Estudo de Função Constante
|
|
|
- Renata Caetano Gorjão
- 9 Há anos
- Visualizações:
Transcrição
1 Estudo de Função Constante Este Objeto de Aprendizagem (OA) foi construído visando um estudo sobre Função Constante. Objetivos: Fazer a integração da Matemática com a Física, a partir da aplicação de gráficos no estudo de velocidade. Perceber que o gráfico da velocidade em função do tempo, com velocidade constante, é uma reta horizontal. Perceber que a velocidade não varia em função do tempo. Alunos do Ensino Médio Público Alvo:
2 Este Objeto de Aprendizagem (OA) envolve um conteto interdisciplinar entre a Matemática e a Física a ser eplorado. Neste conteto apresenta-se um conteúdo a ser abordado sobre Função Constante, destacando-se a relação entre duas grandezas. Podem ser representados graficamente e por uma epressão matemática. A seguir, apresentamos uma aplicação: Um carro passa por um semáforo, cujo sinal luminoso está na cor verde. Nos próimos 2 segundos, seu velocímetro indicará 6 km/h. (Considere o semáforo como um instante t = ) 2
3 Durante todo o percurso, à medida que o tempo passa a velocidade se mantém a 6 km/h km/h ( Segundos transcorridos) s...5s...s...5s... 2s Este OA envolve um conteto interdisciplinar entre a Matemática e a Física, a ser eplorado.você deve ter estudado na Física, conceitos sobre tipos de movimento. Na animação você deve ter observado que no intervalo de tempo decorrido, o carro desenvolveu um determinado tipo de movimento. Responda às questões de acordo com a animação. Está com dificuldades? Vejamos o conceito: Na ilustração, observamos que a posição do carro está variando com o decorrer do tempo. Isso é o que fez o carro estar em movimento! Dependendo do movimento podemos classificá-lo em: Movimento Uniformemente: quando o valor da velocidade permanece invariável (constante) com o decorrer do tempo, ou seja, a aceleração é nula. Movimento Uniforme Variado: possui aceleração constante e diferente de zero, em qualquer instante ou intervalo de tempo. 3
4 Com base no conceito apresentado responda: a) Associando aos conhecimentos da Física, descreva o movimento desenvolvido pelo carro no conteto apresentado: b) Nesse movimento, a velocidade do carro pode ser descrita por uma lei. Escreva essa lei (utilizar as grandezas v e t ) : Após respondidas essas questões é hora de formalizar esse conceito: Introdução Para entendermos o conceito de Função Constante, deveremos rever o conceito de Função Afim. Considere a situação a seguir: Uma transportadora realiza serviços apenas para cargas completas, cobrando uma quantia fia de R$ 95, e mais R$ 3, por quilômetro rodado. Se indicarmos por o número de quilômetros rodados, a lei que define o valor total a pagar é = Essa lei representa uma Função Afim. Chama-se Função Afim qualquer função f de IRR em IRR dada por uma lei da forma = a + b, em que a e b são números reais dados. 4
5 Há um caso particular da Função Afim em que o coeficiente angular é nulo, ou seja, a =. Trata-se da Função Constante. Assim, podemos definir a Função Constante como uma aplicação de IRR em IRR, em que qualquer elemento se associa sempre com o mesmo elemento b, isto é: f () = b Eemplos: a) f() = 5 3 b) f() = 3 c) f() = 5 O gráfico da Função Constante é uma reta paralela ao eio O passando pelo ponto (,b). b D =IRR Im = {b} D = IRR Im = {b} b Quando (b > ) Quando (b = ) D = IRR Im = {b} b Quando (b < ) 5
6 Vamos dar continuidade às atividades em relação à situação descrita. c) Complete a tabela desde o instante em que o carro passa pelo semáforo e represente graficamente a velocidade do carro em função do tempo durante os 5 primeiros segundos: t v V (km/h) v (t) = 6 t (segundos) d) Observando a tabela e o gráfico, foi possível perceber que a medida que o tempo passa a velocidade se mantém e) Na formalização do conceito, você percebeu que a Função Constante é um caso particular da Função Afim. Qual o coeficiente angular da situação apresentada? Este OA está dividido em etapas. Esta etapa buscou apresentar uma situação contetualizada na qual se pudesse eplorar a teoria que envolve o estudo da Função Constante através da lei da função, bem como, a relação entre pares ordenados e a representação gráfica da função. 6 Esperamos que a situação contetualizada apresentada tenha resultado em conhecimento dos conceitos propostos.
