multiplicação de números
Aula 6 Polígonos. Objetivos. Introduzir o conceito de polígono. Estabelecer alguns resultados sobre paralelogramos.
MÓULO 1 - UL 6 ula 6 Polígonos Objetivos Introduzir o conceito de polígono. Estabelecer alguns resultados sobre paralelogramos. Introdução efinição 14 hamamos de polígono uma figura plana formada por um
AV3 - MA p k = C 40,k 3 UMA SOLUÇÃO 40! 40! 3 3 > k 2
AV - MA 2-202 Questão. Uma moeda, com probabilidade de dar cara, é lançada 40 vezes. (a) Explique por que a probabilidade p k de se obter k caras nos 40 lançamentos é dada por para k = 0,, 2,..., 40. p
GABARITO E PAUTA DE CORREÇÃO DO ENQ Questão 2 [ 1,0 pt ::: (a)=0,5; (b)=0,5 ] Sejam a, b, p inteiros, com p primo.
GABARITO E PAUTA DE CORREÇÃO DO ENQ-014. Questão 1 [ 1,0 pt ::: (a)=0,5; (b)=0,5 ] Sejam a, b, p inteiros, com p primo. Demonstre que: (a) se p não divide a, então (p, a) = 1. (b) se p ab, então p a ou
Prova de Aferição de MATEMÁTICA - 3o ciclo 2003
Prova de Aferição de MATEMÁTICA - o ciclo 200 Proposta de resolução 1. 1.1. Quando se lança o dado uma vez, existem oito números possíveis de se obter: 1, 2,, 4, 5, 6, 7 e 8. Dos oito casos possíveis,
XXXIV OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 2 (8º. e 9º. anos) GABARITO
XXXIV OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL (8º. e 9º. anos) GABARITO GABARITO NÍVEL 1) B 6) D 11) B 16) C 1) A ) E 7) E 1) B 17) D ) D 3) B 8) B 13) D 18) C 3) D 4) B 9) E 14) D 19) C
SUMÁRIO. Unidade 1 Matemática Básica
SUMÁRIO Unidade 1 Matemática Básica Capítulo 1 Aritmética Introdução... 12 Expressões numéricas... 12 Frações... 15 Múltiplos e divisores... 18 Potências... 21 Raízes... 22 Capítulo 2 Álgebra Introdução...
OPEMAT. Olimpíada Pernambucana de Matemática
OPEMAT Olimpíada Pernambucana de Matemática - 206 Nível. O ano de 206 está acabando, vamos ver se você conhece bem esse número. Para isso, julgue os itens a seguir: (V) (F) A maior potência de 2 que divide
AGRUPAMENTO DE ESCOLAS DR. VIEIRA DE CARVALHO
AGRUPAMENTO DE ESCOLAS DR. VIEIRA DE CARVALHO DEPARTAMENTO DE MATEMÁTICA E CIÊNCIAS EXPERIMENTAIS MATEMÁTICA 7.º ANO PLANIFICAÇÃO ANUAL Planificação 7º ano 2010/2011 Página 1 DOMÍNIO TEMÁTICO: NÚMEROS
MAT001 Cálculo Diferencial e Integral I
1 MAT001 Cálculo Diferencial e Integral I GEOMETRIA ANALÍTICA Coordenadas de pontos no plano cartesiano Distâncias entre pontos Sejam e dois pontos no plano cartesiano A distância entre e é dada pela expressão
38ª OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 2 (8º e 9º anos do Ensino Fundamental) GABARITO
38ª OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 2 (8º e 9º anos do Ensino Fundamental) GABARITO GABARITO NÍVEL 2 1) C 6) B 11) B 16) D 21) A 2) C 7) C 12) C 17) D 22) A 3) D 8) E 13) D 18) C
Segue, abaixo, o Roteiro de Estudo para a Verificação Global 2 (VG2), que acontecerá no dia 03 de abril de º Olímpico Matemática I
6º Olímpico Matemática I Sistema de numeração romano. Situações problema com as seis operações com números naturais (adição, subtração, multiplicação, divisão, potenciação e radiciação). Expressões numéricas
MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL. ENQ Gabarito. a(x x 0) = b(y 0 y).
MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL ENQ 016.1 Gabarito Questão 01 [ 1,00 ::: (a)=0,50; (b)=0,50 ] (a) Seja x 0, y 0 uma solução da equação diofantina ax + by = c, onde a, b são inteiros
CONTEÚDO PROGRAMÁTICO
MATEMÁTICA 1) Teoria dos Conjuntos e Conjuntos Numéricos: Representação de conjuntos, subconjuntos, operações: união, interseção, diferença e complementar. Conjunto universo e conjunto vazio; - Conjunto
Objetivos. em termos de produtos internos de vetores.
Aula 5 Produto interno - Aplicações MÓDULO 1 - AULA 5 Objetivos Calcular áreas de paralelogramos e triângulos. Calcular a distância de um ponto a uma reta e entre duas retas. Determinar as bissetrizes
MATEMÁTICA PLANEJAMENTO 3º BIMESTRE º B - 11 Anos
PREFEITURA MUNICIPAL DE IPATINGA ESTADO DE MINAS GERAIS SECRETARIA MUNICIPAL DE EDUCAÇÃO DEPARTAMENTO PEDAGÓGICO/ SEÇÃO DE ENSINO FORMAL Centro de Formação Pedagógica CENFOP MATEMÁTICA PLANEJAMENTO 3º
36ª Olimpíada Brasileira de Matemática GABARITO Segunda Fase
36ª Olimpíada Brasileira de Matemática GABARITO Segunda Fase Soluções Nível 2 Segunda Fase Parte A CRITÉRIO DE CORREÇÃO: PARTE A Na parte A serão atribuídos 5 pontos para cada resposta correta e a pontuação
Sólidos Geométricos, Poliedros e Volume Prof. Lhaylla Crissaff
Sólidos Geométricos, Poliedros e Volume 2017.1 Prof. Lhaylla Crissaff www.professores.uff.br/lhaylla Sólidos Geométricos Prisma Pirâmide Cilindro Cone Esfera Prisma Ex.: P é um pentágono. Prisma Prisma
Introdução à Teoria dos Números - Notas 4 Tópicos Adicionais II
1 Introdução à Teoria dos Números - Notas 4 Tópicos Adicionais II 1 O Anel dos Inteiros Módulo n Consideremos um número natural n 2 fixado Para cada número inteiro a definimos a = {x Z; x a mod n} Como
38 a OLIMPÍADA BRASILEIRA DE MATEMÁTICA 2 a Fase Nível 1 (6 o ou 7 o ano)
38 a OLIMPÍADA BRASILEIRA DE MATEMÁTICA a Fase Nível 1 (6 o ou 7 o ano) GABARITO PARTE A - Cada problema vale 5 pontos CRITÉRIO DE CORREÇÃO: PARTE A Na parte A serão atribuídos 5 pontos para cada resposta
PLANO CURRICULAR DISCIPLINAR. MATEMÁTICA 7º Ano
PLANO CURRICULAR DISCIPLINAR MATEMÁTICA 7º Ano OBJETIVOS ESPECÍFICOS TÓPICOS SUBTÓPICOS METAS DE APRENDIZAGEM 1º Período - Multiplicar e dividir números inteiros. - Calcular o valor de potências em que
GABARITO Prova Verde. GABARITO Prova Rosa
Sistema ELITE de Ensino COLÉGIO NAVAL 011/01 GABARITO Prova Verde MATEMÁTICA 01 E 11 D 0 D 1 A 03 E 13 ANULADA 0 E 1 ANULADA 05 D 15 B 06 D 16 C 07 B 17 C 08 E 18 B 09 A 19 A 10 C-Passível de anulação
MATEMÁTICA PLANEJAMENTO 2º BIMESTRE º B - 11 Anos
PREFEITURA MUNICIPAL DE IPATINGA ESTADO DE MINAS GERAIS SECRETARIA MUNICIPAL DE EDUCAÇÃO DEPARTAMENTO PEDAGÓGICO/ SEÇÃO DE ENSINO FORMAL Centro de Formação Pedagógica CENFOP MATEMÁTICA PLANEJAMENTO 2º
MA14 - Aritmética Unidade 2 Resumo. Divisão Euclidiana
MA14 - Aritmética Unidade 2 Resumo Divisão Euclidiana Abramo Hefez PROFMAT - SBM Aviso Este material é apenas um resumo de parte da disciplina e o seu estudo não garante o domínio do assunto. O material
ENQ Gabarito e Pauta de Correção
ENQ014.1 - Gabarito e Pauta de Correção Questão 1 [ 1,0 pt ] O máximo divisor comum de dois inteiros positivos é 0. Para se chegar a esse resultado pelo processo das divisões sucessivas, os quocientes
araribá matemática Quadro de conteúdos e objetivos Quadro de conteúdos e objetivos Unidade 1 Potências Unidade 2 Radiciação
Unidade 1 Potências 1. Recordando potências Calcular potências com expoente natural. Calcular potências com expoente inteiro negativo. Conhecer e aplicar em expressões as propriedades de potências com
ENQ Gabarito MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL. Questão 01 [ 1,25 ]
MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL ENQ 017 Gabarito Questão 01 [ 1,5 ] Encontre as medidas dos lados e ângulos de dois triângulos ABC diferentes tais que AC = 1, BC = e A BC = 0 Considere
MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL. ENQ Gabarito
MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL ENQ 2017.1 Gabarito Questão 01 [ 1,25 ] Determine as equações das duas retas tangentes à parábola de equação y = x 2 2x + 4 que passam pelo ponto (2,
