|
|
|
- Marcos Cesário Marroquim
- 9 Há anos
- Visualizações:
Transcrição
1
2
3
4
5
6
7
8
9
10 γ
11
12
13
14
15 φ φ φ χ Φ
16 φ φ ρ Q
17 λ ω φ φ φ φ φ φ
18
19
20
21
22
23 φ φ φ φ φ φ
24
25
26 ( ) χ χ
27
28
29
30
31
32 & + = &
33 [ ]{&& } + ([ ] + [ ]){ & } + [ ]{ } = { } [ ] [ ] [ ] {&& } [ ] { } { } {& }
34 γ ψ γ φ γ = ψ + φ = = ψ φ = + + = + + φ = φ + φ + ψ = ψ + ψ + φ ψ [ ] = + φ ψ
35 { } [ ] ψ φ ψ φ ψ φ M M = φ ψ y y φ y φ φ [ ] =
36 [ ] = µ µ ν [ ] = ρ
37 Ω = ρ ρ Ω = = =
38 = φ + γ + = = ψ + γ + = γ γ ψ φ = = φ φ φ ψ ψ ψ ψ φ
39 = = = + Φ + = ( ( )) ( ) + ( ) ( ) ( ) Φ ( ) Φ ( ( )) ( ) + ( ) + Φ( ( )) ( ) + ( ) Φ + + Φ + Φ ( ) ( ) ( ) ( ) ( ( )) ( ) + ( ) Φ( ) ( ) + ( ) + Φ + Φ = = = = + Φ + Φ + Φ + Φ Φ Φ = = µ { } = [ φ ψ M φ ψ ] φ ψ
40 φ φ y y [ ] = ( + Φ) ( + Φ) ( + Φ) ( Φ) ( + Φ) ( Φ) ( + Φ) [ ] = ρ = + Φ + Φ ( + Φ) + ( )
41 ( ) ( ) + Φ + Φ Φ + + = ( ) ( ) + Φ Φ + Φ Φ + + = ( ) ( ) + Φ Φ + Φ Φ + + = ( ) ( ) + Φ Φ Φ Φ Φ + + = ( ) ( ) + Φ Φ Φ + + Φ Φ + + = = [ ] Ω = ρ
42 = ( + Φ) Φ = ( + Φ) = + Φ + ( + Φ) Φ = + Φ ( + Φ) Φ Φ = [ ] =
43 [ ] = Ω = [ ]
44 φ φ
45 φ φ φ φ = φ ( + ) f f f f f Df f
46 = ( ) ( φ φ ) π = ρ ρ ( ) = = ( φ + + ) = φ = ( φ + φ )
47 φ ( φ φ ) = φ + = ( φ φ ) ρ π ( φ φ ) = φ φ = + φ πρ
48
49
50 ν ρ
51 [ ][ Θ ] = [ ][ Θ][ λ] l λ = ±ω ω Q λ
52
53
54
55 φ φ φ φ φ φ
56 Capítulo 3 Descrição dos Modelos de Viga Equivalente e Experimentos para Validação 39 Figura 3.7: Rotor suspenso para ensaio de condição livre-livre Figura 3.8: Analisador de sinais, martelos de impacto e acelerômetro Os rotores foram discretizados conforme exemplo apresentado na Figura 3.9 para o rotor 560IIP. A excitação foi feita usando um martelo modal em um ponto no extremo do eixo, parte dianteira, enquanto o acelerômetro varria os demais pontos do rotor. Isto garantiu que fossem obtidos os primeiros modos de vibrar da estrutura seqüencialmente, uma vez que nas extremidades da viga (rotor) nunca haverá um nó para as condições de contorno testadas. A Figura 3.11 mostra um detalhe da tela do programa de aquisição de dados utilizado, com uma curva de FRF (função de
57 Capítulo 3 Descrição dos Modelos de Viga Equivalente e Experimentos para Validação 40 resposta em freqüência) e coerência (PulseLabshop). Já a Figura 3.12 mostra a tela do programa de análise modal (MEscopeVES). Figura 3.9: Coordenadas dos pontos de excitação e resposta (cotas em mm) Figura 3.10: Exemplo de medição no rotor 250IVP Em todas as medições utilizou-se 10 médias para compor a FRF com resolução de 1Hz. Em média, a banda de freqüências utilizada variou de 10Hz a 5kHz. O sinal de força do martelo foi adquirido usando uma janela uniforme, enquanto que o sinal de resposta do acelerômetro foi adquirido com uma janela exponencial.