7 Atividades Contetualizadas Vejamos outra aplicação de Função Constante Pelo que tem sido veiculado na mídia, a poluição sonora esta chegando a níveis tão altos que as pessoas estão perdendo a sua capacidade auditiva. O senhor João estava assistindo um programa em sua televisão, quando de repente um problema foi detectado em seu aparelho: o volume da televisão aumentou, permanecendo assim por algum tempo. Sr. João, que é técnico em telecomunicações, tem um aparelho que mede a intensidade do som; Com este, ele mediu a intensidade do som durante 3 minutos e verificou que a mesma era de 8 decibéis. 7
8 Vamos representar graficamente a situação dada? ) Para isso, complete a tabela e esboce o gráfico abaio: = f (t) 2 f(t) ) Qual lei descreve essa situação? f (t) = 3) Qual domínio descrita neste conteto: D(f(t)) = 4) Qual alternativa representa o conjunto-imagem da situação descrita? (a) [,3] (b) [,8] (c) 8 (d) {8} 8
9 Atividades Algébricas ) Escreva a equação da reta que passa pelo ponto (,-4) e tem a = = 2) Dada a função f () = 3, determine: a) f (-) = b) f 3 4 = c) f (3) = 3) Observe o gráfico da função real representada a seguir: a) Complete a lei que define esta função = b) Assinale a alternativa que representa o domínio e o conjunto imagem dessa função, respectivamente: (i) {2} e {/ 2} (ii){ / } e {2} (iii) IRR e {2} (iv) {/ } e {/ =2} 9
10 Resolução das Atividades Respostas página 4 ) Uniforme 2) = 6 ou v(t) = 6 3) Resposta da página 6 t v v (km/h) v (t) = t (segundos) 4) Constante 5) ) Resposta da página 8 =f(t) 2 f(t) ) F(t) = 8 3) Df = [,3] 4) Alternativa d - {8} -4-6
11 Créditos Instituição: Instituto Federal Fluminense Campus Campos Centro NTEAD- Núcleo de Tecnologias Educacionais e Educação à Distância. Conteudistas: Arilise Moraes de Almeida Lopes; Carla Antunes Fontes; Carmem Lúcia Vieira Rodrigues Azevedo; Renata Nogueira Cardoso (Revisão). Design Gráfico: Harrison Sodré Arouca; Priscila Cardoso de Abreu (Revisão). Maio/2
Função Constante. Este Objeto de Aprendizagem (OA) apresenta atividades algébricas e contextualizadas. O professor poderá iniciar a atividade:
Função Constante Objetivos: Fazer a integração da Matemática com a Física, a partir da aplicação no estudo de velocidade. Perceber que o gráfico da velocidade em função do tempo, com velocidade constante,
Grandezas Proporcionais
Grandezas Proporcionais A Proporcionalidade é, provavelmente, a noção matemática mais difundida na cultura de todos os povos e seu uso universal data de milênios (LIMA, et al., 2006, p.92). O estudo de
Pré-requisitos: O usuário deverá ter conhecimento prévio de Função Afim e Função Quadrática.
Neste material você terá disponível: Uma situação que descreve várias sentenças matemáticas que compõem a Função Definida por Várias Sentenças. Atividades contextualizadas. Atividades extras. Objetivo:
A RELAÇÃO ENTRE PROGRESSÃO GEOMÉTRICA E FUNÇÃO EXPONENCIAL
A RELAÇÃO ENTRE PROGRESSÃO GEOMÉTRICA E FUNÇÃO EXPONENCIAL Objetivos: Oferecer um estudo interativo interdisciplinar, abordando alguns conceitos dos conteúdos matemáticos de Progressão Geométrica e Função
Engenharia Civil/Mecânica Cálculo 1 Profa Olga (1º sem de 2015)
Engenharia Civil/Mecânica Cálculo Profa Olga (º sem de 05) Conteúdo: Função do º grau (Função Afim) Definição Chama-se função polinomial do o grau, ou função afim, a qualquer função f: dada por uma lei
Escola de Civismo e Cidadania ATIVIDADE REFERENTE À FUNÇÕES: LISTA 05
COLÉGIO ESTADUAL DA POLÍCIA MILITAR DE GOIÁS HUGO DE CARVALHO RAMOS ANO LETIVO 2018 1. Considere o gráfico abaio e responda: 2º BIMESTRE ATIVIDADE COMPLEMENTAR Série Turma (s) Turno 1ª do Ensino Médio
Licenciatura em Matemática Fundamentos de Matemática Elementar 2 o /2015 Professora Adriana FUNÇÕES
Licenciatura em Matemática Fundamentos de Matemática Elementar o /05 Professora Adriana FUNÇÕES. Determine a e b de modo que os pares ordenados a seguir sejam iguais: a) (a, b + ) e (a + 5, b 7) b) (a,
Matemática I Tecnólogo em Construção de Edifícios e Tecnólogo em Refrigeração e Climatização
35 Funções A função é um modo especial de relacionar grandezas. Por eemplo, como escrevemos o deslocamento de um móvel em movimento retilíneo variado dependendo do tempo? E se o móvel está em movimento
TÓPICOS DE MATEMÁTICA
INSTITUTO SUPERIOR DE CONTABILIDADE E ADMINISTRAÇÃO DE COIMBRA SOLICITADORIA E ADMINISTRAÇÃO TÓPICOS DE MATEMÁTICA FUNÇÕES 2ª Parte Clara Viseu, Maria de Lurdes Vieira Baseado em: Harshbarger, Reynolds.
