Tamanho: px
Começar a partir da página:

Download ""

Transcrição

1

2

3

4

5

6

7

8

9

10 γ

11

12

13

14

15 φ φ φ χ Φ

16 φ φ ρ Q

17 λ ω φ φ φ φ φ φ

18

19

20

21

22

23 φ φ φ φ φ φ

24

25

26 ( ) χ χ

27

28

29

30

31

32 & + = &

33 [ ]{&& } + ([ ] + [ ]){ & } + [ ]{ } = { } [ ] [ ] [ ] {&& } [ ] { } { } {& }

34 γ ψ γ φ γ = ψ + φ = = ψ φ = + + = + + φ = φ + φ + ψ = ψ + ψ + φ ψ [ ] = + φ ψ

35 { } [ ] ψ φ ψ φ ψ φ M M = φ ψ y y φ y φ φ [ ] =

36 [ ] = µ µ ν [ ] = ρ

37 Ω = ρ ρ Ω = = =

38 = φ + γ + = = ψ + γ + = γ γ ψ φ = = φ φ φ ψ ψ ψ ψ φ

39 = = = + Φ + = ( ( )) ( ) + ( ) ( ) ( ) Φ ( ) Φ ( ( )) ( ) + ( ) + Φ( ( )) ( ) + ( ) Φ + + Φ + Φ ( ) ( ) ( ) ( ) ( ( )) ( ) + ( ) Φ( ) ( ) + ( ) + Φ + Φ = = = = + Φ + Φ + Φ + Φ Φ Φ = = µ { } = [ φ ψ M φ ψ ] φ ψ

40 φ φ y y [ ] = ( + Φ) ( + Φ) ( + Φ) ( Φ) ( + Φ) ( Φ) ( + Φ) [ ] = ρ = + Φ + Φ ( + Φ) + ( )

41 ( ) ( ) + Φ + Φ Φ + + = ( ) ( ) + Φ Φ + Φ Φ + + = ( ) ( ) + Φ Φ + Φ Φ + + = ( ) ( ) + Φ Φ Φ Φ Φ + + = ( ) ( ) + Φ Φ Φ + + Φ Φ + + = = [ ] Ω = ρ

42 = ( + Φ) Φ = ( + Φ) = + Φ + ( + Φ) Φ = + Φ ( + Φ) Φ Φ = [ ] =

43 [ ] = Ω = [ ]

44 φ φ

45 φ φ φ φ = φ ( + ) f f f f f Df f

46 = ( ) ( φ φ ) π = ρ ρ ( ) = = ( φ + + ) = φ = ( φ + φ )

47 φ ( φ φ ) = φ + = ( φ φ ) ρ π ( φ φ ) = φ φ = + φ πρ

48

49

50 ν ρ

51 [ ][ Θ ] = [ ][ Θ][ λ] l λ = ±ω ω Q λ

52

53

54

55 φ φ φ φ φ φ

56 Capítulo 3 Descrição dos Modelos de Viga Equivalente e Experimentos para Validação 39 Figura 3.7: Rotor suspenso para ensaio de condição livre-livre Figura 3.8: Analisador de sinais, martelos de impacto e acelerômetro Os rotores foram discretizados conforme exemplo apresentado na Figura 3.9 para o rotor 560IIP. A excitação foi feita usando um martelo modal em um ponto no extremo do eixo, parte dianteira, enquanto o acelerômetro varria os demais pontos do rotor. Isto garantiu que fossem obtidos os primeiros modos de vibrar da estrutura seqüencialmente, uma vez que nas extremidades da viga (rotor) nunca haverá um nó para as condições de contorno testadas. A Figura 3.11 mostra um detalhe da tela do programa de aquisição de dados utilizado, com uma curva de FRF (função de

57 Capítulo 3 Descrição dos Modelos de Viga Equivalente e Experimentos para Validação 40 resposta em freqüência) e coerência (PulseLabshop). Já a Figura 3.12 mostra a tela do programa de análise modal (MEscopeVES). Figura 3.9: Coordenadas dos pontos de excitação e resposta (cotas em mm) Figura 3.10: Exemplo de medição no rotor 250IVP Em todas as medições utilizou-se 10 médias para compor a FRF com resolução de 1Hz. Em média, a banda de freqüências utilizada variou de 10Hz a 5kHz. O sinal de força do martelo foi adquirido usando uma janela uniforme, enquanto que o sinal de resposta do acelerômetro foi adquirido com uma janela exponencial.