1.0. Conceitos Utilizar os critérios de divisibilidade por 2, 3, 5 e Utilizar o algoritmo da divisão de Euclides.
Conteúdo Básico Comum (CBC) Matemática - do Ensino Fundamental do 6º ao 9º ano Os tópicos obrigatórios são numerados em algarismos arábicos Os tópicos complementares são numerados em algarismos romanos
Av. João Pessoa, 100 Magalhães Laguna / Santa Catarina CEP
Disciplina: Matemática Curso: Ensino Médio Professor(a): Flávio Calônico Júnior Turma: 3ª Série E M E N T A II Trimestre 2013 Conteúdos Programáticos Data 21/maio 28/maio Conteúdo FUNÇÃO MODULAR Interpretação
Qual o raio de um círculo com 53,38 cm de perímetro? (considera = 3,14) Qual o diâmetro de um círculo com 37,68 cm de perímetro?
Qual o raio de um círculo com 53,38 cm de perímetro? (considera = 3,14) Qual o diâmetro de um círculo com 37,68 cm de perímetro? (considera = 3,14) Qual o perímetro de um círculo com 18 cm de raio? (considera
MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL. ENQ Gabarito
MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL ENQ 015. Gabarito Questão 01 [ 1,00 ::: (a)=0,50; (b)=0,50 ] Determine TODOS os valores possíveis para os algarismos x, y, z e t de modo que os números
Plano cartesiano, Retas e. Alex Oliveira. Circunferência
Plano cartesiano, Retas e Alex Oliveira Circunferência Sistema cartesiano ortogonal O sistema cartesiano ortogonal é formado por dois eixos ortogonais(eixo x e eixo y). A intersecção dos eixos x e y é
ESCOLA SECUNDÁRIA DE ALBERTO SAMPAIO. 1- Ângulos Definição: Chama-se ângulo à porção de plano limitada por duas semirretas com a mesma origem.
ESCOLA SECUNDÁRIA DE ALBERTO SAMPAIO 1ª Ficha Informativa MATEMÁTICA - A 10º Ano 2012/2013 1- Ângulos Definição: Chama-se ângulo à porção de plano limitada por duas semirretas com a mesma origem. Definição:
7.º Ano. Planificação Matemática 2016/2017. Escola Básica Integrada de Fragoso 7.º Ano
7.º Ano Planificação Matemática 201/2017 Escola Básica Integrada de Fragoso 7.º Ano Geometria e medida Números e Operações Domínio Subdomínio Conteúdos Objetivos gerais / Metas Números racionais - Simétrico
III CAPÍTULO 21 ÁREAS DE POLÍGONOS
1 - RECORDANDO Até agora, nós vimos como calcular pontos, retas, ângulos e distâncias, mas não vimos como calcular a área de nenhuma figura. Na aula de hoje nós vamos estudar a área de polígonos: além
XXV OLIMPÍADA BRASILEIRA DE MATEMÁTICA Segunda Fase Nível 2 (7 a. ou 8 a. séries)
PROBLEMA No desenho ao lado, o quadrado ABCD tem área de 30 cm e o quadrado FHIJ tem área de 0 cm. Os vértices A, D, E, H e I dos três quadrados pertencem a uma mesma reta. Calcule a área do quadrado BEFG.