REVISÃO. 1) Um carro descreve um movimento uniforme (M.U.). Com os valores de acordo com a tabela abaixo, determine: t (s) S (m)
REVISÃO 1) Um carro descreve um movimento uniforme (M.U.). Com os valores de acordo com a tabela abaixo, determine: t (s) 0 1 2 3 S (m) 80 70 60 50 a) Um esboço do gráfico Sxt b) O valor da velocidade.
2º semestre de Engenharia Civil/Mecânica Cálculo 1
º semestre de Engenharia Civil/Mecânica Cálculo Conteúdo: Função do º grau (Função Afim) Introdução No estudo científico de qualquer fato sempre procuramos identificar grandezas mensuráveis ligadas a ele
FUNÇÃO. D: domínio da função f D R R: contradomínio da função f f y = f(x): imagem de x. x. y. Está contido REPRESENTAÇÃO GRÁFICA DE UMA FUNÇÃO
FUNÇÃO Introdução ao Cálculo Diferencial I /Mário DEFINIÇÃO Seja D um subconjunto dos reais, não vazio. Definir em D uma função f é eplicitar uma regra que a CADA elemento D associa-se a UM ÚNICO R. Notação
Função Quadrática. Objetivos. Metodologia. Público alvo
Função Quadrática Objetivos Os objetivos deste Objeto de Aprendizagem (OA) são: -Determinar a Concavidade da Parábola; -Determinar as Coordenadas do Vértice; -Determinar os zeros da Função Quadrática;
EXERCÍCIOS COMPLEMENTARES / GRÁFICOS (MRU e MRUV) 1. Observe o gráfico abaixo. Associe os pontos 1, 2 e 3 com as figuras A, B e C.
Aluno (a): N Série: 1º A e B Professor : Vinicius Jacques Data: /06/2009 Disciplina: FÍSICA EXERCÍCIOS COMPLEMENTARES / GRÁFICOS (MRU e MRUV) 1. Observe o gráfico abaixo. Associe os pontos 1, 2 e 3 com
Matemática Básica Função polinomial do primeiro grau
Matemática Básica Função polinomial do primeiro grau 05 1. Função polinomial do primeiro grau (a) Função constante Toda função f :R R definida como f ()=c, com c R é denominada função constante. Por eemplo:
Interpretação de gráficos da Cinemática. Todas as questões deste teste referem-se a movimentos retilíneos.