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75 M /M

76 φ φ Φ ν ν

77 Φ Φ φ Φ φ

78

79 Φ

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

Análise Experimental de Apoios para Simulação de Condições de Contorno Livre no Espaço de Placas Retangulares

Análise Experimental de Apoios para Simulação de Condições de Contorno Livre no Espaço de Placas Retangulares Análise Experimental de Apoios para Simulação de Condições de Contorno Livre no Espaço de Placas Retangulares Ricardo Leiderman Benedito Luis Barbosa de Andrade Rubens Sampaio Departamento de Engenharia

Leia mais

Métodos Experimentais para Vibrações Mecânicas

Métodos Experimentais para Vibrações Mecânicas Métodos Experimentais Métodos Experimentais para Vibrações Mecânicas Prof. Aline Souza de Paula Universidade de Brasília Faculdade de Tecnologia Departamento de Engenharia Mecânica Introdução A maioria

Leia mais

FEP Física para Engenharia II

FEP Física para Engenharia II FEP96 - Física para Engenharia II Prova P - Gabarito. Uma plataforma de massa m está presa a duas molas iguais de constante elástica k. A plataforma pode oscilar sobre uma superfície horizontal sem atrito.

Leia mais

TÍTULO: ANÁLISE MODAL EXPERIMENTAL CATEGORIA: CONCLUÍDO ÁREA: ENGENHARIAS E ARQUITETURA SUBÁREA: ENGENHARIAS

TÍTULO: ANÁLISE MODAL EXPERIMENTAL CATEGORIA: CONCLUÍDO ÁREA: ENGENHARIAS E ARQUITETURA SUBÁREA: ENGENHARIAS TÍTULO: ANÁLISE MODAL EXPERIMENTAL CATEGORIA: CONCLUÍDO ÁREA: ENGENHARIAS E ARQUITETURA SUBÁREA: ENGENHARIAS INSTITUIÇÃO: FACULDADE ANHANGUERA DE TAUBATÉ AUTOR(ES): MARIA LAURA DA SILVA FRANÇA ORIENTADOR(ES):

Leia mais

FEP Física para Engenharia II

FEP Física para Engenharia II FEP2196 - Física para Engenharia II Prova P1-25/10/2007 - Gabarito 1. Um corpo de massa 50 g está preso a uma mola de constante k = 20 N/m e oscila, inicialmente, livremente. Esse oscilador é posteriormente

Leia mais

Estabilidade. Conhecimentos Básicos

Estabilidade. Conhecimentos Básicos Estabilidade Conhecimentos Básicos Unidades NOME SÍMBOLO FATOR MULTIPLICADOR (UND) Exa E 10 18 1 000 000 000 000 000 000 Peta P 10 15 1 000 000 000 000 000 Terá T 10 12 1 000 000 000 000 Giga G 10 9 1

Leia mais

ν ν α α π θ θ δ α α α + + α + α α + α + φ Γ φ θ θ θφ Γ δ = α ν α α ν + ν ν + ν + ν + δ + ν ν + δ + + + + + δ + + ν ν + + ν + + + ν ν ν + + ν + ν + = θ β β + Γ δ Γ δ β µ µ µµ µ µ µ µ α ν α µ

Leia mais

Contabilidade de IF padrão COSIF para BACEN Área 4 Teoria e exercícios comentados Prof. Felipe Lessa Aula 01 # %& ( ! #! # % & ( ) ( + (, ( ).

Contabilidade de IF padrão COSIF para BACEN Área 4 Teoria e exercícios comentados Prof. Felipe Lessa Aula 01 # %& ( ! #! # % & ( ) ( + (, ( ). ! # %& (! #! # % & ( ) ( + (, ( ). / 0 +. 1 2 + 1 3 (/(2 14 (/(2 5 4 4 4 ) 6 4 7 + 3 4 4 8 ) 4 + + 7 7 4 9 3 (//( (! )! & 1 2 : + 3 + (& (, + 3 + 3 ; + + 3< 6 = < >?3 6? Α Β Β Χ. Β Β Χ 7 3 Α / > Ε! : 1!

