Gabarito e Pauta de Correção ENQ
|
|
|
- Maria de Begonha Sabrosa Faro
- 8 Há anos
- Visualizações:
Transcrição
1 Gabarito e Pauta de Correção ENQ Questão 01 [ 1,00 ::: (a=0,50; (b=0,50 ] (a Mostre que se x e y são números irracionais tais que x y seja racional não nulo, então x + y e x y são ambos irracionais. (b Sabendo que a raiz quadrada de um número primo é irracional, prove que se p e q são primos distintos, então p + q e p q são números irracionais. (a Sejam x e y irracionais tais que x y é racional não nulo (em particular x ±y. Agora suponha, por absurdo, que x + y e x y não são ambos irracionais, isto é, que pelo menos um deles é racional. Note que, como x y e x y, temos que x y = x y x + y e x + y = x y x y. donde se conclui que, no caso de x y ser racional, x + y Q x y Q. (x + y + (x y Mas isto implica que x = Logo x + y e x y são números irracionais. é racional, o que dá um absurdo. (b Sejam p e q primos distintos. Logo p e q são números irracionais. Note que ( p + q ( p q = ( p ( q = p q é um número racional não nulo. Portanto, pelo item (a, podemos concluir que tanto p + q quanto p q são irracionais. Item (a Deduzir que x + y é racional se, e somente se, x y é racional. [0,5] Provar que x + y e x y são irracionais. [0,5] Item (b Usar o item (a e deduzir o resultado do item (b. [0,5]
2 Questão 0 [ 1,00 ::: (a=0,75; (b=0,5 ] ( ( a + b a b (a Sabendo que sen a + sen b = sen cos se x, y (0, π e x y, então sen x + sen y < sen (b Use o resultado do item (a para resolver a equação sen(xsen x = sen ( x + x, prove que., 0 < x < π. (a Sejam 0 < x < π e 0 < y < π. Combinando essas duas desigualdades obtemos Como x y, temos que x y 0 < x + y π < x y < π (1 < π 0, e portanto, por (, 0 < cos ( x y < 1. Multiplicando esta última desigualdade por sen positivo, por causa de (1, obtemos sen cos ( x y < sen (, que é um número. Juntando essa desigualdade com a identidade dada no enunciado, concluímos que sen x + sen y < sen. (b Como 0 < x < π, temos que 0 < x < π e 0 < x < π. Se x x e usando o item (a obtemos a seguinte desigualdade sen(xsen ( x + x x = sen > sen(x + sen x, que contradiz a desigualdade entre as médias aritmética e geométrica dos números positivos sen(x e sen x. Portanto x = x e assim concluímos que x = 1 4.
3 Item (a Deduzir que 0 < cos ( x y Provar que sen x + sen y < sen Item (b < 1. [0,5] Encontrar a solução da equação. [0,5]. [0,5] Questão 03 [ 1,00 ::: (a=0,50; (b=0,50 ] Considere o conjunto de todos os números naturais com quatro algarismos tais que os algarismos lidos da esquerda para a direita estão em ordem estritamente decrescente. (a Quantos elementos possui tal conjunto? (b Se escrevermos tais números em ordem crescente, que número ocupa a 109 a posição? (a A cada escolha de quatro dígitos (sem repetição, entre os dez dígitos, temos uma única ordem decrescente; portanto o número de elementos pedido é igual a ( 10 = (b A quantidade dos que iniciam com o dígito 3 é 1 (apenas o número 310; 4 iniciam com o dígito 4, a saber 410, 4310, 430 e 431; os que iniciam com o ( ( 5 6 dígito 5 são no total de = 10; com o dígito 6 são = 0; com o dígito são 35. Até este momento temos um total de 70 números em ordem crescente. A quantidade daqueles que iniciam com o dígito 8 e são seguidos do dígito: é apenas 1 número, a saber 810; ( 3 3 é = 3; 3
4 ( 4 4 é = 6; ( 5 5 é = 10; ( 6 6 é = 15. Agora temos um total de 105 números. Os números seguintes serão 8710, 870, 871, Assim concluímos que o número que ocupa a 109 a posição é Item (a Calcular corretamente a quantidade de elementos do conjunto. [0,5] Item (b Encontrar o número que está na 109 a posição. [0,5] Questão 04 [ 1,00 ] As diagonais AD e CE do pentágono regular ABCDE de lados de medida a, intersectam-se no ponto P. Determine AP e P D em função de a. Cada ângulo interno do pentágono regular tem medida â i = = = 108. Como DC DE, o triângulo CDE é isósceles de vértice D, e, como C ˆDE = 108, temos DĈE = DÊC = = 36. 4
5 Como os triângulos CDE e DEA são congruentes (LAL, temos também DÂE = A ˆDE = 36. Como EÂP = 36 e P ÊA = = 7, temos que E ˆP A = = 7, logo o triângulo EAP é isósceles de vértice A. Com isso, AP = EA = a. Os triângulos DP E e DEA possuem, cada um, dois ângulos de medida 36, fazendo com que seus terceiros ângulos tenham também a mesma medida. Assim, esses triângulos são semelhantes, com P D EA = DE AD. Como EA = DE = a e AD = AP + P D = a + P D, temos logo, e então Resolvendo a equação, temos Tomando a solução positiva, temos P D a = a a + P D, P D(a + P D = a, P D + a P D a = 0. P D = a ± 5a. P D = a ( 5 1 Observar ou utilizar a congruência entre os triângulos CDE e DEA. [0,5]. 5