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75 M /M
76 φ φ Φ ν ν
77 Φ Φ φ Φ φ
78
79 Φ
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
Análise Experimental de Apoios para Simulação de Condições de Contorno Livre no Espaço de Placas Retangulares
Análise Experimental de Apoios para Simulação de Condições de Contorno Livre no Espaço de Placas Retangulares Ricardo Leiderman Benedito Luis Barbosa de Andrade Rubens Sampaio Departamento de Engenharia
Métodos Experimentais para Vibrações Mecânicas
Métodos Experimentais Métodos Experimentais para Vibrações Mecânicas Prof. Aline Souza de Paula Universidade de Brasília Faculdade de Tecnologia Departamento de Engenharia Mecânica Introdução A maioria
FEP Física para Engenharia II
FEP96 - Física para Engenharia II Prova P - Gabarito. Uma plataforma de massa m está presa a duas molas iguais de constante elástica k. A plataforma pode oscilar sobre uma superfície horizontal sem atrito.
TÍTULO: ANÁLISE MODAL EXPERIMENTAL CATEGORIA: CONCLUÍDO ÁREA: ENGENHARIAS E ARQUITETURA SUBÁREA: ENGENHARIAS
TÍTULO: ANÁLISE MODAL EXPERIMENTAL CATEGORIA: CONCLUÍDO ÁREA: ENGENHARIAS E ARQUITETURA SUBÁREA: ENGENHARIAS INSTITUIÇÃO: FACULDADE ANHANGUERA DE TAUBATÉ AUTOR(ES): MARIA LAURA DA SILVA FRANÇA ORIENTADOR(ES):
FEP Física para Engenharia II
FEP2196 - Física para Engenharia II Prova P1-25/10/2007 - Gabarito 1. Um corpo de massa 50 g está preso a uma mola de constante k = 20 N/m e oscila, inicialmente, livremente. Esse oscilador é posteriormente
Estabilidade. Conhecimentos Básicos
Estabilidade Conhecimentos Básicos Unidades NOME SÍMBOLO FATOR MULTIPLICADOR (UND) Exa E 10 18 1 000 000 000 000 000 000 Peta P 10 15 1 000 000 000 000 000 Terá T 10 12 1 000 000 000 000 Giga G 10 9 1
ν ν α α π θ θ δ α α α + + α + α α + α + φ Γ φ θ θ θφ Γ δ = α ν α α ν + ν ν + ν + ν + δ + ν ν + δ + + + + + δ + + ν ν + + ν + + + ν ν ν + + ν + ν + = θ β β + Γ δ Γ δ β µ µ µµ µ µ µ µ α ν α µ
Contabilidade de IF padrão COSIF para BACEN Área 4 Teoria e exercícios comentados Prof. Felipe Lessa Aula 01 # %& ( ! #! # % & ( ) ( + (, ( ).
! # %& (! #! # % & ( ) ( + (, ( ). / 0 +. 1 2 + 1 3 (/(2 14 (/(2 5 4 4 4 ) 6 4 7 + 3 4 4 8 ) 4 + + 7 7 4 9 3 (//( (! )! & 1 2 : + 3 + (& (, + 3 + 3 ; + + 3< 6 = < >?3 6? Α Β Β Χ. Β Β Χ 7 3 Α / > Ε! : 1!