Leia mais

Quantização. Quantização da energia (Planck, 1900) hc h. Efeito fotoelétrico (Einstein, 1905) Espectros atômicos (linhas discretas) v 2

Quantização. Quantização da energia (Planck, 1900) hc h. Efeito fotoelétrico (Einstein, 1905) Espectros atômicos (linhas discretas) v 2 Mecânica Quântica Quantização e o modelo de Bohr (revisão) Dualidade Onda-Partícula Princípio da Incerteza Equação de Schrödinger Partícula na Caixa Átomo de Hidrogênio Orbitais Atômicos Números Quânticos

Leia mais

Análise de estrutura aporticada de aço para suporte de peneira vibratória

Análise de estrutura aporticada de aço para suporte de peneira vibratória Contribuição técnica nº 6 Análise de estrutura aporticada de aço para suporte de peneira vibratória Tânia Maria Ribeiro Costa Assunção [email protected] Dr. Fernando Amorim de Paula [email protected]

Leia mais

Universidade de São Paulo. Instituto de Física. FEP112 - FÍSICA II para o Instituto Oceanográfico 1º Semestre de 2009

Universidade de São Paulo. Instituto de Física. FEP112 - FÍSICA II para o Instituto Oceanográfico 1º Semestre de 2009 Universidade de São Paulo Instituto de Física FEP11 - FÍSICA II para o Instituto Oceanográfico 1º Semestre de 9 Primeira Lista de Exercícios Oscilações 1) Duas molas idênticas, cada uma de constante, estão

Leia mais

O quadro abaixo destina-se à correcção da prova. Por favor não escreva nada.

O quadro abaixo destina-se à correcção da prova. Por favor não escreva nada. Instituto Superior Técnico Departamento de Matemática 2 o semestre 08/09 Nome: Número: Curso: Sala: 1 o TESTE DE CÁLCULO DIFERENCIAL E INTEGRAL-II LEIC-Taguspark, LERC, LEGI, LEE 4 de Abril de 2009 (11:00)

Leia mais

Resumo dos pontos importantes

Resumo dos pontos importantes Resumo dos pontos importantes Equação básica da espectroscopia de RMN. γ X o ν X = B (1 σ X ) π Espectros de RMN e deslocamentos químicos. v X ν ref 6 δ ( ppm) = 10 ν ref 2 δ ( Hz) = δ ( ppm) ν 10 = 6

Leia mais

Problemas de Duas Partículas

Problemas de Duas Partículas Problemas de Duas Partículas Química Quântica Prof a. Dr a. Carla Dalmolin Massa reduzida Rotor Rígido Problemas de Duas Partículas Partícula 1: coordenadas x 1, y 1, z 1 Partícula 2: coordenadas x 2,

Leia mais

Mecânica II - FFI0111: Lista #3

Mecânica II - FFI0111: Lista #3 Mecânica II - FFI0111: Lista #3 Fazer até 11/04/2011 L.A.Ferreira ; Seg.Qua. 10:10 11:50 Estagiário: Gabriel Luchini 1 Problema 1 A equação de Newton é de segunda ordem no tempo. Você aprendeu que, para

Leia mais

n.estudante:... Eletromagnetismo / MIEEC; frequência 20.abr.2016;. Em cada pergunta só há uma resposta certa e só uma das justificações é a adequada.

n.estudante:... Eletromagnetismo / MIEEC; frequência 20.abr.2016;. Em cada pergunta só há uma resposta certa e só uma das justificações é a adequada. Docente:... nome n.estudante:... Eletromagnetismo / MIEEC; frequência 20.abr.2016;. Instruções e recomendações Não desagrafar! Em cada pergunta só há uma resposta certa e só uma das justificações é a adequada.

Leia mais

Departamento de Engenharia Mecânica ENG Mecânica dos Sólidos II. Teoria de Vigas. Prof. Arthur Braga

Departamento de Engenharia Mecânica ENG Mecânica dos Sólidos II. Teoria de Vigas. Prof. Arthur Braga Departamento de Engenharia Mecânica ENG 174 - Teoria de Vigas Prof. rthur Braga Tensões de Fleão em Barras (vigas Deformação do segmento IJ M N ρ Δφ I J ( ρ y Δφ Compresão ρ ρ y I J y M N Eio Neutro (deformação

Leia mais

Exame Final de EDI-38 Concreto Estrutural I Prof. Flávio Mendes Neto Dezembro de 2006 Sem consulta (duração máxima: 4 horas)

Exame Final de EDI-38 Concreto Estrutural I Prof. Flávio Mendes Neto Dezembro de 2006 Sem consulta (duração máxima: 4 horas) 1 Exame Final de EDI-38 Concreto Estrutural I rof. Flávio Mendes Neto Dezembro de 2006 Sem consulta (duração máxima: 4 horas) Esta prova tem 4 páginas e 5 questões (divididas em 9 itens). Considere os