Colégio Naval 2003 (prova verde)
Colégio Naval 00 (prova verde) 01) Analise as seguintes afirmativas sobre um sistema S se duas equações do primeiro grau com duas incógnitas X e Y. I - S sempre terá ao menos uma solução, se os seus termos
CATÁLOGOS DE ATIVIDADES DA TENDÊNCIA TIC S. Alesson e Júlio
CATÁLOGOS DE ATIVIDADES DA TENDÊNCIA TIC S Alesson e Júlio CABRI- GEOMETRY TÍTULO SÉRIE OBJETIVOS ASSUNTO Construção de um 6º ano Identificar as triângulo Equilátero características do Construção de um
Quadro de conteúdos MATEMÁTICA
Quadro de conteúdos MATEMÁTICA 1 Apresentamos a seguir um resumo dos conteúdos trabalhados ao longo dos quatro volumes do Ensino Fundamental II, ou seja, um panorama dos temas abordados na disciplina de
AGRUPAMENTO DE ESCOLAS DR. VIEIRA DE CARVALHO
AGRUPAMENTO DE ESCOLAS DR. VIEIRA DE CARVALHO DEPARTAMENTO DE MATEMÁTICA E CIÊNCIAS EXPERIMENTAIS MATEMÁTICA 7.º ANO PLANIFICAÇÃO GLOBAL Múltiplos e divisores. Critérios de divisibilidade. - Escrever múltiplos
x é igual a: 07. (Colégio Naval) No conjunto R dos números reais, qual será o 01. (PUC) O valor de m, de modo que a equação
0. (PUC) O valor de m, de modo que a equação 5 m m 0 b) c) d) 0. Quantos valores de satisfazem a equação a) b) c) d) 5 e) 0 Prof. Paulo Cesar Costa tenha uma das raízes igual a, é: ( ). 07. (Colégio Naval)
DEPARTAMENTO DE MATEMÁTICA INFORMÁTICA DISCIPLINA:
ANO LETIVO 2015/2016 DEPARTAMENTO DE MATEMÁTICA INFORMÁTICA DISCIPLINA: Matemática (7º Ano) METAS CURRICULARES/CONTEÚDOS... 1º Período Metas / Objetivos Conceitos / Conteúdos Aulas Previstas Números e
PLANIFICAÇÃO ANUAL DE MATEMÁTICA
1.º Período Agrupamento de Escolas António Correia de Oliveira PLANIFICAÇÃO ANUAL DE MATEMÁTICA 7.º ANO ANO LETIVO 2016/17 Números Racionais Números e operações NO7 Números racionais - Simétrico da soma
OBMEP NA ESCOLA Soluções
OBMEP NA ESCOLA 016 - Soluções Q1 Solução item a) A área total do polígono da Figura 1 é 9. A região inferior à reta PB é um trapézio de área 3. Isso pode ser constatado utilizando a fórmula da área de
Avaliação 2 - MA Gabarito
MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL Avaliação - MA1-015 - Gabarito Questão 01 [,00 ] Considere um cilindro sólido de altura R, cujas bases são dois círculos de raio R, do qual são retirados
Álgebra Linear I - Aula 9. Roteiro
Álgebra Linear I - Aula 9 1. Distância de um ponto a uma reta. 2. Distância de um ponto a um plano. 3. Distância entre uma reta e um plano. 4. Distância entre dois planos. oteiro 1 Distância de um ponto
38ª OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 1 (6º e 7º anos do Ensino Fundamental) GABARITO
38ª OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 1 (6º e 7º anos do Ensino Fundamental) GABARITO GABARITO NÍVEL 1 1) E 6) E 11) C 16) E ) D 7) D 1) A 17) A 3) D 8) A 13) E 18) B 4) C 9) C 14)
Álgebra Linear I - Aula 8. Roteiro
Álgebra Linear I - Aula 8 1. Distância de um ponto a uma reta. 2. Distância de um ponto a um plano. 3. Distância entre uma reta e um plano. 4. Distância entre dois planos. 5. Distância entre duas retas.