Quantização. Quantização da energia (Planck, 1900) hc h. Efeito fotoelétrico (Einstein, 1905) Espectros atômicos (linhas discretas) v 2
Mecânica Quântica Quantização e o modelo de Bohr (revisão) Dualidade Onda-Partícula Princípio da Incerteza Equação de Schrödinger Partícula na Caixa Átomo de Hidrogênio Orbitais Atômicos Números Quânticos
Análise de estrutura aporticada de aço para suporte de peneira vibratória
Contribuição técnica nº 6 Análise de estrutura aporticada de aço para suporte de peneira vibratória Tânia Maria Ribeiro Costa Assunção [email protected] Dr. Fernando Amorim de Paula [email protected]
Universidade de São Paulo. Instituto de Física. FEP112 - FÍSICA II para o Instituto Oceanográfico 1º Semestre de 2009
Universidade de São Paulo Instituto de Física FEP11 - FÍSICA II para o Instituto Oceanográfico 1º Semestre de 9 Primeira Lista de Exercícios Oscilações 1) Duas molas idênticas, cada uma de constante, estão
O quadro abaixo destina-se à correcção da prova. Por favor não escreva nada.
Instituto Superior Técnico Departamento de Matemática 2 o semestre 08/09 Nome: Número: Curso: Sala: 1 o TESTE DE CÁLCULO DIFERENCIAL E INTEGRAL-II LEIC-Taguspark, LERC, LEGI, LEE 4 de Abril de 2009 (11:00)
Resumo dos pontos importantes
Resumo dos pontos importantes Equação básica da espectroscopia de RMN. γ X o ν X = B (1 σ X ) π Espectros de RMN e deslocamentos químicos. v X ν ref 6 δ ( ppm) = 10 ν ref 2 δ ( Hz) = δ ( ppm) ν 10 = 6
Problemas de Duas Partículas
Problemas de Duas Partículas Química Quântica Prof a. Dr a. Carla Dalmolin Massa reduzida Rotor Rígido Problemas de Duas Partículas Partícula 1: coordenadas x 1, y 1, z 1 Partícula 2: coordenadas x 2,
Mecânica II - FFI0111: Lista #3
Mecânica II - FFI0111: Lista #3 Fazer até 11/04/2011 L.A.Ferreira ; Seg.Qua. 10:10 11:50 Estagiário: Gabriel Luchini 1 Problema 1 A equação de Newton é de segunda ordem no tempo. Você aprendeu que, para
n.estudante:... Eletromagnetismo / MIEEC; frequência 20.abr.2016;. Em cada pergunta só há uma resposta certa e só uma das justificações é a adequada.
Docente:... nome n.estudante:... Eletromagnetismo / MIEEC; frequência 20.abr.2016;. Instruções e recomendações Não desagrafar! Em cada pergunta só há uma resposta certa e só uma das justificações é a adequada.
Departamento de Engenharia Mecânica ENG Mecânica dos Sólidos II. Teoria de Vigas. Prof. Arthur Braga
Departamento de Engenharia Mecânica ENG 174 - Teoria de Vigas Prof. rthur Braga Tensões de Fleão em Barras (vigas Deformação do segmento IJ M N ρ Δφ I J ( ρ y Δφ Compresão ρ ρ y I J y M N Eio Neutro (deformação
Exame Final de EDI-38 Concreto Estrutural I Prof. Flávio Mendes Neto Dezembro de 2006 Sem consulta (duração máxima: 4 horas)
1 Exame Final de EDI-38 Concreto Estrutural I rof. Flávio Mendes Neto Dezembro de 2006 Sem consulta (duração máxima: 4 horas) Esta prova tem 4 páginas e 5 questões (divididas em 9 itens). Considere os
Dinâmica de Estruturas 5º Ano
Dinâmica de Estruturas 5º Ano Docentes Prof. António Arêde Engº Carlos Moutinho Laboratório Prof. Álvaro Cunha Profª Elsa Caetano Tiago Pereira 2001/02 Ensaio n.º 1 Modelo 1 Pórtico simples de 1 vão e
Física II para a Escola Politécnica ( ) - P1 (04/09/2015) [0000]
Física II para a Escola Politécnica (330) - P (0/09/0) [0000] NUSP: 0 0 0 0 0 0 0 3 3 3 3 3 3 3 8 8 8 8 8 8 8 9 9 9 9 9 9 9 Instruções: Preencha completamente os círculos com os dígitos do seu número USP
Estudo do Comportamento Vibratório da Carcaça de uma Bomba Hidráulica