Leia mais

Dinâmica de Estruturas 5º Ano

Dinâmica de Estruturas 5º Ano Dinâmica de Estruturas 5º Ano Docentes Prof. António Arêde Engº Carlos Moutinho Laboratório Prof. Álvaro Cunha Profª Elsa Caetano Tiago Pereira 2001/02 Ensaio n.º 1 Modelo 1 Pórtico simples de 1 vão e

Leia mais

Física II para a Escola Politécnica ( ) - P1 (04/09/2015) [0000]

Física II para a Escola Politécnica ( ) - P1 (04/09/2015) [0000] Física II para a Escola Politécnica (330) - P (0/09/0) [0000] NUSP: 0 0 0 0 0 0 0 3 3 3 3 3 3 3 8 8 8 8 8 8 8 9 9 9 9 9 9 9 Instruções: Preencha completamente os círculos com os dígitos do seu número USP

Leia mais

Estudo do Comportamento Vibratório da Carcaça de uma Bomba Hidráulica

Estudo do Comportamento Vibratório da Carcaça de uma Bomba Hidráulica 1 Estudo do Comportamento Vibratório da Carcaça de uma Bomba Hidráulica J. C. Pereira, UFSC, H. Bindewald, UFSC, E. da Rosa, UFSC, L. A. M. Torres, Tractebelenergia S.A. Resumo-Este projeto de P&D teve

Leia mais

1 S S. Errata do Livro Introdução à Física Estatística, IST Press (atualização de 4 fevereiro 2015) Cap 1:

1 S S. Errata do Livro Introdução à Física Estatística, IST Press (atualização de 4 fevereiro 2015) Cap 1: Errata do Livro Introdução à Física Estatística, IST Press (atualização de 4 fevereiro 05) Cap : Pag, última expressão (.3..4): substituir σ L = l por δ n = Pag 3, linha 7 a contar do fim: substituir k

Leia mais

8.2. Na extremidade de uma corda suficientemente longa é imposta uma perturbação com frequência f = 5 Hz que provoca uma onda de amplitude

8.2. Na extremidade de uma corda suficientemente longa é imposta uma perturbação com frequência f = 5 Hz que provoca uma onda de amplitude Constantes Velocidade do som no ar: v som = 344 m /s Velocidade da luz no vácuo c = 3 10 8 m/s 8.1. Considere uma corda de comprimento L e densidade linear µ = m/l, onde m é a massa da corda. Partindo

Leia mais

SUMÁRIO. 1 Lista de Modelos Probabilísticos Modelos Discretos Modelos Contínuos... 3

SUMÁRIO. 1 Lista de Modelos Probabilísticos Modelos Discretos Modelos Contínuos... 3 SUMÁRIO Lista de Modelos Probabilísticos. Modelos Discretos.................................. Modelos Contínuos................................ 3 LISTA DE MODELOS PROBABILÍSTICOS. MODELOS DISCRETOS Distribuição

Leia mais

Sétima Lista. MAT0216 Cálculo Diferencial e Integral III Prof. Daniel Victor Tausk 14/04/2019

Sétima Lista. MAT0216 Cálculo Diferencial e Integral III Prof. Daniel Victor Tausk 14/04/2019 Sétima Lista MAT216 Cálculo iferencial e Integral III Prof. aniel Victor Tausk 14/4/219 Exercício 1. ados a, b, c >, determine o volume do elipsóide {(x, y, z) R 3 : x2 a 2 + y2 b 2 + z2 } c 2 1 de semi-eixos

Leia mais

Lista 3 - FIS Relatividade Geral Curvatura, campos de Killing, fluidos, eletromagnetismo.

Lista 3 - FIS Relatividade Geral Curvatura, campos de Killing, fluidos, eletromagnetismo. Lista 3 - FIS 404 - Relatividade Geral Curvatura, campos de Killing, fluidos, eletromagnetismo. 2 quadrimestre de 2017 - Professor Maurício Richartz Leitura sugerida: Carroll (seções 3.1-3.4,3.6-3.8),

Leia mais

Escoamento potencial

Escoamento potencial Escoamento potencial J. L. Baliño Escola Politécnica - Universidade de São Paulo Apostila de aula 2017, v.1 Escoamento potencial 1 / 26 Sumário 1 Propriedades matemáticas 2 Escoamento potencial bidimensional

Leia mais

3. Achar a equação da esfera definida pelas seguintes condições: centro C( 4, 2, 3) e tangente ao plano π : x y 2z + 7 = 0.