Avaliação Diagnóstica Matemática (Saída)
Gestão da Aprendizagem Escolar II Avaliação Diagnóstica (Saída) e Ensino Fundamental 5 a à 8 a série (6 o ao 9 o ano) 5 a Série (6 o ano) - Ensino Fundamental D1 D2 Representar números fracionários com
38ª OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 1 (6º e 7º anos do Ensino Fundamental) GABARITO
38ª OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 1 (6º e 7º anos do Ensino Fundamental) GABARITO GABARITO NÍVEL 1 1) E 6) E 11) C 16) E ) D 7) D 1) A 17) A 3) D 8) A 13) E 18) B 4) C 9) C 14)
Aula 9 Triângulos Semelhantes
MUL 1 - UL 9 ula 9 Triângulos Semelhantes efinição: ois triângulos são semelhantes se os três ângulos são ordenadamente congruentes e se os lados homólogos são proporcionais. figura mostra dois triângulos
ENQ Gabarito MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL. (a) Sejam a, b, n Z com n > 0. Mostre que a + b a 2n b 2n.
MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL ENQ 2018.2 Gabarito Questão 01 [ 1,25 ::: (a)=0,50; (b)=0,75 ] (a) Sejam a, b, n Z com n > 0. Mostre que a + b a 2n b 2n. (b) Para quais valores de
Gabarito e Pauta de Correção ENQ
Gabarito e Pauta de Correção ENQ 015.1 Questão 01 [ 1,00 ::: (a=0,50; (b=0,50 ] (a Mostre que se x e y são números irracionais tais que x y seja racional não nulo, então x + y e x y são ambos irracionais.
Matemática e suas tecnologias
Matemática e suas tecnologias Fascículo 1 Módulo 1 Teoria dos conjuntos e conjuntos numéricos Noção de conjuntos Conjuntos numéricos Módulo 2 Funções Definindo função Lei e domínio Gráficos de funções
Ordenar ou identificar a localização de números racionais na reta numérica.
Ordenar ou identificar a localização de números racionais na reta numérica. Estabelecer relações entre representações fracionárias e decimais dos números racionais. Resolver situação-problema utilizando
Tópicos de Matemática Elementar
Tópicos de Matemática Elementar 2 a série de exercícios 2004/05. A seguinte prova por indução parece correcta, mas para n = 6 o lado esquerdo é igual a 2 + 6 + 2 + 20 + 30 = 5 6, enquanto o direito é igual
EXERCÍCIOS RESOLVIDOS Prova de 23/07/2009 Todas as questões se referem a um sistema ortogonal de coordenadas
EXERCÍCIOS RESOLVIDOS 1 SINUÊ DAYAN BARBERO LODOVICI Resumo Exercícios Resolvidos - Geometria Analítica BC 0404 1 Prova de 23/07/2009 Todas as questões se referem a um sistema ortogonal de coordenadas
João esqueceu-se do seu código, mas lembra-se que é divisível por 9. Quantos códigos existem nessas condições?
2/09/16 Duração: 4 horas e 0 minutos 1 Para desbloquear o seu celular, João desliza o dedo horizontalmente ou verticalmente por um quadro numérico, semelhante ao representado na figura, descrevendo um
Para simplificar a notação, também usamos denotar uma sequência usando apenas a imagem de :
Sequências Uma sequência é uma função f de em, ou seja. Para todo número natural i associamos um número real por meio de uma determinada regra de formação. A sequencia pode ser denotada por: Ou, por meio
1. Área do triângulo
UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA Geometria Plana II Prof.:
PROPORÇÕES GEOMÉTRICAS: SEMELHANÇA de FIGURAS
8. PROPORÇÕES GEOMÉTRICAS: SEMELHANÇA de FIGURAS 1). Ideia de figuras semelhantes 2). Semelhança de polígonos e triângulos 3). Razão de semelhança 4). Escalas 5). s e problemas 1). Ideia de figuras semelhantes
O PRINCÍPIO DAS GAVETAS Paulo Cezar Pinto Carvalho - IMPA
Nível Intermediário O PRINCÍPIO DAS GAVETAS Paulo Cezar Pinto Carvalho - IMPA Muitos problemas atraentes de matemática elementar exploram relações entre conjuntos finitos, expressas em linguagem coloquial.
Caro(a) aluno(a), Coordenadoria de Estudos e Normas Pedagógicas CENP Secretaria da Educação do Estado de São Paulo Equipe Técnica de Matemática
Caro(a) aluno(a), Você saberia representar a soma dos n primeiros números naturais a partir do 1? Neste Caderno você terá a oportunidade de conhecer esse e outros casos que envolvem sequências e resolvê-los
REVISÃO DE ÁLGEBRA. Apareceu historicamente em processos de contagem. Obs.: dependendo da conveniência, o zero pode pertencer aos naturais.