1 Estudo do Comportamento Vibratório da Carcaça de uma Bomba Hidráulica J. C. Pereira, UFSC, H. Bindewald, UFSC, E. da Rosa, UFSC, L. A. M. Torres, Tractebelenergia S.A. Resumo-Este projeto de P&D teve
1 S S. Errata do Livro Introdução à Física Estatística, IST Press (atualização de 4 fevereiro 2015) Cap 1:
Errata do Livro Introdução à Física Estatística, IST Press (atualização de 4 fevereiro 05) Cap : Pag, última expressão (.3..4): substituir σ L = l por δ n = Pag 3, linha 7 a contar do fim: substituir k
8.2. Na extremidade de uma corda suficientemente longa é imposta uma perturbação com frequência f = 5 Hz que provoca uma onda de amplitude
Constantes Velocidade do som no ar: v som = 344 m /s Velocidade da luz no vácuo c = 3 10 8 m/s 8.1. Considere uma corda de comprimento L e densidade linear µ = m/l, onde m é a massa da corda. Partindo
SUMÁRIO. 1 Lista de Modelos Probabilísticos Modelos Discretos Modelos Contínuos... 3
SUMÁRIO Lista de Modelos Probabilísticos. Modelos Discretos.................................. Modelos Contínuos................................ 3 LISTA DE MODELOS PROBABILÍSTICOS. MODELOS DISCRETOS Distribuição
Sétima Lista. MAT0216 Cálculo Diferencial e Integral III Prof. Daniel Victor Tausk 14/04/2019
Sétima Lista MAT216 Cálculo iferencial e Integral III Prof. aniel Victor Tausk 14/4/219 Exercício 1. ados a, b, c >, determine o volume do elipsóide {(x, y, z) R 3 : x2 a 2 + y2 b 2 + z2 } c 2 1 de semi-eixos
Lista 3 - FIS Relatividade Geral Curvatura, campos de Killing, fluidos, eletromagnetismo.
Lista 3 - FIS 404 - Relatividade Geral Curvatura, campos de Killing, fluidos, eletromagnetismo. 2 quadrimestre de 2017 - Professor Maurício Richartz Leitura sugerida: Carroll (seções 3.1-3.4,3.6-3.8),
Escoamento potencial
Escoamento potencial J. L. Baliño Escola Politécnica - Universidade de São Paulo Apostila de aula 2017, v.1 Escoamento potencial 1 / 26 Sumário 1 Propriedades matemáticas 2 Escoamento potencial bidimensional
3. Achar a equação da esfera definida pelas seguintes condições: centro C( 4, 2, 3) e tangente ao plano π : x y 2z + 7 = 0.
Universidade Federal de Uerlândia Faculdade de Matemática Disciplina : Geometria Analítica (GMA00) Assunto: Superfícies, Quádricas, Curvas e Coordenadas Professor Sato 4 a Lista de exercícios. Determinar
UERJ/DFNAE Física Geral - Lista /2
UERJ/DFNAE Física Geral - Lista 2-2018/2 1. Identifique as forças que atuam sobre os corpos indicados nas figuras. 2. Dois blocos de peso P, são mantidos em equilíbrio em um plano inclinado sem atrito,
Física III Escola Politécnica GABARITO DA PS 30 de junho de 2011
Física - 4320301 Escola Politécnica - 2011 GABARTO DA PS 30 de junho de 2011 Questão 1 No modelo de Rutherford o átomo é considerado como uma esfera de raio R com toda a carga positiva dos prótons, Ze,
DIMENSIONAMENTO DE ESTRUTURAS DE BETÃO DE ACORDO COM OS EUROCÓDIGOS 14, 15 E 16 DE FEVEREIRO DE 2007
DIMENSIONAMENTO DE ESTRUTURAS DE BETÃO DE ACORDO COM OS EUROCÓDIGOS 14, 15 E 16 DE FEVEREIRO DE 2007 1 Módulo 7 Edifícios em Zonas SísmicasS EC8 Parte 1 5 Edifícios de Betão João F. Almeida 2 5 EDIFÍCIOS
Física IV Escola Politécnica GABARITO DA P1 10 de setembro de Hz C
Física IV - 4320402 Escola Politécnica - 2013 GABARITO DA P1 10 de setembro de 2013 Questão 1 O circuito da figura é usado para determinar a capacitância do capacitor. O resistor tem resistência de 100
MAT VETORES E GEOMETRIA - IF/IME 1 o SEMESTRE Suponha fixado um sistema de coordenadas ortogonal cuja base é positiva.