3. Achar a equação da esfera definida pelas seguintes condições: centro C( 4, 2, 3) e tangente ao plano π : x y 2z + 7 = 0. Universidade Federal de Uerlândia Faculdade de Matemática Disciplina : Geometria Analítica (GMA00) Assunto: Superfícies, Quádricas, Curvas e Coordenadas Professor Sato 4 a Lista de exercícios. Determinar

Leia mais

UERJ/DFNAE Física Geral - Lista /2

UERJ/DFNAE Física Geral - Lista /2 UERJ/DFNAE Física Geral - Lista 2-2018/2 1. Identifique as forças que atuam sobre os corpos indicados nas figuras. 2. Dois blocos de peso P, são mantidos em equilíbrio em um plano inclinado sem atrito,

Leia mais

Física III Escola Politécnica GABARITO DA PS 30 de junho de 2011

Física III Escola Politécnica GABARITO DA PS 30 de junho de 2011 Física - 4320301 Escola Politécnica - 2011 GABARTO DA PS 30 de junho de 2011 Questão 1 No modelo de Rutherford o átomo é considerado como uma esfera de raio R com toda a carga positiva dos prótons, Ze,

Leia mais

DIMENSIONAMENTO DE ESTRUTURAS DE BETÃO DE ACORDO COM OS EUROCÓDIGOS 14, 15 E 16 DE FEVEREIRO DE 2007

DIMENSIONAMENTO DE ESTRUTURAS DE BETÃO DE ACORDO COM OS EUROCÓDIGOS 14, 15 E 16 DE FEVEREIRO DE 2007 DIMENSIONAMENTO DE ESTRUTURAS DE BETÃO DE ACORDO COM OS EUROCÓDIGOS 14, 15 E 16 DE FEVEREIRO DE 2007 1 Módulo 7 Edifícios em Zonas SísmicasS EC8 Parte 1 5 Edifícios de Betão João F. Almeida 2 5 EDIFÍCIOS

Leia mais

Física IV Escola Politécnica GABARITO DA P1 10 de setembro de Hz C

Física IV Escola Politécnica GABARITO DA P1 10 de setembro de Hz C Física IV - 4320402 Escola Politécnica - 2013 GABARITO DA P1 10 de setembro de 2013 Questão 1 O circuito da figura é usado para determinar a capacitância do capacitor. O resistor tem resistência de 100

Leia mais

MAT VETORES E GEOMETRIA - IF/IME 1 o SEMESTRE Suponha fixado um sistema de coordenadas ortogonal cuja base é positiva.

MAT VETORES E GEOMETRIA - IF/IME 1 o SEMESTRE Suponha fixado um sistema de coordenadas ortogonal cuja base é positiva. MAT 11 - VETORES E GEOMETRIA - IF/IME 1 o SEMESTRE 015 LISTA Suponha fixado um sistema de coordenadas ortogonal cuja base é positiva. 1. Sejam A = (1, 1, 1), B = (0, 0, 1) e r : X = (1, 0, 0) + λ(1, 1,

Leia mais

Teoria de Bandas 1 Elétrons Livres. CF086 - Introdução a Física do Estado Sólido 1

Teoria de Bandas 1 Elétrons Livres. CF086 - Introdução a Física do Estado Sólido 1 Teoria de Bandas 1 Elétrons Livres CF086 - Introdução a Física do Estado Sólido 1 Introdução Para iniciar a investigação da contribuição eletrônica para as propriedades físicas relevantes, vamos considerar

Leia mais

Resumo sobre magnetização nuclear [ ] o = !!!! Frequência de Larmor = frequencia do movimento de precessão = frequencia de ressonancia RMN!!!