REVISÃO DE ÁLGEBRA 1ª. AULA CONJUNTOS BÁSICOS: Conjuntos dos números naturais: * + Apareceu historicamente em processos de contagem. Obs.: dependendo da conveniência, o zero pode pertencer aos naturais.
7 1 3 e) 1,3. 4) O termo geral de uma progressão aritmética é dado por a 2n 1. A razão dessa PA é PROGRESSÕES ARITMÉTICAS
PROGRESSÕES ARITMÉTICAS 1) Considere um polígono convexo de nove lados, em que as medidas de seus ângulos internos constituem uma progressão aritmética de razão igual a 5 o. então, seu maior ângulo mede,
GABARITO - ANO 2018 OBSERVAÇÃO:
GABARITO - ANO 018 OBSERVAÇÃO: Embora as soluções neste gabarito se apresentem sob a forma de um texto explicativo, gostaríamos de salientar que para efeito de contagem dos pontos adquiridos, na avaliação
BANCO DE EXERCÍCIOS - 24 HORAS
BANCO DE EXERCÍCIOS - HORAS 9º ANO ESPECIALIZADO/CURSO ESCOLAS TÉCNICAS E MILITARES FOLHA Nº GABARITO COMENTADO ) A função será y,5x +, onde y (preço a ser pago) está em função de x (número de quilômetros
Grupo 1 - N1M2 - PIC OBMEP 2011 Módulo 2 - Geometria. Resumo do Encontro 6, 22 de setembro de Questões de geometria das provas da OBMEP
Grupo 1 - N1M2 - PIC OBMEP 2011 Módulo 2 - Geometria Resumo do Encontro 6, 22 de setembro de 2012 Questões de geometria das provas da OBMEP http://www.obmep.org.br/provas.htm 1. Áreas - capítulo 2 da apostila
Programação anual. 6 º.a n o. Sistemas de numeração Sequência dos números naturais Ideias associadas às operações fundamentais Expressões numéricas
Programação anual 6 º.a n o 1. Números naturais 2. Do espaço para o plano Sistemas de numeração Sequência dos números naturais Ideias associadas às operações fundamentais Expressões numéricas Formas geométricas
Geometria Espacial PRISMA RETO DE BASE TRIANGULAR (OU PRISMA TRIANGULAR)
Espacial 1 PRISMAS Os prismas são sólidos geométricos bastante recorrentes em Espacial. Podemos definir o prisma da seguinte forma: PRISMA RETO DE BASE TRIANGULAR (OU PRISMA TRIANGULAR) Prisma é um sólido
1).- Significado de congruência e de congruência numérica
5. CONGRUÊNCIAS NUMÉRICAS 1). Significado de congruência e de congruência numérica 2). Exemplos exploratórios e a notação mod q 3). Definição geral de congruência numérica 4). Regras: somando e multiplicando
1 0 para todo x, multiplicando-se os dois membros por. 2x 1 0 x 1 2. b a x. ba 2. e b 2 c
CAPÍTULO 1 Exercícios 1..n) Como x 0 para todo x, o sinal de x(x ) é o mesmo que o de x; logo, x(x ) 0 para x 0; x(x ) 0 para x 0; x(x ) 0 para x 0.. n) Como x 1 1 0 para todo x, multiplicando-se os dois
PROFMAT AV2 MA
PROFMAT AV MA 11 011 Questão 1. Calcule as seguintes epressões: [ ] (1,0) (a) log n log n (1,0) (b) log a/ log, onde a > 0, > 0 e a base dos logaritmos é fiada arbitrariamente. (a) Como = n 1/n 3, temos
XXXIII OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 1 (6º. e 7º. anos) GABARITO
XXXIII OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL (6º. e 7º. anos) GABARITO GABARITO NÍVEL ) A 6) A ) D 6) E ) B 7) E ) D 7) C ) E 8) C ) D 8) D 4) B 9) E 4) A 9) B 5) B 0) D 5) A 0) C Cada
Programação de Conteúdos de Matemática SPE Ensino Médio REGULAR 2013
Programação de Conteúdos de Matemática SPE Ensino Médio REGULAR 2013 1ª série - volume 1 1. Conjuntos - Conceito de conjunto - Pertinência - Representação de um conjunto - Subconjuntos - União de conjuntos
7º Ano. Planificação Matemática 2014/2015. Escola Básica Integrada de Fragoso 7º Ano
7º Ano Planificação Matemática 2014/2015 Escola Básica Integrada de Fragoso 7º Ano Domínio Subdomínio Conteúdos Objetivos gerais / Metas Números e Operações Números racionais - Simétrico da soma e da diferença
Geometria Analítica I - MAT Lista 1 Profa. Lhaylla Crissaff
1. Entre os pontos A = (4, 0), B = ( 3, 1), C = (0, 7), D = ( 1 2, 0), E = (0, 3) e F = (0, 0), (a) quais estão sobre o eixo OX? (b) quais estão sobre o eixo OY? 2. Descubra qual quadrante está localizado
Programa Anual MATEMÁTICA EXTENSIVO
Programa Anual MATEMÁTICA EXTENSIVO Os conteúdos conceituais de Matemática estão distribuídos em 5 frentes. A) Equações do 1º e 2º graus; Estudo das funções; Polinômios; Números complexos; Equações algébricas.