MAT 11 - VETORES E GEOMETRIA - IF/IME 1 o SEMESTRE 015 LISTA Suponha fixado um sistema de coordenadas ortogonal cuja base é positiva. 1. Sejam A = (1, 1, 1), B = (0, 0, 1) e r : X = (1, 0, 0) + λ(1, 1,
Teoria de Bandas 1 Elétrons Livres. CF086 - Introdução a Física do Estado Sólido 1
Teoria de Bandas 1 Elétrons Livres CF086 - Introdução a Física do Estado Sólido 1 Introdução Para iniciar a investigação da contribuição eletrônica para as propriedades físicas relevantes, vamos considerar
Resumo sobre magnetização nuclear [ ] o = !!!! Frequência de Larmor = frequencia do movimento de precessão = frequencia de ressonancia RMN!!!
Resumo sobre magnetização nuclear M = µ N ( ) N ( ) [ ] 0 mag ω o = γ B o ν o = o γ B 2π!!!! Frequência de Larmor = frequencia do movimento de precessão = frequencia de ressonancia RMN!!! Magnetização
INSTITUTO POLITÉCNICO DE BRAGANÇA ESCOLA SUPERIOR DE TECNOLOGIA E DE GESTÃO FÍSICA III. Exercícios teórico-práticos FILIPE SANTOS MOREIRA
INSTITUTO POLITÉCNICO DE BRAGANÇA ESCOLA SUPERIOR DE TECNOLOGIA E DE GESTÃO FÍSICA III Eercícios teórico-práticos FILIPE SANTOS MOREIRA Física 3 (EQ) Eercícios TP Índice Índice i Derivadas e integrais
Figura 1: Forma de onda da tensão quadrada.
Problema 1.21 a) O esboço da forma de onda da tensão quadrada com frequência de 60 Hz e amplitude E é exposto na Figura 1. Figura 1: Forma de onda da tensão quadrada. E T = 1/60 s -E Para determinar a
LEI DE AMPÈRE. Aula # 15
LEI DE AMPÈRE Aula # 15 BIOT-SAVART Carga em movimento gera campo magnético Campo magnético produzido por um elemento de corrente em um ponto r d B = ( µ0 ) id l r r 3 = ( µ0 ) idlsin(θ) r 2 µ 0 = 10 7
ATENÇÃO: O 2 ō Teste corresponde às perguntas 5 a 10. Resolução abreviada. 1. Seja f(x,y) = a) Determine o domínio de f e a respectiva fronteira.