Resumo sobre magnetização nuclear [ ] o = !!!! Frequência de Larmor = frequencia do movimento de precessão = frequencia de ressonancia RMN!!! Resumo sobre magnetização nuclear M = µ N ( ) N ( ) [ ] 0 mag ω o = γ B o ν o = o γ B 2π!!!! Frequência de Larmor = frequencia do movimento de precessão = frequencia de ressonancia RMN!!! Magnetização

Leia mais

INSTITUTO POLITÉCNICO DE BRAGANÇA ESCOLA SUPERIOR DE TECNOLOGIA E DE GESTÃO FÍSICA III. Exercícios teórico-práticos FILIPE SANTOS MOREIRA

INSTITUTO POLITÉCNICO DE BRAGANÇA ESCOLA SUPERIOR DE TECNOLOGIA E DE GESTÃO FÍSICA III. Exercícios teórico-práticos FILIPE SANTOS MOREIRA INSTITUTO POLITÉCNICO DE BRAGANÇA ESCOLA SUPERIOR DE TECNOLOGIA E DE GESTÃO FÍSICA III Eercícios teórico-práticos FILIPE SANTOS MOREIRA Física 3 (EQ) Eercícios TP Índice Índice i Derivadas e integrais

Leia mais

Figura 1: Forma de onda da tensão quadrada.

Figura 1: Forma de onda da tensão quadrada. Problema 1.21 a) O esboço da forma de onda da tensão quadrada com frequência de 60 Hz e amplitude E é exposto na Figura 1. Figura 1: Forma de onda da tensão quadrada. E T = 1/60 s -E Para determinar a

Leia mais

LEI DE AMPÈRE. Aula # 15

LEI DE AMPÈRE. Aula # 15 LEI DE AMPÈRE Aula # 15 BIOT-SAVART Carga em movimento gera campo magnético Campo magnético produzido por um elemento de corrente em um ponto r d B = ( µ0 ) id l r r 3 = ( µ0 ) idlsin(θ) r 2 µ 0 = 10 7

Leia mais

ATENÇÃO: O 2 ō Teste corresponde às perguntas 5 a 10. Resolução abreviada. 1. Seja f(x,y) = a) Determine o domínio de f e a respectiva fronteira.

ATENÇÃO: O 2 ō Teste corresponde às perguntas 5 a 10. Resolução abreviada. 1. Seja f(x,y) = a) Determine o domínio de f e a respectiva fronteira. Instituto uperior Técnico Departamento de Matemática ecção de Álgebra e Análise Cálculo Diferencial e Integral II 2 ō Teste/ ō Exame - de Janeiro de 2 Duração: Teste - h3m ; Exame - 3h Apresente e justifique

Leia mais

As seguintes considerações devem ser feitas inicialmente ou ao longo do trabalho:

As seguintes considerações devem ser feitas inicialmente ou ao longo do trabalho: EXPERIÊNCIA 1: Pesa-espíritos EXEMPLO DE RESOLUÇÃO: Esquema da montagem: H 0 h 0 M As seguintes considerações devem ser feitas inicialmente ou ao longo do trabalho: M = massa do tubo + massa adicionada

Leia mais

Cálculo de Estruturas e Tubulações Industriais

Cálculo de Estruturas e Tubulações Industriais Cálculo de Estruturas e Tubulações Industriais AULA 6 PROJETO MEZANINO PROF.: KAIO DUTRA Mezanino Projeto Mezanino ovigas: o Principais: o V1, V2, V3, V4, V5, V6, V7, V8 o Secundárias: o Vs ocolunas: o

Leia mais

RESISTÊNCIA DE MATERIAIS II

RESISTÊNCIA DE MATERIAIS II INSTITUTO SUPERIOR TÉCNICO Departamento de Engenharia Civil e Arquitectura Secção de Mecânica Estrutural, Estruturas e Construção Ano lectivo de 2003/2004 2 o teste e o exame Lisboa, 23 de Junho de 2004

Leia mais

Cálculo Diferencial e Integral II Resolução do Exame/Teste de Recuperação 02 de Julho de 2018, 15:00h - versão 2 Duração: Exame (3h), Teste (1h30)

Cálculo Diferencial e Integral II Resolução do Exame/Teste de Recuperação 02 de Julho de 2018, 15:00h - versão 2 Duração: Exame (3h), Teste (1h30) Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise Cálculo Diferencial e Integral II do Exame/Teste de Recuperação 2 de Julho de 218, 15:h - versão 2 Duração: Exame (3h),

Leia mais

FAMÍLIA EXPONENCIAL DE DISTRIBUIÇÕES

FAMÍLIA EXPONENCIAL DE DISTRIBUIÇÕES FAMÍLIA EXPONENCIAL DE DISTRIBUIÇÕES 1 Os modelos lineares generalizados, propostos originalmente em Nelder e Wedderburn (1972), configuram etensões dos modelos lineares clássicos e permitem analisar a

