Grandezas Proporcionais
|
|
|
- Nina Maria dos Santos Belém Bardini
- 9 Há anos
- Visualizações:
Transcrição
1 Grandezas Proporcionais A Proporcionalidade é, provavelmente, a noção matemática mais difundida na cultura de todos os povos e seu uso universal data de milênios (LIMA, et al., 2006, p.92). O estudo de Proporcionalidade é de grande importância pelo fato de que no nosso cotidiano surgem inúmeras situações em que estão implícitos conceitos envolvendo proporções. Objetivo Este Objeto de Aprendizagem (OA) foi desenvolvido a partir de um contexto envolvendo velocidade e tem por objetivo o estudo da relação entre Grandezas Proporcionais e Funções Lineares. Público Alvo Metodologia Alunos do Ensino Médio. Apresentar o Objeto de Aprendizagem (OA) aos alunos e pedir que explorem as telas do contexto, respondendo as questões elaboradas (sugestão: em duplas, propondo a mediação entre os pares). Propor que leiam a teoria sobre o conceito de Grandezas Proporcionais e Função Linear. 1
2 Patricinha, querendo fazer um Patricinha, lanche, desloca-se querendo de fazer sua um fazenda lanche, em desloca-se direção a de um sua fast fazenda food, em mantendo direção seu a carro um fast em food,mantendo uma autoestrada seu carro a uma em velocidade uma auto constante estrada de a uma 90 km/h. a) Em quanto tempo ela percorrerá 270 km? Resposta 2
3 b) Quantos quilômetros Patricinha percorrerá em 2 h e 30 min? Resposta c) Ainda no contexto apresentado, determine a lei que expressa a distância percorrida (d) em função do tempo (t). Resposta 3
4 Simule para o contexto apresentado tempos de 0 a 4 horas e calcule a distância percorrida em função do tempo. t d(t) 4
5 A situação apresentada envolve os conceitos de Grandezas Proporcionais e de Função Linear. Função Linear Chama-se Função Linear, toda função de IR em IR definida por f(x) = ax, tal que a 0. O gráfico que representa a Função Linear é uma reta que passa pela origem do referencial cartesiano. Grandezas Proporcionais Analisando a situação de Patricinha na autoestrada, podemos afirmar que: Quanto maior o tempo, maior será a distância percorrida; Se (dobrarmos, triplicarmos, etc...) o valor do tempo, o valor correspondente da distância fica, respectivamente, dobrado, triplicado. Quando isso ocorre entre duas grandezas, dizemos que elas são proporcionais (ou diretamente proporcionais). Dessa forma, tempo e distância percorrida são Grandezas Proporcionais quando se tem velocidade constante. Resumindo Duas grandezas são proporcionais (diretamente proporcionais) quando seus valores correspondentes y e x são tais que y = kx, em que k, constante positiva, é chamada de Constante de Proporcionalidade. Obs.: Quanto à Proporcionalidade Inversa, ela só tem sentido quando se trata de grandezas não nulas. Portanto, fixaremos nossa atenção na Proporcionalidade Direta. 5
6 Patricinha chegando ao fast food... Situação 1: Patricinha tem o costume de visitar fast food. Com isso, passou a engordar, em média, 1kg por semana devido a sua dieta hipercalórica. Considerando apenas esta informação (não levando em conta sua massa inicial) vamos montar uma tabela partindo de um tempo 0. A partir da mesma, determine a lei que expressa a quantidade de massa que Patricinha adquire após x semanas. Esboce o gráfico da situação. 6
7 Com os dados da tabela, a lei da função e o gráfico elaborado, marque a alternativa que melhor expressa a situação descrita. (a) Com o decorrer das semanas, a massa de Patricinha diminui, o que implica em que as grandezas descritas são proporcionais. (b) Com o decorrer das semanas, a massa de Patricinha aumenta, o que implica em que as grandezas descritas são inversamente proporcionais. (c) Com o decorrer das semanas, a massa de Patricinha permanece a mesma, o que implica em que as grandezas descritas são proporcionais. (d) Com o decorrer das semanas, a massa de Patricinha aumenta, o que implica em que as grandezas descritas são proporcionais. (e) Com o decorrer das semanas, a massa de Patricinha diminui, o que implica em que as grandezas descritas são inversamente proporcionais. Ainda em relação à situação descrita: Na décima semana, a massa acumulada por Patricinha será de kg. 7
8 Situação 2: Vamos observar o que acontece quando Patricinha passa a aumentar sua dieta hipercalórica, levando-a a dobrar a sua massa adquirida em relação à situação anterior. Antes Depois Escreva a lei que determina a situação descrita acima: y = A lei que representa este contexto é determinada por uma Função: (a) Constante (b) Linear (c) Identidade (d) Quadrática 8