6 Concluir que o triângulo EAP é isósceles de vértice A e obter AP = a. [0,5] Mostrar que os triângulos DP E e DEA são semelhantes. [0,5] Calcular P D. [0,5] Questão 05 [ 1,00 ::: (a=0,50; (b=0,50 ] Um cubo de 0cm de aresta, apoiado em um piso horizontal e com a parte superior aberta, contém água até a altura de 15cm. Colocando uma pirâmide regular de base quadrada sólida de altura 30cm com a base apoiada no fundo do cubo, o nível da água atinge a altura máxima do cubo, sem derramar. (a Qual o volume do tronco de pirâmide submerso? (b Qual o volume da pirâmide? (a Como, ao submergir o tronco de pirâmide, a água ocupa integralmente o volume do cubo, a soma do volume V t do tronco de pirâmide com o volume inicial da água, dado por , será o volume do cubo. Assim, e, portanto, V t = 0 3 V t = = 0 (0 15 = 0 5 = 000cm 3. alternativa do item (a: Sendo H = 30cm a altura da pirâmide e a = 0cm a aresta do cubo, o volume (V t do tronco de pirâmide submerso é igual ao volume da coluna de água que subiu, de 5cm, ou seja, V t = a a 5 = = 000cm 3. (b Sejam V o volume da pirâmide de altura H = 30cm e h = H a = 10cm a altura da pirâmide emersa e v seu volume. Da relação entre V e v, tem-se que e, portanto, V v = ( 3 H = h v = V 7. ( Mas, sabe-se que e, com isso V v = V t = 000 v = V
7 Logo, e, portanto, V 7 = V 000, V = cm3. Item (a, primeira solução: Indicar que o volume do tronco da pirâmide somado ao da água é igual ao volume do cubo. [0,5] Calcular corretamente o volume do tronco da pirâmide. [0,5] Item (a, solução alternativa: Indicar que o volume do tronco da pirâmide é igual ao volume da coluna de água que subiu. [0,5] Calcular corretamente o volume do tronco da pirâmide. [0,5] Item (b Obter uma relação entre o volume total V da pirâmide e o volume v da parte emersa. [0,5] Calcular corretamente o volume total da pirâmide. [0,5] Questão 06 [ 1,00 ] Sejam a, b e c inteiros tais que a 3 + b 3 + c 3 é divisível por 9. Mostre que pelo menos um dos inteiros a, b ou c é divisível por 3. Observamos primeiramente que, se um número n não é divisível por 3 então ele é da forma 3k + 1 ou 3k +, logo n 3 é da forma 9k + 1 ou 9k + 8. Suponha que nenhum dos inteiros a, b, c seja divisível por 3. Segue que os cubos desses números são da forma 9k + 1 ou 9k + 8. Considerando todas as possibilidades para a soma de três cubos, a soma a 3 +b 3 +c 3 será da forma 9k + 1, 9k + 3, 9k + 6 ou 9k + 8: a 3 + b 3 + c 3 9k k + 1 9k k + 3 9k k + 1 9k k + 1 9k k + 8 9k k + 8 9k k + 8 9k k + 6 Portanto, obtemos a 3 + b 3 + c 3 não divisível por 9. alternativa: 7
8 Observamos primeiramente que, se um número n não é divisível por 3 então ele é da forma 3k + 1 ou 3k +, logo n 3 é da forma 9k + 1 ou 9k + 8. Portanto, se n não é divisível por 3 então n 3 1 mod 9 ou n 3 8 mod 9. Suponha que nenhum dos inteiros a, b, c seja divisível por 3. Segue que os cubos desses números são congruentes a 1 ou a 8 módulo 9. Considerando todas as possibilidades para a soma de três cubos teremos: a 3 + b 3 + c mod 9 a 3 + b 3 + c mod 9 a 3 + b 3 + c mod 9 a 3 + b 3 + c mod 9 Portanto, obtemos a 3 + b 3 + c 3 não divisível por 9. Observar que, se n não é divisível por 3 então n é da forma 3k + 1 ou 3k +. [0,5] Observar que, se n não é divisível por 3 então n 3 é da forma 9k + 1 ou 9k + 8. [0,5] Supor que nenhum dos inteiros a, b, c seja divisível por 3 e considerar todas as possibilidades para a 3 + b 3 + c 3. [0,5] Concluir o resultado. [0,5] Questão 07 [ 1,00 ::: (a=0,50; (b=0,50 ] (a Considere um conjunto formado por 11 números inteiros positivos diferentes, menores do que 1. Prove que podemos escolher dois desses números tais que um divide o outro. (b Exiba um conjunto com 10 números inteiros positivos, menores do que 1, tais que nenhum deles é múltiplo de outro. (a Vamos distribuir os números de 1 a 0 em 10 conjuntos disjuntos como, por exemplo: {1,, 4, 8, 16}, {3, 6, 1}, {5, 10, 0}, {7, 14}, {9, 18}, {11}, {13}, {15}, {17}, {19}. Tomando 11 números de 1 a 0, pelo Princípio das Gavetas, como há 10 conjuntos, necessariamente teremos números no mesmo conjunto, e portanto, temos a propriedade desejada. (b Algumas respostas possíveis: {11, 1, 13, 14, 15, 16, 17, 18, 19, 0}, {10, 11, 1, 13, 14, 15, 16, 17, 18, 19}, {9, 11, 1, 13, 14, 15, 16, 17, 19, 0}, {9, 10, 11, 1, 13, 14, 15, 16, 17, 19} {8, 11, 1, 13, 14, 15, 17, 18, 19, 0}, {8, 10, 11, 1, 13, 14, 15, 17, 18, 19}, 8