Instituto uperior Técnico Departamento de Matemática ecção de Álgebra e Análise Cálculo Diferencial e Integral II 2 ō Teste/ ō Exame - de Janeiro de 2 Duração: Teste - h3m ; Exame - 3h Apresente e justifique
As seguintes considerações devem ser feitas inicialmente ou ao longo do trabalho:
EXPERIÊNCIA 1: Pesa-espíritos EXEMPLO DE RESOLUÇÃO: Esquema da montagem: H 0 h 0 M As seguintes considerações devem ser feitas inicialmente ou ao longo do trabalho: M = massa do tubo + massa adicionada
Cálculo de Estruturas e Tubulações Industriais
Cálculo de Estruturas e Tubulações Industriais AULA 6 PROJETO MEZANINO PROF.: KAIO DUTRA Mezanino Projeto Mezanino ovigas: o Principais: o V1, V2, V3, V4, V5, V6, V7, V8 o Secundárias: o Vs ocolunas: o
RESISTÊNCIA DE MATERIAIS II
INSTITUTO SUPERIOR TÉCNICO Departamento de Engenharia Civil e Arquitectura Secção de Mecânica Estrutural, Estruturas e Construção Ano lectivo de 2003/2004 2 o teste e o exame Lisboa, 23 de Junho de 2004
Cálculo Diferencial e Integral II Resolução do Exame/Teste de Recuperação 02 de Julho de 2018, 15:00h - versão 2 Duração: Exame (3h), Teste (1h30)
Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise Cálculo Diferencial e Integral II do Exame/Teste de Recuperação 2 de Julho de 218, 15:h - versão 2 Duração: Exame (3h),
FAMÍLIA EXPONENCIAL DE DISTRIBUIÇÕES
FAMÍLIA EXPONENCIAL DE DISTRIBUIÇÕES 1 Os modelos lineares generalizados, propostos originalmente em Nelder e Wedderburn (1972), configuram etensões dos modelos lineares clássicos e permitem analisar a
Parte A FÓRMULAS Spiegel_II_01-06.indd 11 Spiegel_II_01-06.indd :17: :17:08
Parte A FÓRMULAS Seção I: Constantes, Produtos e Fórmulas Elementares Alfabeto Grego e Constantes Especiais 1 Alfabeto grego Nome Letras Gregas Grego Minúsculas Maiúsculas Alfa Α Beta Β Gama Γ Delta Δ
Mecânica dos Fluidos II
Mecânica dos Fluidos II Laboratório de Turbomáquinas ENSAIO DE UMA BOMBA Trabalho realizado por: Stefano Favaro N.º 0798 Leonardo Moreira N.º 44348 Miguel Ribeiro N.º 47158 Luís Pimentel N.º 49847 Introdução
3 Controle Passivo com Carregamento no Plano
3 Controle Passivo com Carregamento no Plano 3.1. Conceitos Básicos Conforme visto no Capítulo 1, os mecanismos de controle passivo não são controláveis e não requerem energia para operar. Estes sistemas
INSTITUTO NACIONAL DE PESQUISAS ESPACIAIS - INPE. Satélites Artificiais - Movimento de Atitude
INSTITUTO NACIONAL DE PESQUISAS ESPACIAIS - INPE Satélites Artificiais - Movimento de Atitude Aula de 7/09/011 Código: CMC 316-4 Introdução, atitude e movimento em atitude HANS-ULICH PILCHOWSKI CAPÍTULO
Mecânica dos Fluidos II (MEMec) Aula de Resolução de Problemas n o 3
Mecânica dos Fluidos II (MEMec) Aula de Resolução de Problemas n o 3 (Método das imagens, escoamento em torno de um cilindro com circulação, transformação conforme) EXERCÍCIO 1 [Problema 6 das folhas do
ANÁLISES ESTÁTICAS NÃO LINEARES Eurocódigo 8
Mestrado de Engenharia de Estruturas Dinâmica e Engenharia Sísmica Eurocódigo 8 Rita Bento Junho 2003 Métodos de Análise Análises Elásticas-Lineares Análises Estáticas Equivalentes Análises Dinâmicas Modais,
Física IV - FAP2204 Escola Politécnica GABARITO DA PS 15 de dezembro de 2009