9 As duas situações 1 e 2 apresentam o conceito de Grandezas Proporcionais. Na lei que descreve a primeira situação, qual o valor da Constante de Proporcionalidade? Resposta: E na lei que descreve a segunda situação? Resposta: Generalizando, numa função definida por f(x) = ax, qual a Constante de Proporcionalidade? Resposta: Vamos rever os conceitos? O que se pode perceber nas situações apresentadas? 1) No contexto do carro na autoestrada, a função que define a situação é descrita por: d(t) = 90t 9
10 Podemos perceber que à medida que o tempo passa, a velocidade aumenta, o que implica em que as grandezas descritas são proporcionais. 2) E em relação ao gráfico? O gráfico é representado por uma reta que passa pela origem do referencial cartesiano e é definida por uma Função Linear: f(x) = ax Neste caso, temos: d(t) = 90t Concluindo... É por isso que dizemos que a Função Linear é o modelo matemático para os problemas de Grandezas Proporcionais. Agora, que tal testar seus conhecimentos resolvendo as atividades a seguir? 10
11 Atividade 1 a) Complete a tabela abaixo, sabendo que as grandezas x e y são proporcionais, e que a razão entre x e y é igual a 3. x y b) Tomando como base a situação do exercício anterior, escreva y em função de x: Resposta: c) Que tipo de função você encontrou? Resposta: 11
12 a) Trace o gráfico das seguintes situações: i) a razão entre as grandezas x e y é igual a 2 Atividade 2 y 0 x ii) a razão entre as grandezas x e y é igual a -4. y x 12
13 b) Demonstre graficamente exemplos de duas outras grandezas diretamente proporcionais. y y x 0 x Este estudo termina aqui. Esperamos que tenham gostado do material. 13
14 GABARITO PÁGINA 2 a) 3h PÁGINA 3 b) 225 km c) d(t)= 90t PÁGINA 4 t d(t) PÁGINA 6 14
15 PÁGINA 7 Situação 1 Alternativa D 10kg PÁGINA 8 Situação 2 y= 2x b) Linear PÁGINA a PÁGINA 11 Atividade 1 a) x y 1/3 1 5/3 b) y = x/3 c) Linear 15
16 PÁGINA 12 Atividade 2 i) ii) 16
17 Créditos Instituição Instituto Federal Fluminense-Campus Campos-Centro. NTEAD- Núcleo de Tecnologias Educacionais e Educação a Distância. Conteudistas Arilise Moraes de Almeida Lopes Carla Antunes Fontes; Carmen Lúcia Vieira Rodrigues Azevedo; Desenvolvedor Thiago Aguiar Rodrigues Designers Gráficos Harrison Sodré Arouca Priscila Cardoso de Abreu Cynthia Santos Monteiro Revisores Renata Nogueira Cardoso Vanderlane Andrade Florindo Juliana Bernardo Pepe Idioma: Português Requisitos Técnicos: Corel Draw e Editor de textos. Atualização: 04/10/13 17
Função Constante. Este Objeto de Aprendizagem (OA) apresenta atividades algébricas e contextualizadas. O professor poderá iniciar a atividade:
Função Constante Objetivos: Fazer a integração da Matemática com a Física, a partir da aplicação no estudo de velocidade. Perceber que o gráfico da velocidade em função do tempo, com velocidade constante,
Estudo de Função Constante
Estudo de Função Constante Este Objeto de Aprendizagem (OA) foi construído visando um estudo sobre Função Constante. Objetivos: Fazer a integração da Matemática com a Física, a partir da aplicação de gráficos
Pré-requisitos: O usuário deverá ter conhecimento prévio de Função Afim e Função Quadrática.
Neste material você terá disponível: Uma situação que descreve várias sentenças matemáticas que compõem a Função Definida por Várias Sentenças. Atividades contextualizadas. Atividades extras. Objetivo:
Função Quadrática. Objetivos. Metodologia. Público alvo
Função Quadrática Objetivos Os objetivos deste Objeto de Aprendizagem (OA) são: -Determinar a Concavidade da Parábola; -Determinar as Coordenadas do Vértice; -Determinar os zeros da Função Quadrática;
A RELAÇÃO ENTRE PROGRESSÃO GEOMÉTRICA E FUNÇÃO EXPONENCIAL
A RELAÇÃO ENTRE PROGRESSÃO GEOMÉTRICA E FUNÇÃO EXPONENCIAL Objetivos: Oferecer um estudo interativo interdisciplinar, abordando alguns conceitos dos conteúdos matemáticos de Progressão Geométrica e Função
H1 - Expressar a proporcionalidade direta ou inversa, como função. Q1 - A tabela a seguir informa a vazão de uma torneira aberta em relação ao tempo:
H1 - Expressar a proporcionalidade direta ou inversa, como função Q1 - A tabela a seguir informa a vazão de uma torneira aberta em relação ao tempo: A expressão que representa a vazão em função do tempo
Apostila organizada por: Vanderlane Andrade Florindo Silvia Cristina Freitas Batista Carmem Lúcia Vieira Rodrigues Azevedo
Instituto Federal Fluminense Campus Campos Centro Programa Tecnologia Comunicação Educação (PTCE) Com esta apostila espera-se levar o aluno a: Apostila organizada por: Vanderlane Andrade Florindo Silvia