9 {8, 9, 10, 11, 1, 13, 14, 15, 17, 19}, {7, 8, 11, 1, 13, 15, 17, 18, 19, 0}, {7, 8, 10, 11, 1, 13, 15, 17, 18, 19}, {6, 7, 9, 10, 11, 13, 15, 16, 17, 19}, {6, 7, 8, 9, 11, 13, 15, 17, 19, 0}, {6, 7, 8, 9, 10, 11, 13, 15, 17, 19}, {6, 7, 9, 11, 13, 15, 16, 17, 19, 0}, {6, 7, 8, 9, 10, 11, 13, 15, 17, 19}, {6, 9, 10, 11, 13, 14, 15, 16, 17, 19}, {6, 8, 9, 11, 13, 14, 15, 17, 19, 0}, {6, 9, 11, 13, 14, 15, 16, 17, 19, 0}, {4, 6, 9, 10, 11, 13, 14, 15, 17, 19} e {4, 6, 7, 9, 10, 11, 13, 15, 17, 19}. Item (a Exibir a partição do conjunto dos números de 1 a 0 em 10 conjuntos dois a dois disjuntos com a propriedade indicada na solução. [0,5] Concluir a prova do item (a. [0,5] Item (b Exibir um conjunto com a propriedade solicitada. [0,5] Questão 08 [ 1,00 ::: (a=0,50; (b=0,50 ] Considere o seguinte sistema de congruências X 1 mod 9 X 5 mod 7 X 3 mod 5 (a Encontre o menor número natural que satisfaz o sistema. (b Alguma solução do sistema é solução da congruência X 96 mod 3? (a Como (9, 7 = 1, (9, 5 = 1 e (7, 5 = 1, o sistema tem solução. Pelo Teorema Chinês dos Restos as soluções do sistema são x = 35 y y y t 315 sendo t Z, y 1 solução de 35Y 1 mod 9, y solução de 45Y 1 mod 7 e y 3 solução de 63Y 1 mod 5. Os inteiros y 1 = 8, y = 5 e y 3 = satisfazem as condições impostas. Portanto x = t = t 315 Para encontrar e menor solução positiva devemos impor t 315 > 0 para t Z t 315 > 0 t > t 5
10 A menor solução é x 0 = = 08. (a alternativa Observe que X 1 mod 9 { X 1 mod 9 X 5 mod 7 X mod 35 X 3 mod 5 Assim, x = 1 + 9k = + 35t, com k, t Z. Segue-se que 35t 9k = 3 com solução particular t 0 = 3, k 0 = 1 e solução geral { dada por t = 3 + 9r, r Z k = r, r Z Portanto, x = 1 + 9( r e a menor solução natural ocorre quando r = 1, obtendo x = 08. (b As soluções do sistema são as soluções da congruência X 08 mod 315. Portanto queremos saber se o sistema de congruências { X 08 mod 315 X 96 mod 3 possui solução. Suponhamos que existe a Z que satisfaz o sistema, isto é, existem y, z Z tais que a 08 = y 315 e a 96 = z 3. Subtraindo as equações, temos 718 = 315y 3z. Como a última equação não tem solução, pois (315, 3 = 3 não divide 718, então o sistema não tem solução. Ou seja, nenhuma solução do item (a é solução da equação X 96 mod 3. Item (a Encontrar as soluções do sistema de congruências. [0,5] Encontrar a menor solução. [0,5] Item (b Descrever o sistema de congruências. [0,5] Mostrar que o sistema não tem solução. [0,5] 10
MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL. ENQ Gabarito
MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL ENQ 016. Gabarito Questão 01 [ 1,00 ] A secretaria de educação de um município recebeu uma certa quantidade de livros para distribuir entre as escolas
MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL. ENQ Gabarito
MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL ENQ 2018.1 Gabarito Questão 01 [ 1,25 ::: (a)=0,50; (b)=0,75 ] Isótopos radioativos de um elemento químico estão sujeitos a um processo de decaimento
ENQ Gabarito MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL. Questão 01 [ 1,25 ]
MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL ENQ 017 Gabarito Questão 01 [ 1,5 ] Encontre as medidas dos lados e ângulos de dois triângulos ABC diferentes tais que AC = 1, BC = e A BC = 0 Considere
GABARITO E PAUTA DE CORREÇÃO DO ENQ Questão 2 [ 1,0 pt ::: (a)=0,5; (b)=0,5 ] Sejam a, b, p inteiros, com p primo.
GABARITO E PAUTA DE CORREÇÃO DO ENQ-014. Questão 1 [ 1,0 pt ::: (a)=0,5; (b)=0,5 ] Sejam a, b, p inteiros, com p primo. Demonstre que: (a) se p não divide a, então (p, a) = 1. (b) se p ab, então p a ou
MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL. ENQ Gabarito
MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL ENQ 20152 Gabarito Questão 01 [ 1,00 ::: (a)0,50; (b)0,50 ] Determine TODOS os valores possíveis para os algarismos x, y, z e t de modo que os números
MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL. ENQ Gabarito
MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL ENQ 015. Gabarito Questão 01 [ 1,00 ::: (a)=0,50; (b)=0,50 ] Determine TODOS os valores possíveis para os algarismos x, y, z e t de modo que os números
ENQ Gabarito e Pauta de Correção
ENQ014.1 - Gabarito e Pauta de Correção Questão 1 [ 1,0 pt ] O máximo divisor comum de dois inteiros positivos é 0. Para se chegar a esse resultado pelo processo das divisões sucessivas, os quocientes
INSTRUÇÕES. Esta prova é individual e sem consulta à qualquer material.
OPRM 07 Nível 3 (Ensino Médio) Primeira Fase 09/06/7 ou 0/06/7 Duração: 3 horas Nome: Escola: Aplicador(a): INSTRUÇÕES Escreva seu nome, o nome da sua escola e nome do APLICADOR nos campos acima. Esta
MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL. ENQ Gabarito
MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL ENQ 2017.1 Gabarito Questão 01 [ 1,25 ] Determine as equações das duas retas tangentes à parábola de equação y = x 2 2x + 4 que passam pelo ponto (2,
MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL. ENQ Gabarito. a(x x 0) = b(y 0 y).
MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL ENQ 016.1 Gabarito Questão 01 [ 1,00 ::: (a)=0,50; (b)=0,50 ] (a) Seja x 0, y 0 uma solução da equação diofantina ax + by = c, onde a, b são inteiros
ENQ Gabarito MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL. (a) Sejam a, b, n Z com n > 0. Mostre que a + b a 2n b 2n.
MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL ENQ 2018.2 Gabarito Questão 01 [ 1,25 ::: (a)=0,50; (b)=0,75 ] (a) Sejam a, b, n Z com n > 0. Mostre que a + b a 2n b 2n. (b) Para quais valores de
36ª Olimpíada Brasileira de Matemática GABARITO Segunda Fase
36ª Olimpíada Brasileira de Matemática GABARITO Segunda Fase Soluções Nível 2 Segunda Fase Parte A CRITÉRIO DE CORREÇÃO: PARTE A Na parte A serão atribuídos 5 pontos para cada resposta correta e a pontuação
MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL. ENQ Gabarito. c1 + c 2 = 1 c 1 + 4c 2 = 3. a n = n. c 1 = 1 2c 1 + 2c
MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL ENQ 2019.1 Gabarito Questão 01 [ 1,25 ::: (a)=0,50; (b)=0,75 ] Resolva as seguintes recorrências: (a) a n+2 5a n+1 + 4a n = 0, a 0 = 1, a 1 = 3. (b)
NÚMEROS INTEIROS E CRIPTOGRAFIA UFRJ
NÚMEROS INTEIROS E CRIPTOGRAFIA UFRJ GABARITO LISTA 6: ALGORITMO CHINÊS DO RESTO 1. Ver gabarito das questões do livro. 2. Aplique o Algoritmo de Fermat para encontrar 999367 = 911 1097. Como 911 e 1097
= 2 sen(x) (cos(x) (b) (7 pontos) Pelo item anterior, temos as k desigualdades. sen 2 (2x) sen(4x) ( 3/2) 3
Problema (a) (3 pontos) Sendo f(x) = sen 2 (x) sen(2x), uma função π-periódica, temos que f (x) = 2 sen(x) cos(x) sen(2x) + sen 2 (x) 2 cos(2x) = 2 sen(x) (cos(x) sen(2x) + sen(x) cos(2x) ) = 2 sen(x)
Objetivos. em termos de produtos internos de vetores.
Aula 5 Produto interno - Aplicações MÓDULO 1 - AULA 5 Objetivos Calcular áreas de paralelogramos e triângulos. Calcular a distância de um ponto a uma reta e entre duas retas. Determinar as bissetrizes
Avaliação 2 - MA Gabarito
MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL Avaliação - MA1-015 - Gabarito Questão 01 [,00 ] Considere um cilindro sólido de altura R, cujas bases são dois círculos de raio R, do qual são retirados
( ) ( ) ( ) 23 ( ) Se A, B, C forem conjuntos tais que
Se A, B, C forem conjuntos tais que ( B) =, n( B A) n A =, nc ( A) =, ( C) = 6 e n( A B C) 4 n B =, então n( A ), n( A C), n( A B C) nesta ordem, a) formam uma progressão aritmética de razão 6. b) formam
XXVII OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 3 (Ensino Médio) GABARITO
XXVII OLIPÍADA BRASILEIRA DE ATEÁTICA PRIEIRA FASE NÍVEL 3 (Ensino édio) GABARITO GABARITO NÍVEL 3 1) D 6) C 11) C 16) D 1) C ) C 7) B 1) C 17) C ) Anulada 3) Anulada 8) D 13) B 18) A 3) B ) B 9) B 1)
IME º DIA MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR
IME - 2006 1º DIA MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR Matemática Questão 01 Sejam a 1 = 1 i, a n = r + si e a n+1 = (r s) + (r + s)i (n > 1) termos de uma sequência. DETERMINE, em função de n,
MATEMÁTICA SARGENTO DA FAB
MATEMÁTICA BRUNA PAULA 1 COLETÂNEA DE QUESTÕES DE MATEMÁTICA DA EEAr (QUESTÕES RESOLVIDAS) QUESTÃO 1 (EEAr 2013) Se x é um arco do 1º quadrante, com sen x a e cosx b, então é RESPOSTA: d QUESTÃO 2 (EEAr
Olimpíada Pernambucana de Matemática Nível 2 (8 o e 9 o anos)
Olimpíada Pernambucana de Matemática - 205 Nível 2 (8 o e 9 o anos). Quantos números com dois algarismos distintos são compostos? Resolução. Para fazer essa contagem utilizaremos o príncipio da inclusão-exclusão.