PS Física IV - FAP2204 Escola Politécnica - 2009 GABARITO DA PS 15 de dezembro de 2009 Questão 1 Considere os campos elétrico E = (0,E y,0) e magnético B = (0,0,B z ) onde E y (x,t) = A e a(x ct) e B z
Eletromagnetismo I. Prof. Daniel Orquiza. Eletromagnetismo I. Prof. Daniel Orquiza de Carvalho
de Carvalho - Eletrostática Aplicação da Lei de Gauss e Lei de Gauss na Forma Diferencial (Páginas 56 a 70 no livro texto) Aplicação da Lei de Gauss: Linha Infinita de Cargas Condutores Coaxiais Lei de
Mecânica Quântica. Spin 1/2 e a formulação da M. Q. Parte II. A C Tort 1. Instituto Física Universidade Federal do Rio de Janeiro
Mecânica Quântica Spin 1/ e a formulação da M. Q. Parte II A C Tort 1 1 Departmento de Física Teórica Instituto Física Universidade Federal do Rio de Janeiro 10 de Maio de 01 Mais dois postulados, agora
Universidade de São Paulo. Instituto de Física. FEP112 - FÍSICA II para o Instituto Oceanográfico 1º Semestre de 2009
Universidade de São Paulo nstituto de Física FEP11 - FÍSCA para o nstituto Oceanográfico 1º Semestre de 009 Segunda Lista de Exercícios Oscilações 1) Verifique quais funções, entre as seguintes, podem
Cinemática relativística et al. Carlos Alexandre Wuensche Processos Radiativos I
Cinemática relativística et al. Carlos Alexandre Wuensche Processos Radiativos I 1 1 Transformações de Lorentz e cinemática relativística Postulados da relatividade especial As leis da natureza são as
Física IV Escola Politécnica GABARITO DA P1 30 de agosto de 2018
Física IV - 4323204 Escola Politécnica - 2018 GABARITO DA P1 30 de agosto de 2018 Questão 1 Luz proveniente de uma fonte monocromática de comprimento de onda λ é difratada por uma fenda de largura a em
ENERGIA HIDRÁULICA MÁQUINA DE FLUXO ENERGIA MECÂNICA
ª EXPERIÊNCIA - ESTUDO DAS BOMBAS APLICAÇÃO DA ANÁLISE DIMENSIONAL E DA TEORIA DA SEMELHANÇA 1 INTRODUÇÃO AO ESTUDO DAS MÁQUINAS DE FLUXO ( BOMBAS, TURBINAS, COMPRESSORES, VENTILADORES) As máquinas que
xdv ydv zdv Mecânica Geral II Lista de Exercícios 2 Prof. Dr. Cláudio S. Sartori
Use 1lb = 4,448 N 1 in = 0,0254 m 1 ft = 0,3048 m Baricentro de corpos em 2D e 3D Carregamentos xdl ydl x = ; y = L L x = N x i i= 1 N i= 1 A A i i y = N y i i= 1 N i= 1 A xdv ydv zdv x = y z V = V = V
6.1.Avaliação da Precisão para Problemas de Fluxo em Estado Permanente
6 EXEMPLOS NUMÉRICOS Neste Capítulo são apresentados alguns exemplos simples da utilização do método híbrido de elementos finitos, tanto para problemas de potencial quanto para problemas de elasticidade,
NOTAS DE AULAS DE ESTRUTURA DA MATÉRIA
NOTAS DE AULAS DE ESTRUTURA DA MATÉRIA Prof. Carlos R. A. Lima CAPÍTULO 11 MOLÉCULAS Primeira Edição junho de 2005 CAPÍTULO 11 MOLÉCULAS ÍNDICE 11-1- Introdução 11.2- Ligação por Tunelamento e a Molécula
Distribuições de Probabilidade Contínuas 1/19
all Distribuições de Probabilidade Contínuas Professores Eduardo Zambon e Magnos Martinello UFES Universidade Federal do Espírito Santo DI Departamento de Informática CEUNES Centro Universitário Norte
Prof. Dr. Ronaldo Rodrigues Pelá. 3 de abril de 2013
OSCILAÇÕES FORÇADAS Mecânica II (FIS-6) Prof. Dr. Ronaldo Rodrigues Pelá IEFF-ITA 3 de abril de 013 Roteiro 1 Forçadas Roteiro 1 Resultado M: 66 DP: 0 Conceito N L 3 MB 4 B 7 R 3 I 1 D 5 Roteiro Forçadas