Campos dos Goytacazes/RJ Maio 2015
Instituto Federal Fluminense Campus Campos Centro Programa Tecnologia Comunicação Educação (PTCE) Apostila organizada por: Vanderlane Andrade Florindo Silvia Cristina Freitas Batista Carmem Lúcia Vieira
Cinemática REVISÃO ENEM 1. SISTEMAS DE REFERÊNCIA
REVISÃO ENEM Cinemática CINEMÁTICA é a parte da Mecânica que descreve os movimentos, sem levar em consideração as causas do mesmo. Os conceitos de espaço, movimento, repouso e trajetória são relativos,
Apostila organizada por: Vanderlane Andrade Florindo Silvia Cristina Freitas Batista Carmem Lúcia Vieira Rodrigues Azevedo
Instituto Federal Fluminense Campus Campos Centro Programa Tecnologia Comunicação Educação (PTCE) Apostila organizada por: Vanderlane Andrade Florindo Silvia Cristina Freitas Batista Carmem Lúcia Vieira
Unidade I MATEMÁTICA APLICADA. Profa. Ana Carolina Bueno
Unidade I MATEMÁTICA APLICADA Profa. Ana Carolina Bueno Números reais Fonte: http://infomaticando.blogspot.com.br/2012/12/numeros-irracionais.html Expressões algébricas São expressões matemáticas que apresentam
Ciências da Natureza e Matemática
Física 1 CEDAE Acompanhamento Escolar 1.(ESPCEX) Em uma mesma pista, duas partículas puntiformes A e B iniciam seus movimentos no mesmo instante com as suas posições medidas a partir da mesma origem dos
FORMAÇÃO CONTINUADA EM MATEMÁTICA
FORMAÇÃO CONTINUADA EM MATEMÁTICA MATEMÁTICA 1 ANO/ 2 BIMESTRE/ 2013 (grupo 5) PLANO DE TRABALHO 1 FUNÇÃO POLINOMIAL DO 1 GRAU TAREFA: 1 CURSISTA: Cátia Pereira da Silva Souza TUTORA: Leziete Cubeiro da
FORMAÇÃO CONTINUADA EM MATEMÁTICA FUNDAÇÃO CECIERJ/ CONSÓRCIO CEDERJ. Matemática 1º Ano 2º Bimestre Plano de Trabalho
FORMAÇÃO CONTINUADA EM MATEMÁTICA FUNDAÇÃO CECIERJ/ CONSÓRCIO CEDERJ Matemática 1º Ano 2º Bimestre 2014 Plano de Trabalho FUNÇÕES POLINOMIAIS DO 1º GRAU Tarefa 1 Cursista: Michele Zacharias dos Santos
2. Escreva em cada caso o intervalo real representado nas retas:
ESCOLA ESTADUAL DR. JOSÉ MARQUES DE OLIVEIRA - ANO 018 4º BIMESTRE TRABALHO DE RECUPERAÇÃO Nome: Nº Turma Data Nota Disciplina: Matemática Prof. Tallyne Siqueira Valor 1. Represente na reta real os intervalos:
Universidade Federal de Viçosa Centro de Ciências Exatas Departamento de Matemática
1 Universidade Federal de Viçosa Centro de Ciências Exatas Departamento de Matemática MAT 101 - Fundamentos de Matemática I 2012/I 2 a Lista - Funções (Parte I) 1. Dados os conjuntos M = {1, 3, 5} e N
Ano: 1º ano Ensino Médio Data: / /2017 Disciplina: Matemática Professor: Sergio Monachesi ROTEIRO DE ESTUDO REGULAÇÃO CONTEÚDO DO 2º BIMESTRE
Nome: Nº: Ano: 1º ano Ensino Médio Data: / /2017 Disciplina: Matemática Professor: Sergio Monachesi a) Conteúdos : Introdução: a noção intuitiva de função. ROTEIRO DE ESTUDO REGULAÇÃO CONTEÚDO DO 2º BIMESTRE
Pré-Cálculo. Humberto José Bortolossi. Aula de maio de Departamento de Matemática Aplicada Universidade Federal Fluminense
Pré-Cálculo Humberto José Bortolossi Departamento de Matemática Aplicada Universidade Federal Fluminense Aula 12 11 de maio de 2010 Aula 12 Pré-Cálculo 1 A função afim A função afim Uma função f : R R
Pré-Cálculo. Humberto José Bortolossi. Aula de junho de Departamento de Matemática Aplicada Universidade Federal Fluminense
Pré-Cálculo Humberto José Bortolossi Departamento de Matemática Aplicada Universidade Federal Fluminense Aula 12 06 de junho de 2011 Aula 12 Pré-Cálculo 1 A função afim A função afim Uma função f : R R
COLÉGIO APHONSIANO. Educando com Seriedade. Lista de MU e MUV 9º ano Profº: Luciano Dias
1 Conteúdos: - Velocidade Média - Função horária da Posição do MU - Função horária da Posição do MUV - Função horária da Velocidade do MUV - Equação de Torricelli COLÉGIO APHONSIANO Educando com Seriedade
MOVIMENTO RETILÍNEO UNIFORME (MRU)
MOVIMENTO RETILÍNEO UNIFORME (MRU) INTRODUÇÃO A partir de agora passaremos a discutir tipos de movimentos e começaremos pelo Movimento Retilíneo Uniforme. Este tipo de movimento de define por variações
Curso: Análise e Desenvolvimento de Sistemas
Curso: Análise e Desenvolvimento de Sistemas Disciplina: Calculo para Tecnologia (Equação de 1o e 2o graus, Porcentagem, razão e proporção. Regra de três, Logaritmo, Funções Trigométricas ) Prof. Wagner
CINEMÁTICA. Introdução
CINEMÁTICA Introdução Cinemática Parte da Física que estuda o movimento sem preocupar-se com as causas que deram origem ou interferem no movimento. Ponto material ou partícula Dizemos que um corpo é uma
Não fujas da Matemática!