Leia mais

Parte A FÓRMULAS Spiegel_II_01-06.indd 11 Spiegel_II_01-06.indd :17: :17:08

Parte A FÓRMULAS Spiegel_II_01-06.indd 11 Spiegel_II_01-06.indd :17: :17:08 Parte A FÓRMULAS Seção I: Constantes, Produtos e Fórmulas Elementares Alfabeto Grego e Constantes Especiais 1 Alfabeto grego Nome Letras Gregas Grego Minúsculas Maiúsculas Alfa Α Beta Β Gama Γ Delta Δ

Leia mais

Mecânica dos Fluidos II

Mecânica dos Fluidos II Mecânica dos Fluidos II Laboratório de Turbomáquinas ENSAIO DE UMA BOMBA Trabalho realizado por: Stefano Favaro N.º 0798 Leonardo Moreira N.º 44348 Miguel Ribeiro N.º 47158 Luís Pimentel N.º 49847 Introdução

Leia mais

3 Controle Passivo com Carregamento no Plano

3 Controle Passivo com Carregamento no Plano 3 Controle Passivo com Carregamento no Plano 3.1. Conceitos Básicos Conforme visto no Capítulo 1, os mecanismos de controle passivo não são controláveis e não requerem energia para operar. Estes sistemas

Leia mais

INSTITUTO NACIONAL DE PESQUISAS ESPACIAIS - INPE. Satélites Artificiais - Movimento de Atitude

INSTITUTO NACIONAL DE PESQUISAS ESPACIAIS - INPE. Satélites Artificiais - Movimento de Atitude INSTITUTO NACIONAL DE PESQUISAS ESPACIAIS - INPE Satélites Artificiais - Movimento de Atitude Aula de 7/09/011 Código: CMC 316-4 Introdução, atitude e movimento em atitude HANS-ULICH PILCHOWSKI CAPÍTULO

Leia mais

Mecânica dos Fluidos II (MEMec) Aula de Resolução de Problemas n o 3

Mecânica dos Fluidos II (MEMec) Aula de Resolução de Problemas n o 3 Mecânica dos Fluidos II (MEMec) Aula de Resolução de Problemas n o 3 (Método das imagens, escoamento em torno de um cilindro com circulação, transformação conforme) EXERCÍCIO 1 [Problema 6 das folhas do

Leia mais

ANÁLISES ESTÁTICAS NÃO LINEARES Eurocódigo 8

ANÁLISES ESTÁTICAS NÃO LINEARES Eurocódigo 8 Mestrado de Engenharia de Estruturas Dinâmica e Engenharia Sísmica Eurocódigo 8 Rita Bento Junho 2003 Métodos de Análise Análises Elásticas-Lineares Análises Estáticas Equivalentes Análises Dinâmicas Modais,

Leia mais

Física IV - FAP2204 Escola Politécnica GABARITO DA PS 15 de dezembro de 2009

Física IV - FAP2204 Escola Politécnica GABARITO DA PS 15 de dezembro de 2009 PS Física IV - FAP2204 Escola Politécnica - 2009 GABARITO DA PS 15 de dezembro de 2009 Questão 1 Considere os campos elétrico E = (0,E y,0) e magnético B = (0,0,B z ) onde E y (x,t) = A e a(x ct) e B z

Leia mais

Eletromagnetismo I. Prof. Daniel Orquiza. Eletromagnetismo I. Prof. Daniel Orquiza de Carvalho

Eletromagnetismo I. Prof. Daniel Orquiza. Eletromagnetismo I. Prof. Daniel Orquiza de Carvalho de Carvalho - Eletrostática Aplicação da Lei de Gauss e Lei de Gauss na Forma Diferencial (Páginas 56 a 70 no livro texto) Aplicação da Lei de Gauss: Linha Infinita de Cargas Condutores Coaxiais Lei de

Leia mais

Mecânica Quântica. Spin 1/2 e a formulação da M. Q. Parte II. A C Tort 1. Instituto Física Universidade Federal do Rio de Janeiro

Mecânica Quântica. Spin 1/2 e a formulação da M. Q. Parte II. A C Tort 1. Instituto Física Universidade Federal do Rio de Janeiro Mecânica Quântica Spin 1/ e a formulação da M. Q. Parte II A C Tort 1 1 Departmento de Física Teórica Instituto Física Universidade Federal do Rio de Janeiro 10 de Maio de 01 Mais dois postulados, agora