PISM 2 QUESTÕES FECHADAS GABARITO
PISM QUESTÕES FECHADAS GABARITO 1ª Questão O vértice A de um cubo junto com os pontos médios I, J, K, L M e N de seis de suas arestas são os vértices de uma pirâmide, conforme se pode ver na figura abaixo:
35ª OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 3 (Ensino Médio) GABARITO
35ª OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 3 (Ensino Médio) GABARITO GABARITO NÍVEL 3 1) C 6) D 11) B 16) D 1) C ) D 7) E 1) C 17) A ) C 3) D 8) A 13) A 18) A 3) C 4) E 9) B 14) D 19) C
Observação: Os sistemas de coordenadas considerados são cartesianos ortogonais. n(a B) = 23, n(b A) = 12, n(c A) = 10, n(b C) = 6 e n(a B C) = 4,
NOTAÇÕES N = {0, 1, 2, 3,...} i: unidadeimaginária;i 2 = 1 Z: conjuntodosnúmerosinteiros z : módulodonúmeroz C Q: conjuntodosnúmerosracionais z: conjugadodonúmeroz C R: conjuntodosnúmerosreais Re z: parterealdez
38 a OLIMPÍADA BRASILEIRA DE MATEMÁTICA 2 a Fase Nível 1 (6 o ou 7 o ano)
38 a OLIMPÍADA BRASILEIRA DE MATEMÁTICA a Fase Nível 1 (6 o ou 7 o ano) GABARITO PARTE A - Cada problema vale 5 pontos CRITÉRIO DE CORREÇÃO: PARTE A Na parte A serão atribuídos 5 pontos para cada resposta
EXERCÍCIOS RESOLVIDOS Prova de 23/07/2009 Todas as questões se referem a um sistema ortogonal de coordenadas
EXERCÍCIOS RESOLVIDOS 1 SINUÊ DAYAN BARBERO LODOVICI Resumo Exercícios Resolvidos - Geometria Analítica BC 0404 1 Prova de 23/07/2009 Todas as questões se referem a um sistema ortogonal de coordenadas
PUC-Rio Desafio em Matemática 15 de outubro de 2009
PUC-Rio Desafio em Matemática 15 de outubro de 2009 Nome: GABARITO Assinatura: Inscrição: Identidade: Questão Valor Nota Revisão 1 1,0 2 1,0 3 1,5 4 1,5 5 1,5 6 1,5 7 2,0 Nota final 10,0 Instruções Mantenha
Gabarito: 1 3r 4r 5r 6 r. 2. 3r 4r ,5 m. 45 EG m, constituem uma. AA' AP 8km. Resposta da questão 1: [C]
Gabarito: Resposta da questão 1: [C] Sejam x, x r e x r as medidas, em metros, dos lados do triângulo, com x, r 0. Aplicando o Teorema de Pitágoras, encontramos x r. Logo, os lados do triângulo medem r,
No triângulo formado pelos ponteiros do relógio e pelo seguimento que liga suas extremidades apliquemos a lei dos cossenos: 3 2
COLÉGIO ANCHIETA-BA a AVALIAÇÃO de MATEMÁTICA _UNIDADE IV_ o ANO EM PROVA ELABORADA POR PROF OCTAMAR MARQUES. PROFA. MARIA ANTONIA CONCEIÇÃO GOUVEIA 0. Os ponteiros de um relógio têm comprimentos iguais
Aula 12. Ângulo entre duas retas no espaço. Definição 1. O ângulo (r1, r2 ) entre duas retas r1 e r2 se define da seguinte maneira:
Aula 1 1. Ângulo entre duas retas no espaço Definição 1 O ângulo (r1, r ) entre duas retas r1 e r se define da seguinte maneira: (r1, r ) 0o se r1 e r são coincidentes, Se as retas são concorrentes, isto
XXV OLIMPÍADA BRASILEIRA DE MATEMÁTICA Segunda Fase Nível 2 (7 a. ou 8 a. séries)
PROBLEMA No desenho ao lado, o quadrado ABCD tem área de 30 cm e o quadrado FHIJ tem área de 0 cm. Os vértices A, D, E, H e I dos três quadrados pertencem a uma mesma reta. Calcule a área do quadrado BEFG.
J. Delgado - K. Frensel - L. Crissaff Geometria Analítica e Cálculo Vetorial
178 Capítulo 10 Equação da reta e do plano no espaço 1. Equações paramétricas da reta no espaço Sejam A e B dois pontos distintos no espaço e seja r a reta que os contém. Então, P r existe t R tal que
Módulo Tópicos Adicionais. Recorrências
Módulo Tópicos Adicionais Recorrências Módulo Tópico Adicionais Recorrências 1 Exercícios Introdutórios Exercício 1 Considere a sequência definida por x 1 d e x n r + x n 1, para n > 1 Trata-se de uma
Capítulo 12. Ângulo entre duas retas no espaço. Definição 1. O ângulo (r1, r2 ) entre duas retas r1 e r2 é assim definido:
Capítulo 1 1. Ângulo entre duas retas no espaço Definição 1 O ângulo (r1, r ) entre duas retas r1 e r é assim definido: (r1, r ) 0o se r1 e r são coincidentes, se as retas são concorrentes, isto é, r1
XXX OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 3 (Ensino Médio) GABARITO
XXX OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL (Ensino Médio) GABARITO GABARITO NÍVEL ) D 6) C ) D 6) C ) B ) A 7) B ) B 7) B ) C ) D 8) C ) E 8) B ) B 4) D 9) E 4) D 9) C 4) D ) D 0) A ou
Álgebra Linear I - Aula 2. Roteiro
Álgebra Linear I - Aula 2 1. Produto escalar. Ângulos. 2. Desigualdade triangular. 3. Projeção ortugonal de vetores. Roteiro 1 Produto escalar Considere dois vetores = (u 1, u 2, u 3 ) e v = (v 1, v 2,
37ª Olimpíada Brasileira de Matemática GABARITO Segunda Fase
37ª Olimpíada Brasileira de Matemática GABARITO Segunda Fase Soluções Nível 3 Segunda Fase Parte A CRITÉRIO DE CORREÇÃO: PARTE A Na parte A serão atribuídos 5 pontos para cada resposta correta e a pontuação
Matemática. 3-3) As diagonais do cubo medem x / ) As diagonais da face do cubo medem 2 y 1/3. Resposta: VFFVV.
Matemática 01. Seja x a área total da superfície de um cubo, e y, o volume do mesmo cubo. Analise as afirmações a seguir, considerando essas informações. 0-0) Se x = 54 então y = 27. 1-1) 6y = x 3 2-2)
MATEMÁTICA MÓDULO 10 EQUAÇÕES E INEQUAÇÕES TRIGONOMÉTRICAS 1. EQUAÇÕES TRIGONOMÉTRICAS BÁSICAS 1.1. EQUAÇÃO EM SENO. sen a arcsena 2k, k arcsena 2k, k
EQUAÇÕES E INEQUAÇÕES TRIGONOMÉTRICAS. EQUAÇÕES TRIGONOMÉTRICAS BÁSICAS Vamos mostrar como resolver equações trigonométricas básicas, onde temos uma linha trigonométrica aplicada sobre uma função e igual
Módulo de Números Naturais. Divisibilidade e Teorema da Divisão Euclideana. 8 ano E.F.
Módulo de Números Naturais. Divisibilidade e Teorema da Divisão Euclideana. 8 ano E.F. Módulo de Números Naturais. Divisibilidade e Teorema da Divisão Euclideana. 1 Exercícios Introdutórios Exercício 1.