Agrupamento de Escolas de Diogo Cão, Vila Real
grupamento de scolas de iogo ão, Vila Real 2015/2016 MTMÁTI FIH TRLHO Nº 8 º PRÍOO MIO Nome: Nº Turma: 7º ata: 1 Observa o polígono da figura 2. fig. 2 1. 1) Indica o número de ângulos internos. 1. 2)
MATRIZ DE REFERÊNCIA PARA AVALIAÇÃO EM MATEMÁTICA 9º ANO DO ENSINO FUNDAMENTAL SISTEMA PERMANENTE DE AVALIAÇÃO DA EDUCAÇÃO BÁSICA DO CEARÁ SPAECE
MATRIZ DE REFERÊNCIA PARA AVALIAÇÃO EM MATEMÁTICA 9º ANO DO ENSINO FUNDAMENTAL SISTEMA PERMANENTE DE AVALIAÇÃO DA EDUCAÇÃO BÁSICA DO CEARÁ SPAECE TEMA I: INTERAGINDO COM OS NÚMEROS E FUNÇÕES N DESCRITOR
Soluções Comentadas Matemática Curso Mentor Escola de Especialistas da Aeronáutica. Barbosa, L.S.
Soluções Comentadas Matemática Curso Mentor Escola de Especialistas da Aeronáutica Barbosa, L.S. [email protected] 4 de junho de 014 Sumário I Provas 5 1 Matemática 013 1 7 II Soluções 11 Matemática
ESCOLA E B 2,3/S MIGUEL LEITÃO DE ANDRADA - AGRUPAMENTO DE ESCOLAS DE PEDRÓGÃO GRANDE DEPARTAMENTO DAS CIÊNCIAS EXATAS 2015/2016
ESCOLA E B 2,3/S MIGUEL LEITÃO DE ANDRADA - AGRUPAMENTO DE ESCOLAS DE PEDRÓGÃO GRANDE DEPARTAMENTO DAS CIÊNCIAS EXATAS 2015/2016 PLANIFICAÇÃO DE MATEMÁTICA 7ºANO 1º Período 2º Período 3º Período Apresentação,
Módulo Tópicos Adicionais. Recorrências
Módulo Tópicos Adicionais Recorrências Módulo Tópico Adicionais Recorrências 1 Exercícios Introdutórios Exercício 1 Considere a sequência definida por x 1 d e x n r + x n 1, para n > 1 Trata-se de uma
36ª OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 3 (Ensino Médio) GABARITO
6ª OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL (Ensino Médio) GABARITO GABARITO NÍVEL ) C 6) A ) D 6) A ) D ) A 7) A ) E 7) B ) E ) A 8) E ) B 8) E ) A ) C 9) C ) D 9) E ) B ) A 0) B ) A 0)
XXX OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 3 (Ensino Médio) GABARITO
XXX OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL (Ensino Médio) GABARITO GABARITO NÍVEL ) D 6) C ) D 6) C ) B ) A 7) B ) B 7) B ) C ) D 8) C ) E 8) B ) B 4) D 9) E 4) D 9) C 4) D ) D 0) A ou
1. Um exemplo de número irracional é (A) 4, (B) 4, (C) 4, (D) 3,42 4,
1. Um exemplo de número irracional é (A) 4,2424242... (B) 4,2426406... (C) 4,2323... (D) 3,42 4,2426406... Solução: Número irracional é o número decimal infinito e não periódico. (A) A parte decimal é