Não fujas da Matemática! Problema: O pai do Filipe decidiu propor ao seu filho um negócio, que consistia em lavar o seu carro pagando-lhe assim uma quantia de 1,5 euros por hora. Se o Filipe demorar 3
Professora Daniele Santos Instituto Gay-Lussac 2º ano
Professora Daniele Santos Instituto Gay-Lussac 2º ano 1- Um trem parte de São Paulo com destino ao Rio de Janeiro com velocidade de 60Km/h. Ao mesmo tempo, parte do Rio de Janeiro, com destino a São Paulo,
R.: b) Em um dado instante, o carro B está 600m à frente do carro A. Quanto tempo, em horas, decorre até que A alcance B? R.:
PROFESSOR: Raphael Carvalho BANCO DE QUESTÕES - FÍSICA 2ª SÉRIE - ENSINO MÉDIO ============================================================================================== 01- Dois carros, A e B, movem-se
AVALIAÇÃO DA APRENDIZAGEM EM PROCESSO. Matemática. 1ª Série do Ensino Médio Turma 2º bimestre de 2015 Data / / Escola Aluno
AVALIAÇÃO DA APRENDIZAGEM EM PROCESSO Matemática 1ª Série do Ensino Médio Turma º bimestre de 015 Data / / Escola Aluno Questão 1 Na embalagem de uma marca de café, consta a informação de que, para 8 cafezinhos
RESOLUÇÃO CURSO DE FÉRIAS. Exercícios de Sala A A B A B C E C B C C D D C B B C E A B
RESOLUÇÃO CURSO DE FÉRIAS OSG 415/16 Alexandrino Diógenes Exercícios de Sala 1 4 5 6 7 8 9 10 A A B A B C E C B C 11 1 1 14 15 16 17 18 19 0 C D D C B B C E A B Exercícios Propostos 1 4 5 6 7 8 9 E C D
MATEMÁTICA - 3o ciclo Proporcionalidade inversa (9 o ano) Propostas de resolução
MATEMÁTICA - 3o ciclo Proporcionalidade inversa (9 o ano) Propostas de resolução Exercícios de provas nacionais e testes intermédios 1. Calculando a imagem do objeto 2 pela função f, temos: f(2) = 6 2
PLANO DE AULA IDENTIFICAÇÃO
PLANO DE AULA IDENTIFICAÇÃO Disciplina: Matemática Nível: Ensino Médio Tempo estimado: 5 aulas de 45 min Tema: Função do 1º Grau Subtema: Definição, Gráficos, Zero da Função, Equação do 1º Grau, Sinal
Grandezas proporcionais. Matemática 1 Aulas 13 e 14 Prof. Henrique Figo
Grandezas proporcionais Matemática 1 Aulas 13 e 14 Prof. Henrique Figo Motivação Qual desses carros gasta mais combustível para ir de São Paulo ao Rio de Janeiro? Sabe-se que o carro A, movido a gasolina,
Função Afim Fabio Licht
Função Afim Fabio Licht Definição da Função Afim ou Linear Gráfico da Função Afim Podemos representar os pares ordenados no plano cartesiano e fazer o gráfico da função. y-> eixo das ordenadas B P (a,b)
Grandezas Fundamentais da Mecânica
Grandezas Fundamentais da Mecânica A Mecânica é a parte da Física que procura estudar os movimentos dos corpos e seu repouso, além de buscar explicações lógicas para as suas ocorrências, fazendo análises
Apostila organizada por: Vanderlane Andrade Florindo Silvia Cristina Freitas Batista Carmem Lúcia Vieira Rodrigues Azevedo
Instituto Federal Fluminense Campus Campos Centro Programa Tecnologia Comunicação Educação (PTCE) Com esta apostila espera-se levar o aluno a: Apostila organizada por: Vanderlane Andrade Florindo Silvia
Regra de três. suficiente para um mês. Se 16 pessoas forem embora, para quantos dias ainda haverá alimento?