Soluções do Nível 3 (Ensino Médio) 1 a Fase
Soluções do Nível (Ensino Médio) a Fase. (alternativa C) Como A, B e C são pontos médios, os quatro triângulos rotulados com I na figura ao lado são congruentes, bem como os dois indicados por II. Logo
6. Considere. igual a : (A) f (x) + 2x f(x) = 0 (B) f (x) x f(x) = 0 (C) f (x) + f(x) = 0 (D) f (x) f(x) = 0 (E) f (x) 2x f(x) = 0
QUESTÃO ÚNICA 0,000 pontos distribuídos em 50 itens Marque no cartão de respostas a única alternativa que responde de maneira correta ao pedido de cada item.. O valor da área, em unidades de área, limitada
26 A 30 D 27 C 31 C 28 B 29 B
26 A O total de transplantes até julho de 2015 é de 912 transplantes. Destes, 487 são de córnea. Logo 487/912 53,39% transplantes são de córnea. 27 C O número de subnutridos caiu de 1,03 bilhões de pessoas
Problemas e Soluções
FAMAT em Revista Revista Científica Eletrônica da Faculdade de Matemática - FAMAT Universidade Federal de Uberlândia - UFU - MG Problemas e Soluções Número 0 - Abril de 008 www.famat.ufu.br Comitê Editorial
TEMA 2 PROPRIEDADES DE ORDEM NO CONJUNTO DOS NÚMEROS REAIS
TEMA 2 PROPRIEDADES DE ORDEM NO CONJUNTO DOS NÚMEROS REAIS O conjunto dos números reais,, que possui as seguintes propriedades:, possui uma relação menor ou igual, denotada por O1: Propriedade Reflexiva:
Seja AB = BC = CA = 4a. Sendo D o ponto de interseção da reta s com o lado AC temos, pelo teorema de Tales, AD = 3a e DC = a.
GABARITO MA1 Geometria I - Avaliação 2-201/2 Questão 1. (pontuação: 2) As retas r, s e t são paralelas, como mostra a figura abaixo. A distância entre r e s é igual a e a distância entre s e t é igual
Aula 7 Complementos. Exercício 1: Em um plano, por um ponto, existe e é única a reta perpendicular
MODULO 1 - AULA 7 Aula 7 Complementos Apresentamos esta aula em forma de Exercícios Resolvidos, mas são resultados importantes que foram omitidos na primeira aula que tratou de Conceitos Básicos. Exercício
Simulado enem. Matemática e suas Tecnologias. Volume 2. distribuição gratuita
Simulado 015 enem G a b a r i t o ạ série Matemática e suas Tecnologias Volume distribuição gratuita Simulado Enem 015 Questão 1 Matemática e suas Tecnologias Gabarito: Alternativa D ( A ) Incorreta. O
RESOLUÇÃO DA PROVA DE MATEMÁTICA - UFRGS 2019
RESOLUÇÃO DA PROVA DE MATEMÁTICA - UFRGS 2019 26. Resposta (D) I. Falsa II. Correta O número 2 é o único primo par. Se a é um número múltiplo de 3, e 2a sendo um número par, logo múltiplo de 2. Então 2a
EXERCÍCIOS DE REVISÃO ENSINO MÉDIO 4º. BIMESTRE
EXERCÍCIOS DE REVISÃO ENSINO MÉDIO 4º. BIMESTRE 1ª. SÉRIE Exercícios de PA e PG 1. Determinar o 61º termo da PA ( 9,13,17,21,...) Resp. 249 2. Determinar a razão da PA ( a 1,a 2, a 3,...) em que o primeiro
Vestibular de Verão Prova 3 Matemática
Vestibular de Verão Prova N ọ DE ORDEM: NOME DO CANDIDATO: N ọ DE INSCRIÇÃO: INSTRUÇÕES PARA A REALIZAÇÃO DA PROVA Confira os campos N ọ DE ORDEM, N ọ DE INSCRIÇÃO e NOME DO CANDIDATO, que constam na etiqueta
XXXV Olimpíada Brasileira de Matemática GABARITO Segunda Fase
XXXV Olimpíada Brasileira de Matemática GABARITO Segunda Fase Soluções Nível 2 Segunda Fase Parte A CRITÉRIO DE CORREÇÃO: PARTE A Na parte A serão atribuídos 4 pontos para cada resposta correta e a pontuação
Prova Vestibular ITA 2000
Prova Vestibular ITA Versão. ITA - (ITA ) Sejam f, g : R R definidas por f ( ) = e g cos 5 ( ) =. Podemos afirmar que: f é injetora e par e g é ímpar. g é sobrejetora e f é bijetora e g é par e f é ímpar
Material Teórico - Módulo: Vetores em R 2 e R 3. Módulo e Produto Escalar - Parte 2. Terceiro Ano - Médio
Material Teórico - Módulo: Vetores em R 2 e R 3 Módulo e Produto Escalar - Parte 2 Terceiro Ano - Médio Autor: Prof. Angelo Papa Neto Revisor: Prof. Antonio Caminha M. Neto Nesta segunda parte, veremos
Colégio Nossa Senhora de Lourdes. Matemática - Professor: Leonardo Maciel
Colégio Nossa Senhora de Lourdes Matemática - Professor: Leonardo Maciel 1. (Pucrj 015) Uma pesquisa realizada com 45 atletas, sobre as atividades praticadas nos seus treinamentos, constatou que 15 desses