Interpretação de gráficos da Cinemática Este teste é constituído por 21 questões de escolha múltipla com cinco alternativas. Dentre as alternativas escolha apenas uma, a que melhor responde à questão,
Professora Florence. t(s) 0,0 1,0 2,0 3,0 4,0 5,0 v(m/s) 0,0 1,8 3,6 5,4 7,2 9,0
1. Um ponto material desloca-se sobre uma reta e sua velocidade em função do tempo é dada pelo gráfico. Pedem-se: a) a equação horária da velocidade (função de v = f(t)) v(m/s) b) o deslocamento do ponto
Suponhamos que tenha sido realizado um. estudo que avalia dois novos veículos do mercado: o Copa e o Duna. As pesquisas levantaram os seguintes dados:
A U A UL LA Acelera Brasil! Suponhamos que tenha sido realizado um estudo que avalia dois novos veículos do mercado: o Copa e o Duna. As pesquisas levantaram os seguintes dados: VEÍCULO Velocidade máxima
Lista de exercícios: Funções do 1º Grau
Lista de eercícios: Funções do º Grau. Marque quais são as funções do º grau: (R= a, b, d, f, h, j, k) a. 7 e. i. 5 b. 4 f. j. c. 6 g. k. 5 6 d. 4 5 h.. Calcule o zero de cada uma das seguintes funções:
(Nova) Matemática, Licenciatura / Engenharia de Produção
Portaria MEC 7, de 5.. - D.O.U.... (Nova) Matemática, Licenciatura / Engenharia de Produção Módulo de Pesquisa: Práticas de ensino em matemática, contextos e metodologias Disciplina: Fundamentos de Matemática
Engenharia Mecânica Física
Física Não devemos admitir mais causas para as coisas naturais do que as que são verdadeiras e suficientes para explicar suas aparências. Isaac Newton (1642-1727) Física Geral e Experimental I Profº Eder
H1 - Expressar a proporcionalidade direta ou inversa, como função. Q1 - A tabela a seguir informa a vazão de uma torneira aberta em relação ao tempo:
H1 - Expressar a proporcionalidade direta ou inversa, como função Q1 - A tabela a seguir informa a vazão de uma torneira aberta em relação ao tempo: A expressão que representa a vazão em função do tempo
2. Escreva em cada caso o intervalo real representado nas retas:
ESCOLA ESTADUAL DR. JOSÉ MARQUES DE OLIVEIRA - ANO 018 4º BIMESTRE TRABALHO DE RECUPERAÇÃO Nome: Nº Turma Data Nota Disciplina: Matemática Prof. Tallyne Siqueira Valor 1. Represente na reta real os intervalos:
Movimento Unidimensional
Movimento Unidimensional Professor: Carlos Alberto Disciplina: Física Geral I Objetivos de aprendizagem Ao estudar este capítulo você aprenderá: Como descrever o movimento unidimensional em termos da velocidade
MOVIMENTO RETILÍNEO UNIFORME (MRU)
MOVIMENTO RETILÍNEO UNIFORME (MRU) INTRODUÇÃO A partir de agora passaremos a discutir tipos de movimentos e começaremos pelo Movimento Retilíneo Uniforme. Este tipo de movimento de define por variações
Módulo e Função Modular
INSTITUTO DE APLICAÇÃO FERNANDO RODRIGUES DA SILVEIRA-UERJ DISCIPLINA: MATEMÁTICA (FUNÇÕES) PROF S : QUARANTA / ILYDIO / 1 a SÉRIE ENSINO MÉDIO Módulo e Função Modular Função definida por mais de uma sentença
2 LISTA DE MATEMÁTICA
LISTA DE MATEMÁTICA SÉRIE: º ANO TURMA: º BIMESTRE DATA: / / 011 PROFESSOR: ALUNO(A): Nº: NOTA: POLINÔMIOS I 01. (ITA-1995) A divisão de um polinômio P() por - resulta no quociente 6 + 5 + 3 e resto -7.
F U N Ç Ã O. Obs.: Noção prática de uma função é quando o valor de uma quantidade depende do valor de outra.
Definição: F U N Ç Ã O Uma função f definida em um conjunto de números reais A, é uma regra ou lei (equação ou algoritmo) de correspondência, que atribui um único número real a cada número do conjunto
Retas e Funções Lineares
Capítulo 1 Retas e Funções Lineares 1.1 A equação de uma reta Intuitivamente é fácil perceber que dois pontos distintos denem uma única reta. Na geometria analítica podemos determinar a equação de uma
1 - Movimentos na Terra. Tipos de movimentos
1 - Movimentos na Terra Tipos de movimentos Lição nº14 18-10-2018 Sumário: Tipos de movimentos. Movimento uniforme e movimento variado. Os movimentos podem ser classificados com base na variação da velocidade
MÓDULO 3 aula 21 (velocidade escalar média)
MÓDULO 3 aula 21 (velocidade escalar média) ACELERAÇÃO ESCALAR MÉDIA Nos movimentos em que a velocidade escalar é variável, pode-se definir a taxa de variação dessa velocidade como a razão entre a variação
Funções. Conceitos Básicos. Unidade C. Matemática I IFRS CAMPUS RIO GRANDE - FURG
34 Unidade C Funções Conceitos Básicos Matemática I IFRS CAMPUS RIO GRANDE - FURG 35 Funções A função é um modo especial de relacionar grandezas. Por eemplo, como escrevemos o deslocamento de um móvel
MATEMÁTICA Módulo em IR 2. Professor Marcelo Gonzalez Badin
MATEMÁTICA Módulo em IR Professor Marcelo Gonzalez Badin Módulo de um número real Chama-se módulo (ou valor absoluto) de um número real a distância da imagem desse número, na reta orientada, até a origem
MOVIMENTO RETILÍNEO E UNIFORME
MOVIMENTO RETILÍNEO E UNIFORME Definição: O movimento uniforme é quando a velocidade escalar é constante, o que significa afirmar que o móvel percorre sempre a mesma distância a cada unidade de tempo.