A UUL AL A 5 Regra de três Num acampamento, há 48 pessoas e alimento suficiente para um mês. Se 6 pessoas forem embora, para quantos dias ainda haverá alimento? Para pensar Observe a seguinte situação:
CURSINHO PRÓ-ENEM 2015 FÍSICA PROF. MARCO ANTÔNIO
CURSINHO PRÓ-ENEM 2015 FÍSICA PROF. MARCO ANTÔNIO INTRODUÇÃO À MECÂNICA Movimento O que é o movimento? O que é o Movimento? Um corpo está em movimento em relação a um dado referencial quando a posição
AULA DEMONSTRATIVA RACIOCÍNIO LÓGICO. Professor Guilherme Neves. Aula 00 Aula Demonstrativa
AULA DEMONSTRATIVA RACIOCÍNIO LÓGICO Professor Guilherme Neves www.pontodosconcursos.com.br Aula 00 Aula Demonstrativa www.pontodosconcursos.com.br Professor Guilherme Neves 1 Aula Conteúdo Programático
AULA 04 FUNÇÃO DO 1º GRAU 1. Dada a função afim f(x) = - 2x + 3, determine: a) f 1 b) f(0)
1. Dada a função afim f(x) = - 2x + 3, determine: a) f 1 b) f(0) 1 c) f 3 1 d) f - 2 2. Dada a função afim f(x) = 2x + 3, determine os valores de x para que: a) f(x) = 1 b) f(x) = 0 c) f(x) = 3 1 3. Dada
E. S. JERÓNIMO EMILIANO DE ANDRADE DE ANGRA DO HEROISMO. Conteúdo Programáticos / Matemática e a Realidade. Curso de Nível III Técnico de Laboratório
E. S. JERÓNIMO EMILIANO DE ANDRADE DE ANGRA DO HEROISMO Curso de Nível III Técnico de Laboratório Técnico Administrativo PROFIJ Conteúdo Programáticos / Matemática e a Realidade 2º Ano Ano Lectivo de 2008/2009
INSTITUTO GEREMÁRIO DANTAS COMPONENTE CURRICULAR: MATEMÁTICA I EXERCÍCIOS DE RECUPERAÇÃO FINAL 2016
INSTITUTO GEREMÁRIO DANTAS Educação Infantil, Ensino Fundamental e Médio Fone: (21) 21087900 Rio de Janeiro RJ www.igd.com.br Aluno(a): 9º Ano: Nº Professora: Maria das Graças COMPONENTE CURRICULAR: MATEMÁTICA
OFICINA DE FORMAÇÃO GEOGEBRA UMA VISITA AOS PROGRAMAS DE MATEMÁTICA DOS 2º E 3º CICLOS. Professora: Elsa Maria Sousa Dias
OFICINA DE FORMAÇÃO GEOGEBRA UMA VISITA AOS PROGRAMAS DE MATEMÁTICA DOS 2º E 3º CICLOS Professora: Elsa Maria Sousa Dias Actividade: Estudo do gráfico da Função Afim Formador: Luís Roçadas Enquadramento
INTRODUÇÃO À. Capítulo 2 CINEMÁTICA
INTRODUÇÃO À Capítulo 2 Introdução CINEMÁTICA à Cinemática Conceitos iniciais Uma pessoa está viajando sentada num ônibus que se aproxima de um ponto de parada. A pessoa está em movimento ou em repouso?
1ª série do Ensino Médio Turma 2º Bimestre de 2017 Data / / Escola Aluno
AVALIAÇÃO DA APRENDIZAGEM EM PROCESSO Matemática 1ª série do Ensino Médio Turma 2º Bimestre de 2017 Data / / Escola Aluno 22 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Avaliação da Aprendizagem em Processo
AULA DEMONSTRATIVA RACIOCÍNIO LÓGICO. Professor Guilherme Neves. Aula 00 Aula Demonstrativa
AULA DEMONSTRATIVA RACIOCÍNIO LÓGICO Professor Guilherme Neves www.pontodosconcursos.com.br Aula 00 Aula Demonstrativa www.pontodosconcursos.com.br Professor Guilherme Neves 1 Conteúdo Apresentação...
OFICINA DE MATEMÁTICA BÁSICA Lista 3
OFICINA DE MATEMÁTICA BÁSICA Lista 3 Data da lista: 29/06/2017 Preceptora: Natália Cursos atendidos: Todos Coordenador: Francisco 1. Demonstre que cada uma das seguintes igualdades são identidades. (a)
8º Ano Ficha de Trabalho 16. fevereiro de ) Na frutaria Pomar Verde, cada quilograma de cerejas do Fundão custa 2,5.
8º Ano Ficha de Trabalho 16 fevereiro de 2012 1) Na frutaria Pomar Verde, cada quilograma de cerejas do Fundão custa 2,5. a) No enunciado são referidas duas variáveis, a quantidade (em kg) e o preço a
REVISÃO. 1) Um carro descreve um movimento uniforme (M.U.). Com os valores de acordo com a tabela abaixo, determine: t (s) S (m)
REVISÃO 1) Um carro descreve um movimento uniforme (M.U.). Com os valores de acordo com a tabela abaixo, determine: t (s) 0 1 2 3 S (m) 80 70 60 50 a) Um esboço do gráfico Sxt b) O valor da velocidade.
Apostila de Física EJA
Apostila de Física EJA Professora Cátia Braga O QUE É FÍSICA? Física é o ramo da ciência que estuda as propriedades das partículas elementares e os fenômenos naturais e provocados, de modo lógico e ordenado.