1. O que podemos dizer sobre a imagem da função. f : Z Z, f(x) = x 2 + x + 1?
1 Congruências e aritmética modular Vamos considerar alguns exemplos de problemas sobre números inteiros como motivação para o que se segue. 1. O que podemos dizer sobre a imagem da função f : Z Z, f(x)
1º S I M U L A D O - ITA IME - M A T E M Á T I C A
Professor: Judson Santos / Luciano Santos Aluno(a): nº Data: / /0 º S I M U L A D O - ITA IME - M A T E M Á T I C A - 0 0) Seja N o conjunto dos inteiros positivos. Dados os conjuntos A = {p N; p é primo}
GABARITO Prova Verde. GABARITO Prova Rosa
Sistema ELITE de Ensino COLÉGIO NAVAL 011/01 GABARITO Prova Verde MATEMÁTICA 01 E 11 D 0 D 1 A 03 E 13 ANULADA 0 E 1 ANULADA 05 D 15 B 06 D 16 C 07 B 17 C 08 E 18 B 09 A 19 A 10 C-Passível de anulação
XXVIII Olimpíada Brasileira de Matemática GABARITO Segunda Fase
XXVIII Olimpíada Brasileira de Matemática GABARITO Segunda Fase Soluções Nível Segunda Fase Parte A PARTE A Na parte A serão atribuídos 4 pontos para cada resposta correta e a pontuação máxima para essa
Aritmética dos Restos. Problemas com Congruências. Tópicos Adicionais
Aritmética dos Restos Problemas com Congruências Tópicos Adicionais Aritmética dos Restos Problemas com Congruências 1 Exercícios Introdutórios Exercício 1. inteiro n Prove que n 5 + 4n é divisível por
( )( ) = =
GABARITO IME MATEMÁTICA Questão Assinale a alternativa verdadeira: (A) 06 0 < 07 06
Para simplificar a notação, também usamos denotar uma sequência usando apenas a imagem de :
Sequências Uma sequência é uma função f de em, ou seja. Para todo número natural i associamos um número real por meio de uma determinada regra de formação. A sequencia pode ser denotada por: Ou, por meio
EXAME NACIONAL DE ACESSO 2018 (21/10/2017)
EXAME NACIONAL DE ACESSO 08 (/0/07) [0] Para colorir os quatro triângulos, indicados na figura abaixo por A, B, C e D, pode-se usar uma mesma cor mais de uma vez, desde que dois triângulos com um lado
EXAME NACIONAL DE ACESSO 2018 (21/10/2017) 1 x 3. [01] O conjunto solução, nos reais, da inequação (A) (1, 2) (B) (, 2) (C) (, 2) (3, + ) (D) (2, 3)
EXAME NACIONAL DE ACESSO 08 (/0/07) [0] O conjunto solução, nos reais, da inequação (A) (, ) (B) (, ) (C) (, ) (, + ) (D) (, ) (E) x >, é: x [0] Na figura, os triângulos ABC, CDE, EFG e GH I são equiláteros,
PROVA 3 conhecimentos específicos
PROVA conhecimentos específicos MATEMÁTICA QUESTÕES OBJETIVAS QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA. UEM Comissão Central do Vestibular Unificado GABARITO
XXXIV Olimpíada Cearense de Matemática Nível 2 - Oitavo e Nono Anos
XXXIV Olimpíada Cearense de Matemática Nível 2 - Oitavo e Nono Anos Reservado para a correção Prova Probl. 1 Probl. 2 Probl. 3 Probl. 4 Probl. 5 Total # 0 Nota Instruções e Regulamento: 1. Identifique
GABARITO COMENTÁRIO PROVA DE MATEMÁTICA (IV SIMULADO ITA/2007) QUESTÕES OBJETIVAS 3 ( 2) ( 2) = 3. 5 m. 64 x
D: 00 08 º EM MATEMÁTICA ITA IME SIMUL COMENT Rosângela o Ensino Médio PROVA DE MATEMÁTICA (IV SIMULADO ITA/00) GABARITO COMENTÁRIO QUESTÕES OBJETIVAS QUESTÃO 0 LETRA D Como a equação é do quinto grau
54 CAPÍTULO 2. GEOMETRIA ANALÍTICA ( ) =
54 CAPÍTULO. GEOMETRIA ANALÍTICA.5 Cônicas O grá co da equação + + + + + = 0 (.4) onde,,,, e são constantes com, e, não todos nulos, é uma cônica. A equação (.4) é chamada de equação geral do grau em e
MATEMÁTICA I A) R$ 4 500,00 B) R$ 6 500,00 C) R$ 7 000,00 D) R$ 7 500,00 E) R$ 6 000,00
MATEMÁTCA 0. Pedro devia a Paulo uma determinada importância. No dia do vencimento, Pedro pagou 30% da dívida e acertou para pagar o restante no final do mês. Sabendo que o valor de R$ 3 500,00 corresponde
3 de um dia correspondem a é
. (UFRGS/) Na promoção de venda de um produto cujo custo unitário é de R$ 5,75 se lê: Leve, pague. Usando as condições da promoção, a economia máima que poderá ser feita na compra de 88 itens deste produto
CPV 82% de aprovação na ESPM
8% de aprovação na ESPM ESPM NOVEMBRO/00 Prova E MATemática. Assinale a alternativa cujo valor seja a soma dos valores das demais: a) 0 + b) 5% c) d) 75% de 3 e) log 0,5 a) 0 + + 3,5 5 b) 5 % 5 00 0 0,5
1 Congruências e aritmética modular
1 Congruências e aritmética modular Vamos considerar alguns exemplos de problemas sobre números inteiros como motivação para o que se segue. 1. O que podemos dizer sobre a imagem da função f : Z Z, f(x)
Teorema Chinês dos Restos. Tópicos Adicionais
Teorema Chinês dos Restos Teorema Chinês dos Restos Tópicos Adicionais Tópicos Adicionais Teorema Chinês dos Restos 1 Exercícios Introdutórios Exercício 1. Para cada um dos itens abaixo, encontre o menor
ITA18 - Revisão. LMAT10A-1 - ITA 2017 (objetivas) Questão 1