Leia mais

Universidade de São Paulo. Instituto de Física. FEP112 - FÍSICA II para o Instituto Oceanográfico 1º Semestre de 2009

Universidade de São Paulo. Instituto de Física. FEP112 - FÍSICA II para o Instituto Oceanográfico 1º Semestre de 2009 Universidade de São Paulo nstituto de Física FEP11 - FÍSCA para o nstituto Oceanográfico 1º Semestre de 009 Segunda Lista de Exercícios Oscilações 1) Verifique quais funções, entre as seguintes, podem

Leia mais

Cinemática relativística et al. Carlos Alexandre Wuensche Processos Radiativos I

Cinemática relativística et al. Carlos Alexandre Wuensche Processos Radiativos I Cinemática relativística et al. Carlos Alexandre Wuensche Processos Radiativos I 1 1 Transformações de Lorentz e cinemática relativística Postulados da relatividade especial As leis da natureza são as

Leia mais

Física IV Escola Politécnica GABARITO DA P1 30 de agosto de 2018

Física IV Escola Politécnica GABARITO DA P1 30 de agosto de 2018 Física IV - 4323204 Escola Politécnica - 2018 GABARITO DA P1 30 de agosto de 2018 Questão 1 Luz proveniente de uma fonte monocromática de comprimento de onda λ é difratada por uma fenda de largura a em

Leia mais

ENERGIA HIDRÁULICA MÁQUINA DE FLUXO ENERGIA MECÂNICA

ENERGIA HIDRÁULICA MÁQUINA DE FLUXO ENERGIA MECÂNICA ª EXPERIÊNCIA - ESTUDO DAS BOMBAS APLICAÇÃO DA ANÁLISE DIMENSIONAL E DA TEORIA DA SEMELHANÇA 1 INTRODUÇÃO AO ESTUDO DAS MÁQUINAS DE FLUXO ( BOMBAS, TURBINAS, COMPRESSORES, VENTILADORES) As máquinas que

Leia mais

xdv ydv zdv Mecânica Geral II Lista de Exercícios 2 Prof. Dr. Cláudio S. Sartori

xdv ydv zdv Mecânica Geral II Lista de Exercícios 2 Prof. Dr. Cláudio S. Sartori Use 1lb = 4,448 N 1 in = 0,0254 m 1 ft = 0,3048 m Baricentro de corpos em 2D e 3D Carregamentos xdl ydl x = ; y = L L x = N x i i= 1 N i= 1 A A i i y = N y i i= 1 N i= 1 A xdv ydv zdv x = y z V = V = V

Leia mais

6.1.Avaliação da Precisão para Problemas de Fluxo em Estado Permanente

6.1.Avaliação da Precisão para Problemas de Fluxo em Estado Permanente 6 EXEMPLOS NUMÉRICOS Neste Capítulo são apresentados alguns exemplos simples da utilização do método híbrido de elementos finitos, tanto para problemas de potencial quanto para problemas de elasticidade,

Leia mais

NOTAS DE AULAS DE ESTRUTURA DA MATÉRIA

NOTAS DE AULAS DE ESTRUTURA DA MATÉRIA NOTAS DE AULAS DE ESTRUTURA DA MATÉRIA Prof. Carlos R. A. Lima CAPÍTULO 11 MOLÉCULAS Primeira Edição junho de 2005 CAPÍTULO 11 MOLÉCULAS ÍNDICE 11-1- Introdução 11.2- Ligação por Tunelamento e a Molécula

Leia mais

Distribuições de Probabilidade Contínuas 1/19

Distribuições de Probabilidade Contínuas 1/19 all Distribuições de Probabilidade Contínuas Professores Eduardo Zambon e Magnos Martinello UFES Universidade Federal do Espírito Santo DI Departamento de Informática CEUNES Centro Universitário Norte

Leia mais

Prof. Dr. Ronaldo Rodrigues Pelá. 3 de abril de 2013

Prof. Dr. Ronaldo Rodrigues Pelá. 3 de abril de 2013 OSCILAÇÕES FORÇADAS Mecânica II (FIS-6) Prof. Dr. Ronaldo Rodrigues Pelá IEFF-ITA 3 de abril de 013 Roteiro 1 Forçadas Roteiro 1 Resultado M: 66 DP: 0 Conceito N L 3 MB 4 B 7 R 3 I 1 D 5 Roteiro Forçadas

Leia mais