FÍSICA 1ºTA REPOSICAÇÃO 2015 CINEMÁTICA ESCALAR DEFINIÇÕES E CONCEITOS
FÍSICA ºTA REPOSICAÇÃO 205 CINEMÁTICA ESCALAR DEFINIÇÕES E CONCEITOS O QUE É A CINEMÁTICA A Cinemática estuda o movimento dos corpos, independentemente das causas desse movimento. Seu objetivo é descrever
MATEMÁTICA. Razão e Proporção. Professor : Dêner Rocha. Monster Concursos 1
MATEMÁTICA Razão e Proporção Professor : Dêner Rocha Monster Concursos 1 Razões e Proporções Razões Termos de uma razão Observe a razão: (lê-se "a está para b" ou "a para b"). Na razão a:b ou Veja o exemplo:,
FUNÇÃO DO 1º GRAU INTRODUÇÃO 6,50 + 2,60 = R$ 9,10. 0, ,60 = 13,65
FUNÇÃO DO 1º GRAU INTRODUÇÃO Larissa toma um táxi comum que cobra R$ 2,60 pela bandeirada e R$ 0,65 por quilômetro rodado. Ela quer ir à casa do namorado que fica a 10 km de onde ela está. Quanto Larissa
FORMAÇÃO CONTINUADA EM MATEMÁTICA
FORMAÇÃO CONTINUADA EM MATEMÁTICA Fundação CECIERJ/Consórcio CEDERJ Matemática 9º Ano 3º Bimestre/2013 PLANO DE TRABALHO Função Tarefa 1 Nome: Cintia de Oliveira Santos Grupo: 1 Tutor: Lígia Vitoria de
Função Quadrática e Proporcionalidade Inversa ( )
Função Quadrática e (18-01-08) F. Quadrática e Matemática e Estatística 2007/2008 Função Quadrática Chama-se função quadrática a qualquer função f de R em R dada por uma lei da forma f(x) = ax 2 + bx +
Funções Potência. Cubo - Definições
Funções Potência Aula 06 Cubo - Definições 1 Cubo-Arestas Área de Superfície do Cubo Se estivéssemos pintando um cubo, a área da superfície nos diria quanto de área teríamos que cobrir com tinta. Cada
PROF. RANILDO LOPES SITE: Visite nosso SITE para Baixar o MATERIAL
Faculdade de Ciências e Tecnologia de Teresina Associação Piauiense de Ensino Superior LTDA APES MATEMÁTICA FINANCEIRA PROF. RANILDO LOPES GRAD. EM MATEMATICA GRAD. EM COMPUTAÇAO PROF. RANILDO LOPES SITE:
FÍSICA. Prof. Emerson. Módulo 3
FÍSICA Prof. Emerson Módulo 3 GRANDEZA FÍSICA A tudo aquilo que pode ser medido, associando-se um valor numérico a uma unidade de medida, dá-se o nome de GRANDEZA FÍSICA. TIPOS DE GRANDEZAS GRANDEZA ESCALAR
Matemática em ação 9. Álgebra e Funções.
Matemática em ação 9 Álgera e Funções http://www.raizeditora.pt Matemática em ação 9 Fichas teóricas Conteúdos aordados: Equações do.º grau a uma incógnita Sistemas de equações Funções de proporcionalidade
Fís. Semana. Leonardo Gomes (Arthur Vieira)
Semana 3 Leonardo Gomes (Arthur Vieira) Este conteúdo pertence ao Descomplica. Está vedada a cópia ou a reprodução não autorizada previamente e por escrito. Todos os direitos reservados. CRONOGRAMA 06/02
MATEMÁTICA - 3o ciclo Proporcionalidade inversa (9 o ano) Propostas de resolução
MATEMÁTICA - 3o ciclo Proporcionalidade inversa (9 o ano) Propostas de resolução Exercícios de provas nacionais e testes intermédios 1. Como a função f é uma função de proporcionalidade inversa, então
FÍSICA 9ºano 2º Trimestre / 2016 BATERIA DE EXERCÍCIOS COMPLEMENTARES
FÍSICA 9ºano 2º Trimestre / 2016 BATERIA DE EXERCÍCIOS COMPLEMENTARES 1. Um atleta deseja percorrer 25 km em 2 h. Por dificuldades encontradas no trajeto, percorre 10 km com a velocidade média de 8 km/h.
Cinemática I Movimento Retilíneo
CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA 2016.2 Cinemática I Movimento Retilíneo Rafael Silva P. de Santana Engenharia Civil 5º Período Cinemática Na cinemática vamos estudar os movimentos sem
VUNESP PM/SP 2017) A tabela mostra a movimentação da conta corrente de uma pessoa em determinado dia.
O professor Arthur Lima, que leciona as disciplinas de exatas no curso preparatório Estratégia Concursos, separou as questões de matemática da prova da PM-SP, aplicada no último dis 5 de fevereiro para
2. O movimento de um corpo sobre uma trajetória determinada obedece à seguinte equação horária: S = t (S em quilômetro e t em horas)
Obs.: As atividades desta bateria contemplam o conteúdo do trimestre 1. Um atleta deseja percorrer 25 km em 2 h. Por dificuldades encontradas no trajeto, percorre 10 km com a velocidade média de 8 km/h.
Formação continuada em MATEMÁTICA. Fundação CECIERJ/ Consórcio CEDERJ
Formação continuada em MATEMÁTICA Fundação CECIERJ/ Consórcio CEDERJ Matemática 1º Ano 3º Bimestre/ 2013 Função Polinomial do 2º Grau Tarefa 1 Cursista: Sandra Maria Vogas Vieira Tutor: Marcelo Rodrigues
Aulas particulares. Conteúdo
Conteúdo Capítulo 3...2 Funções...2 Função de 1º grau...2 Exercícios...6 Gabarito... 13 Função quadrática ou função do 2º grau... 15 Exercícios... 22 Gabarito... 29 Capítulo 3 Funções Função de 1º grau
Matemática 9.º Ano. Tema 2 Funções, sequências e sucessões RESOLUÇÕES
Matemática 9.º Ano 1 Tema Funções, sequências e sucessões Funções. Funções afins Praticar páginas a 9 1. 1.1. As correspondências que são funções são as correspondências A e B. Nestas correspondências,
Esboço de Plano de Aula. Conteúdo específico: O uso do software WXMaxima nas equações do 1º Grau.