APÊNDICE B. Interpretação de Gráficos da Cinemática (Teste Final)
APÊNDICE B Interpretação de Gráficos da Cinemática (Teste Final) Este teste é constituído por 25 questões de escolha simples com cinco alternativas. Dentre as alternativas escolha apenas uma, a que melhor
Movimento Uniformemente Variado (M.U.V.)
Movimento Uniformemente Variado (M.U.V.) A principal característica do movimento uniformemente variado é a aceleração escalar constante. Quando um móvel qualquer se movimenta com aceleração escalar constante,
Notação Científica. n é um expoente inteiro; N é tal que:
Física 1 Ano Notação Científica n é um expoente inteiro; N é tal que: Exemplos: Notação Científica Ordem de Grandeza Qual a ordem de grandeza? Distância da Terra ao Sol: Massa de um elétron: Cinemática
O objeto fundamental deste curso são as funções de uma variável real. As funções surgem quando uma quantidade depende de outra.
Universidade Federal Fluminense Departamento de Análise GAN0045 Matemática para Economia Professora Ana Maria Luz 00. Unidade Revisão de função de uma variável real O objeto fundamental deste curso são
Recuperação de Física - Giovanni
Nome: nº Ano: LISTA DE EXERCÍCIOS DE FÍSICA Recuperação de Física - Giovanni 1 - Qual a diferença entre o movimento uniforme (MU) e o movimento uniformemente variado (MUV)? 2 - A equação que representa
Portal OBMEP. Material Teórico - Módulo Cônicas. Terceiro Ano do Ensino Médio
Material Teórico - Módulo Cônicas Parábolas Terceiro Ano do Ensino Médio Autor: Prof. Fabrício Siqueira Benevides Revisor: Prof. Antonio Caminha M. Neto 1 Introdução ω Nesta aula vamos revisar o conceito
AVALIAÇÃO DA APRENDIZAGEM EM PROCESSO. Matemática. 1ª Série do Ensino Médio Turma 2º bimestre de 2015 Data / / Escola Aluno
AVALIAÇÃO DA APRENDIZAGEM EM PROCESSO Matemática 1ª Série do Ensino Médio Turma º bimestre de 015 Data / / Escola Aluno Questão 1 Na embalagem de uma marca de café, consta a informação de que, para 8 cafezinhos
Professora FLORENCE. A aceleração pode ser calculada pelo gráfico através da tangente do ângulo α.
1. Um ponto material desloca-se sobre uma reta e sua velocidade em função do tempo é dada pelo gráfico. Pedem-se: a) a equação horária da velocidade (função de v = f(t)) v(m/s) b) o deslocamento do ponto
Atividades de Funções do Primeiro Grau
Atividades de Funções do Primeiro Grau 1) Numa loja, o salário fio mensal de um vendedor é 500 reais. Além disso, ele recebe de comissão 50 reais por produto vendido. a) Escreva uma equação que epresse
Para ilustrar o conceito de limite, vamos supor que estejamos interessados em saber o que acontece à
Limite I) Noção intuitiva de Limite Os limites aparecem em um grande número de situações da vida real: - O zero absoluto, por eemplo, a temperatura T C na qual toda a agitação molecular cessa, é a temperatura
APOSTILA FUNÇÃO DO 1º GRAU - PROF. CARLINHOS FUNÇÃO DO 1º GRAU
FUNÇÃO DO 1º GRAU DEFINIÇÃO Chama-se função do 1. grau toda função definida de por f() = a b com a, b e a 0. Eemplos: f() = 3, onde a = e b = 3 (função afim) f() = 6, onde a = 6 e b = 0 (função linear)
Notas de Aulas 4 - Funções Elementares - Parte I Prof Carlos A S Soares
Notas de Aulas 4 - Funções Elementares - Parte I Prof Carlos A S Soares Neste momento do curso de Elementos de Cálculo, estamos interessados em rever algumas funções já estudadas no Ensino Médio de forma
Matemática. Atividades. complementares. 9-º ano. Este material é um complemento da obra Matemática 9. uso escolar. Venda proibida.