ITA18 - Revisão LMAT10A-1 - ITA 2017 (objetivas) Questão 1 Sejam X e Y dois conjuntos finitos com X Y e X Y. Considere as seguintes afirmações: 1. Existe uma bijeção f : X Y. 2. Existe uma função injetora
PROVA 3 conhecimentos específicos
PROVA conhecimentos específicos MATEMÁTICA QUESTÕES OBJETIVAS QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA. UEM Comissão Central do Vestibular Unificado GABARITO
MATEMÁTICA FORMULÁRIO 11) A = onde. 13) Para z = a + bi, z = z = z (cosθ + i senθ) 14) (x a) 2 + (y b) 2 = r 2
[ MATEMÁTICA FORMULÁRIO 0 o 45 o 60 o cosec x =, sen x 0 sen x sen cos tg sec x =, cos x 0 cos x sen x tg x =, cos x 0 cos x cos x cotg x =, sen x 0 sen x sen x + cos x = ) a n = a + (n ) r ) A = onde
PROVA 3 conhecimentos específicos
PROVA conhecimentos específicos MATEMÁTICA QUESTÕES OBJETIVAS QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA. UEM Comissão Central do Vestibular Unificado GABARITO
PROVA 3 conhecimentos específicos
PROVA conhecimentos específicos MATEMÁTICA QUESTÕES OBJETIVAS QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA. UEM Comissão Central do Vestibular Unificado GABARITO
Escola Naval 2010 ( ) ( ) 8 ( ) 4 ( ) 4 (
Escola Naval 0 1. (EN 0) Os gráficos das funções reais f e g de variável real, definidas por f(x) = x e g(x) = 5 x interceptam-se nos pontos A = (a,f(a)) e B = (b,f(b)), a b. Considere os polígonos CAPBD
Escola Secundária com 3º ciclo D. Dinis. 10º Ano de Matemática A. Geometria no Plano e no Espaço I
Escola Secundária com º ciclo D. Dinis 10º no de Matemática Geometria no Plano e no Espaço I Trabalho de casa nº 5 Estes trabalhos de casa, até ao fim do período, vão ser constituídos por exercícios propostos
XLII OLIMPÍADA PAULISTA DE MATEMÁTICA Prova da Primeira Fase (11 de agosto de 2018) Nível (6 o e 7 o anos do Ensino Fundamental)
XLII OLIMPÍADA PAULISTA DE MATEMÁTICA Prova da Primeira Fase ( de agosto de 208) Nível (6 o e 7 o anos do Ensino Fundamental) Soluções www.opm.mat.br PROBLEMA a) O dia possui 24 horas, que equivalem a
IME º DIA MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR
IME - 2004 1º DIA MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR Matemática Questão 01 CALCULE o número natural n que torna o determinante a seguir igual a 5. Por Chio, tem-se Matemática Questão 02 Considere
Modulo 1. Seja x a medida do ângulo procurado. x complemento: 90º x suplemento: 180º x Interpretando o enunciado temos:
Modulo 1 1) Seja x a medida do ângulo procurado x complemento: 90º x suplemento: 180º x Interpretando o enunciado temos: 180º - x = (90º x) + 16º 180º - x = 270º 3x + 48º 2x = 138º x = 69 3 2) â + b =
BANCO DE EXERCÍCIOS - 24 HORAS
BANCO DE EXERCÍCIOS - HORAS 9º ANO ESPECIALIZADO/CURSO ESCOLAS TÉCNICAS E MILITARES FOLHA Nº GABARITO COMENTADO ) A função será y,5x +, onde y (preço a ser pago) está em função de x (número de quilômetros
LISTA DE EXERCÍCIOS. Trigonometria no Triângulo Retângulo e Funções Trigonométricas
LISTA DE EXERCÍCIOS Pré-Cálculo UFF GMA 09 Trigonometria no Triângulo Retângulo e Funções Trigonométricas [0] (* Em sala de aula vimos como usar um quadrado e um triângulo equilátero para obter os valores
AGRUPAMENTO DE ESCOLAS DE SANTO ANTÓNIO - PAREDE ESCOLA EB23 DE SANTO ANTÓNIO - PAREDE
NOTA: O formulário e a tabela trigonométrica encontram-se nas páginas e 3 da prova e não nas páginas 3 e 4 como é referido nas Instruções Gerais. 1. 1.1. A ViajEuropa vendeu, nos 3 meses indicados, um
Olimpíada Pernambucana de Matemática
OPEMAT Olimpíada Pernambucana de Matemática - 06 Nível 3. Dado um tirângulo A B C, a seguir indicado, e a poligonal L = A B A B A 3... Considere que o segmento A B mede km e que o segemento A C mede km....
EXERCICIOS DE APROFUNDAMENTO - MATEMÁTICA - RETA
EXERCICIOS DE APROFUNDAMENTO - MATEMÁTICA - RETA - 015 1. (Unicamp 015) Seja r a reta de equação cartesiana x y 4. Para cada número real t tal que 0 t 4, considere o triângulo T de vértices em (0, 0),
38ª OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 2 (8º e 9º anos do Ensino Fundamental) GABARITO
38ª OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 2 (8º e 9º anos do Ensino Fundamental) GABARITO GABARITO NÍVEL 2 1) C 6) B 11) B 16) D 21) A 2) C 7) C 12) C 17) D 22) A 3) D 8) E 13) D 18) C
Aula 6 Polígonos. Objetivos. Introduzir o conceito de polígono. Estabelecer alguns resultados sobre paralelogramos.
MÓULO 1 - UL 6 ula 6 Polígonos Objetivos Introduzir o conceito de polígono. Estabelecer alguns resultados sobre paralelogramos. Introdução efinição 14 hamamos de polígono uma figura plana formada por um
36ª OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 3 (Ensino Médio) GABARITO
6ª OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL (Ensino Médio) GABARITO GABARITO NÍVEL ) C 6) A ) D 6) A ) D ) A 7) A ) E 7) B ) E ) A 8) E ) B 8) E ) A ) C 9) C ) D 9) E ) B ) A 0) B ) A 0)