Esboço de Plano de Aula Bolsista: Rafael de Oliveira. Duração: 120 minutos. Conteúdo: Equações do 1º Grau. Conteúdo específico: O uso do software WXMaxima nas equações do 1º Grau. Objetivo geral: Permitir
Relação de ordem em IR. Inequações
Relação de ordem em IR. Inequações Relação de ordem em IR Inequações Reconhecer propriedades da relação de ordem em IR. Definir intervalos de números reais. Operar com valores aproximados de números reais.
REGRA DE TRÊS SIMPLES E COMPOSTA. Prof. Flavio Fernandes
REGRA DE TRÊS SIMPLES E COMPOSTA Prof. Flavio Fernandes Grandezas proporcionais Observe as situações: O tempo que se gasta em uma viagem depende da velocidade do veículo. A quantidade de tinta que se gasta
Abril Educação Medidas e movimentos Aluno(a): Número: Ano: Professor(a): Data: Nota:
Abril Educação Medidas e movimentos Aluno(a): Número: Ano: Professor(a): Data: Nota: Questão 1 Diferencie uma grandeza escalar de uma grandeza vetorial. Questão 2 No estudo dos movimentos, é de grande
TRABALHO DE RECUPERAÇÃO
CIÊNCIAS - FÍSICA TRABALHO DE RECUPERAÇÃO ENSINO FUNDAMENTAL ANO: 9º TURMAS: A B C D E ETAPA: 2ª ANO: 2017 PROFESSOR: FELIPPE CANUTO ALUNO(A): Nº: QUESTÃO 1 Uma tartaruga caminha, em linha reta, a 40 metros/hora,
GRANDEZAS PROPORCIONAIS
Hewlett-Packard GRANDEZAS PROPORCIONAIS Aulas 01 a 03 Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Sumário GRANDEZAS... 1 O QUE É UMA GRANDEZA?... 1 PRELIMINAR 1... 1 PRELIMINAR 2... 1 GRANDEZAS DIRETAMENTE
GRANDEZAS PROPORCIONAIS
Hewlett-Packard GRANDEZAS PROPORCIONAIS Aulas 01 a 03 Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Sumário GRANDEZAS... 1 O QUE É UMA GRANDEZA?... 1 PRELIMINAR 1... 1 PRELIMINAR 2... 1 GRANDEZAS DIRETAMENTE
Colégio Santa Catarina Unidade II: Movimento Uniforme (MU) 7 Unidade II: Movimento Uniforme (M.U.)
Colégio Santa Catarina Unidade II: Movimento Uniforme (MU) 7 Unidade II: Movimento Uniforme (M.U.) O movimento de uma partícula é uniforme quando ela percorre ao longo de sua trajetória, espaços iguais
LISTA DE ATIVIDADES TAREFÃO
LISTA DE ATIVIDADES TAREFÃO ALUNO (a): TURMA: Valor: 0-2 pontos PROFESSOR (a): DATA: / / A lista de exercícios deste tarefão está relacionada aos seguintes conteúdos: Capítulo 01 Medidas na física Capítulo
Forças e Movimento. Força e movimento ao longo da história
Forças e Movimento Prof. lucasmarqui A força é uma das principais grandezas estudadas em Física, e sua definição geralmente está associada a ações como puxar, chutar, empurrar e arrastar, o que transmite
Fundamentos de Mecânica
Fundamentos de Mecânica 45 Lista de exercícios Primeiro semestre de Os exercícios da lista deverão ser todos feitos. Não há necessidade de entregá-los. O conteúdo será cobrado nas provas e provinhas, ao
Verificamos que as duas razões são iguais. Nesse caso, podemos afirmar que a. é uma proporção. Assim: Proporção é uma igualdade entre duas razões.
MATEMÁTICA FINANCEIRA Prof. Celso Pessanha Machado Vamos iniciar o nosso curso de matemática financeira. Durante esse semestre vamos estudar questões ligadas a juros, aplicações, empréstimos e descontos,
Função de Proporcionalidade Direta
Função de Proporcionalidade Direta Recorda Dadas duas grandezas x e y, diz-se que y é diretamente proporcional a x: y se x 0 e y 0 e o quociente entre dois quaisquer valores correspondentes for constante.
Matemática. Questão 1. 3 a série do Ensino Médio Turma. 1 o Bimestre de 2016 Data / / Escola. Aluno RESOLUÇÃO: AVALIAÇÃO DA APRENDIZAGEM EM PROCESSO
EM AVALIAÇÃO DA APRENDIZAGEM EM PROCESSO Matemática 3 a série do Ensino Médio Turma GOVERNO DO ESTADO DE SÃO PAULO SECRETARIA DA EDUCAÇÃO 1 o Bimestre de 2016 Data / / Escola Aluno Questão 1 Sabemos que
Matemática. Elementar II Caderno de Atividades
Matemática Elementar II Caderno de Atividades Autor Leonardo Brodbeck Chaves 2009 2008 IESDE Brasil S.A. É proibida a reprodução, mesmo parcial, por qualquer processo, sem autorização por escrito dos autores
x A = + 10 m B = - 14 m -14 m +10 m
TEXTO DE REVISÃO 03 Introdução à Cinemática Caro aluno: Este é um texto introdutório, talvez a melhor forma de abordá-lo seja sugerir que ele seja lido individualmente e, depois verificar a compreensão
Versão 1 Este teste é constituído por 25 questões de escolha múltipla valendo cada uma 8 pontos.