9 ENSINO 9-º ano Matemática FUNDAMENTAL Atividades complementares Este material é um complemento da obra Matemática 9 Para Viver Juntos. Reprodução permitida somente para uso escolar. Venda proibida. Samuel
Fís. Semana. Leonardo Gomes (Arthur Vieira)
Semana 2 Leonardo Gomes (Arthur Vieira) Este conteúdo pertence ao Descomplica. Está vedada a cópia ou a reprodução não autorizada previamente e por escrito. Todos os direitos reservados. CRONOGRAMA 06/02
TÓPICO. Fundamentos da Matemática II DERIVADAS PARCIAIS. Licenciatura em Ciências USP/ Univesp. Gil da Costa Marques
7 DERIVADAS PARCIAIS TÓPICO Gil da Costa Marques Fundamentos da Matemática II 7.1 Introdução 7. Taas de Variação: Funções de uma Variável 7.3 Taas de variação: Funções de duas Variáveis 7.4 Taas de Variação:
Física I. Aula 02: Movimento Retilíneo. Tópico 02: Velocidade; Movimento Retilíneo Uniforme
Tópico 02: Velocidade; Movimento Retilíneo Uniforme Aula 02: Movimento Retilíneo Observe o movimento da tartaruga acima. Note que a cada segundo, ela anda 10cm e mantém sempre esse movimento. A velocidade
Atividades de Funções do Primeiro Grau
Atividades de Funções do Primeiro Grau 1) Numa loja, o salário fio mensal de um vendedor é 500 reais. Além disso, ele recebe de comissão 50 reais por produto vendido. a) Escreva uma equação que epresse
Função Afim Fabio Licht
Função Afim Fabio Licht Definição da Função Afim ou Linear Gráfico da Função Afim Podemos representar os pares ordenados no plano cartesiano e fazer o gráfico da função. y-> eixo das ordenadas B P (a,b)
Velocidade Média Indica o quão rápido um objeto se desloca em um intervalo de tempo médio e é dada pela seguinte razão:
CINEMÁTICA Velocidade Prof. Patricia Caldana A velocidade de um corpo é dada pela relação entre o deslocamento de um corpo em determinado tempo. Pode ser considerada a grandeza que mede o quão rápido um
Todos os exercícios sugeridos nesta apostila se referem ao volume 1. MATEMÁTICA I 1 FUNÇÃO DO 1º GRAU
FUNÇÃO IDENTIDADE... FUNÇÃO LINEAR... FUNÇÃO AFIM... GRÁFICO DA FUNÇÃO DO º GRAU... IMAGEM... COEFICIENTES DA FUNÇÃO AFIM... ZERO DA FUNÇÃO AFIM... 6 FUNÇÕES CRESCENTES OU DECRESCENTES... 7 SINAL DE UMA
Todos os exercícios sugeridos nesta apostila se referem ao volume 1. MATEMÁTICA I 1 FUNÇÃO DO 1º GRAU
FUNÇÃO IDENTIDADE... FUNÇÃO LINEAR... FUNÇÃO AFIM... 5 GRÁFICO DA FUNÇÃO DO º GRAU... 5 IMAGEM... COEFICIENTES DA FUNÇÃO AFIM... ZERO DA FUNÇÃO AFIM... 7 FUNÇÕES CRESCENTES OU DECRESCENTES... 7 SINAL DE
v (a) v (b) v (c) v (d) v (e) 0 t 0 t 0 t 0 t 0 t
Lista - Aula 03A UFRJ Equipe UFRJ Olimpíada Brasileira de Física 1) Gráficos de velocidade (v) versus tempo (t) para cinco objetos são mostrados abaixo. Todos os eixos têm a mesma escala. Qual o objeto
CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA Função do 1 Grau. Rafael Carvalho - Engenharia Civil
CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA 06. Função do Grau Rafael Carvalho - Engenharia Civil Equações do primeiro grau Equação é toda sentença matemática aberta que exprime uma relação de igualdade.
MATEMÁTICA A - 12o Ano Funções - Assintotas
MATEMÁTICA A - 12o Ano Funções - Assintotas Eercícios de eames e testes intermédios 1. Seja f a função, de domínio R + 0, definida por f() = 2 e 1 Estude a função f quanto à eistência de assintota horizontal,
Resoluções dos exercícios propostos
1 P.61 αm v 360 km/h 5 s αm ou α m v α m 14,4 km/h s 360 0 3,6 α m 4 m/s 5 P.6 Em cada segundo a velocidade do corpo aumenta de 1,6 m/s. Portanto: t 0 0 v 0 0 t 1 1 s v 1 1,6 m/s t s v (1,6 1,6) m/s 3,
Conteúdo: Cinemática Resumo para a Prova. Turma: 9º ano
Conteúdo: Cinemática Resumo para a Prova. Turma: 9º ano A cinemática é a parte da Mecânica que descreve o movimento, determinando a posição, a velocidade e a aceleração de um corpo em cada instante. Os
COLÉGIOMARQUES RODRIGUES- SIMULADO
COLÉGIOMARQUES RODRIGUES- SIMULADO PROF(A) MARILEIDE DISCIPLINA MATEMÁTICA SIMULADO: P Estrada da Água Branca, Realengo RJ Tel: () 46-70 wwwcolegiomrcombr ALUNO TURMA 90 Questão atraves do diagrama abaixo,
MRUV Movimento Retilíneo Uniformemente Variado
MRUV Movimento Retilíneo Uniformemente Variado MRUV é o movimento de qualquer móvel com as seguintes características: Aceleração constante e diferente de zero. O módulo da velocidade varia de modo uniforme
A função y = ax + b. Na Aula 9, tivemos um primeiro contato
A UA UL LA A função = a + b Introdução Na Aula, tivemos um primeiro contato com a equação = a + b e aprendemos que seu gráfico é uma reta. Vamos então recordar algumas coisas. l Se a = 0, a nossa equação
Notação Científica. n é um expoente inteiro; N é tal que:
Física 1 Ano Notação Científica n é um expoente inteiro; N é tal que: Exemplos: Notação Científica Ordem de Grandeza Qual a ordem de grandeza? Distância da Terra ao Sol: Massa de um elétron: Cinemática
A Segunda Derivada: Análise da Variação de Uma Função
A Segunda Derivada: Análise da Variação de Uma Função Suponhamos que a função y = f() possua derivada em um segmento [a, b] do eio-. Os valores da derivada f () também dependem de, ou seja, a derivada
FQA Ficha 4 - Interpretação e representação de gráficos
ESCOLA SECUNDÁRIA DE CASQUILHOS FQA Ficha 4 - Interpretação e representação de gráficos 11.º Ano Turma A e B 6 outubro 2014 NOME Nº Turma 1. Os gráficos posição-tempo são uma forma eficaz de descrever
PROGRAMA DE NIVELAMENTO ITEC/PROEX - UFPA EQUIPE FÍSICA ELEMENTAR DISCIPLINA: FÍSICA ELEMENTAR CONTEÚDO: CÁLCULO APLICADO A CINEMÁTICA
PROGRAMA DE NIVELAMENTO ITEC/PROEX - UFPA EQUIPE FÍSICA ELEMENTAR DISCIPLINA: FÍSICA ELEMENTAR CONTEÚDO: CÁLCULO APLICADO A CINEMÁTICA TÓPICOS A SEREM ABORDADOS O que é cinemática? Posição e Deslocamento
Primeira Verificação de Aprendizagem (1 a V.A.) - 28/05/2014
UNIVERSIDADE FEDERAL DA PARAÍBA Centro de Ciências Exatas e da Natureza Departamento de Física Disciplina: Física Geral I Prof.: Carlos Alberto Aluno(a): Matrícula: Questão 1. Responda: Primeira Verificação
MATEMÁTICA - 3o ciclo. Propostas de resolução
MATEMÁTICA - 3o ciclo Função afim e equação da reta (8 o ano) Propostas de resolução Exercícios de provas nacionais e testes intermédios 1. Observando a representação das retas e as coordenadas dos pontos
MRU Movimento Retilíneo Uniforme
MRU Movimento Retilíneo Uniforme Podemos dizer que qualquer corpo da natureza descreve um movimento retilíneo e uniforme quando este móvel anda em linha reta e percorre distâncias iguais em tempos iguais.