1ª Ficha de Avaliação de Conhecimentos Turma: 11ºA Física e Química A - 11ºAno Professora Paula Melo Silva Data: 10 de outubro Ano Letivo: 2018/2019 90 min + 15 min Versão 1 Este teste é constituído por
Movimento Uniformemente Variado (M.U.V.)
Movimento Uniformemente Variado (M.U.V.) A principal característica do movimento uniformemente variado é a aceleração escalar constante. Quando um móvel qualquer se movimenta com aceleração escalar constante,
a) 180 b) c) d) e) 2.160
Estado do Rio de Janeiro Prefeitura Municipal de Macaé Secretaria Municipal de Educação Pré-Vestibular Social A UNIVERSIDADE MAIS PERTO DE VOCÊ. Disciplina: FÍSICA Professor: RONY 01. (Cesgranrio-RJ) Um
FUNÇÃO DE 2 GRAU. 1, 3 e) (1,3)
FUNÇÃO DE 2 GRAU 1-(ANGLO) O vértice da parábola y= 2x²- 4x + 5 é o ponto 1 11 1, 3 e) (1,3) a) (2,5) b) (, ) c) (-1,11) d) ( ) 2-(ANGLO) A função f(x) = x²- 4x + k tem o valor mínimo igual a 8. O valor
Unidade 7 Estudo de funções
Sugestões de atividades Unidade 7 Estudo de funções 9 MATEMÁTICA 1 Matemática 1. Dada a função y 5 f (x) 5 x 10, determine: a) f (0); b) x tal que f (x) 5 0.. Num escritório de forma retangular, a parte
Gabarito Razão e Proporção. Intensivão Enem - Matemática. Gabarito: Pizza broto inteira π π Pizza gigante inteira π π.
Gabarito: Resposta da questão 1: [B] Calculando as áreas de cada uma das pizzas, tem-se: Pizza broto inteira π15 5π Pizza gigante inteira π0 400π Utilizando a regra de três, pode-se escrever: 5π 7 400π
Formação Continuada para Professores de Matemática Fundação CECIERJ/SEEDUC RJ PLANO DE TRABALHO 2
- 1 - Formação Continuada para Professores de Matemática Fundação CECIERJ/SEEDUC RJ Colégio: Colégio Estadual Jornalista Tim Lopes Professora: Ana Cristina Farias Costa Matrícula: 00/0939102-0 Série: 1º
Matemática para Biomedicina
Matemática para Biomedicina Funções: lista de exercícios Prof. Luís Rodrigo de O. Gonçalves Copyright c 2019 Luís Rodrigo de O. Gonçalves Licenciado sob a licença Atribuição-NãoComercial 4.0 Internacional.
(a) Determine a velocidade do barco em qualquer instante.
NOME: UNIVERSIDADE FEDERAL DO RIO DE JANEIRO Instituto de Matemática PRIMEIRA PROVA UNIFICADA CÁLCULO II Politécnica, Engenharia Química - 10/10/2013. 1 a QUESTÃO : Um barco a vela de massa m = 1 parte
AULA 00 (demonstrativa)
AULA 00 (demonstrativa) SUMÁRIO PÁGINA 1. Apresentação 01 2. Edital e cronograma do curso 03 3. Resolução de questões 05 4. Questões apresentadas na aula 17 5. Gabarito 21 1. APRESENTAÇÃO Seja bem-vindo
2) Se f, então f(2) é igual a a) c) 1. x1 x2 f x1 f x2 FUNÇÕES DO 1 O GRAU. e) 2
FUNÇÕES DO 1 O GRAU 1) Considere a unção que a cada ϵ (0, 3] associa a área do triângulo assinalado, conforme a figura. A imagem desta função é 5) As escalas de temperatura Celsiuis (C) e Farenheit (F)
1ª Ficha de Avaliação de Conhecimentos Turma: 11ºA. Física e Química A - 11ºAno
1ª Ficha de Avaliação de Conhecimentos Turma: 11ºA Física e Química A - 11ºAno Professora Paula Melo Silva Data: 11 de outubro Ano Letivo: 2016/2017 135 min + 15 min 1. Um carro telecomandado moveu-se
Capítulo 1 Aula 1 Introdução à Cinemática
Capítulo 1 Aula 1 Introdução à Cinemática - Revisão de conceitos fundamentais - Velocidade média O que é Física? Física palavra de origem grega physis que significa natureza. descreve e compreende os acontecimentos
Conceitos Essenciais da Cinemática 1
Conceitos Essenciais da Cinemática 1 Física_9 EF Profa. Kelly Pascoalino Mecânica Cinemática: Estudo das características do movimento de um corpo sem se preocupar com o (s) agente (s) que o causou. Dinâmica:
v (a) v (b) v (c) v (d) v (e) 0 t 0 t 0 t 0 t 0 t
Lista - Aula 03A UFRJ Equipe UFRJ Olimpíada Brasileira de Física 1) Gráficos de velocidade (v) versus tempo (t) para cinco objetos são mostrados abaixo. Todos os eixos têm a mesma escala. Qual o objeto