Campos dos Goytacazes/RJ Maio 2015
Instituto Federal Fluminense Campus Campos Centro Programa Tecnologia Comunicação Educação (PTCE) Apostila organizada por: Vanderlane Andrade Florindo Silvia Cristina Freitas Batista Carmem Lúcia Vieira
MATEMÁTICA - 3o ciclo. Propostas de resolução
MATEMÁTICA - 3o ciclo Função afim e equação da reta (8 o ano) Propostas de resolução Exercícios de provas nacionais e testes intermédios 1. Como retas paralelas têm o mesmo declive, o declive da reta s,
MOVIMENTO UNIFORMEMENTE VARIADO
Sobre ombros de gigantes EQUIPE DE FÍSICA-1º ANO/CMB Profs. Adameck, Eliete, SO Antônio Marcos & Luciano MOVIMENTO UNIFORMEMENTE VARIADO 1) (PUC-MG) Um objeto, movendo-se em linha reta, tem, no instante
ESCOLA ESTADUAL DR JOSÉ MARQUES DE OLIVEIRA PLANO INDIVIDUAL DE ESTUDO PARA ATENDIMENTO DA PROGRESSÃO PARCIAL ESTUDOS INDEPENDENTES- 1º
ESCOLA ESTADUAL DR JOSÉ MARQUES DE OLIVEIRA PLANO INDIVIDUAL DE ESTUDO PARA ATENDIMENTO DA PROGRESSÃO PARCIAL ESTUDOS INDEPENDENTES- 1º e º SEMESTRE RESOLUÇÃO SEE Nº.197, DE 6 DE OUTUBRO DE 01 ANO 01 PROFESSOR
1º) Esboce o gráfico das funções, calcule e marque os interceptos: a) f(x) = x b) f(x) = - 3x + 2
1º) Esboce o gráfico das funções, calcule e marque os interceptos: a) f() = b) f() = - 3 + 2 (0,0) (0,2) no eio (,0) no eio c) f() = + 3 d) f() = 2-3 (0,3) no (0,-3) no (-3,0) no (1,5;0) no 2º) Determine
MOVIMENTO UNIFORMEMENTE VARIADO
MOVIMENTO UNIFORMEMENTE VARIADO É um movimento em que a velocidade varia uniformemente no decorrer do tempo. Isto é, o móvel apresenta iguais variações de velocidade em intervalos de tempo iguais. No MUV
1- O gráfico a seguir mostra a posição de um móvel ao longo de sua trajetória em relação a um certo referencial, no decorrer do tempo.
ESCOLA DE ENSINO FUND. E MÉDIO TENENTE RÊGO BARROS DIRETORA: CESAR ALVES DE ALMEIDA COSTA CEL. INT. R1 PROFESSOR: ALUNO(a): Nº SÉRIE: o Ano TURMA: A_ DATA: / /19 PARTE-I 1- O gráfico a seguir mostra a
Introdução à Cinemática
Mecânica: Cinemática Introdução à Cinemática Conceitos Iniciais Prof. Murillo Nascente I- CONCEITOS BÁSICOS DE CINEMÁTICA 1. Cinemática: É a parte da mecânica que estuda os movimentos dos corpos ou partículas
LISTA EXTRA 2ª SÉRIE
1) Um objeto de 20 kg desloca-se numa trajetória plana retilínea de acordo com a equação: S = 10 + 3 t + t 2, onde s é medido em metros e t em segundos. a) Qual a expressão da velocidade do objeto no instante
Velocidade (Instantânea)
FAP151 - Fundamentos de Mecânica. Terceira Lista de exercícios. Março de 7. Velocidade (Instantânea) Entregar as soluções dos exercícios 7 e 13, apresentando todas as etapas necessárias conseguir resolvê-los;
Caderno 2. Concurso Público Conteúdo. - Coletânea de Exercícios Gerais
Concurso Público 2016 Caderno 2 Conteúdo - Funções de Primeiro e Segundo Grau - Noções de Probabilidade e Estatística Descritiva - Matemática Financeira - Aplicações e Operações com Inequações - Sequências
Fís. Semana. Leonardo Gomes (Arthur Vieira)
Semana 2 Leonardo Gomes (Arthur Vieira) Este conteúdo pertence ao Descomplica. Está vedada a cópia ou a reprodução não autorizada previamente e por escrito. Todos os direitos reservados. CRONOGRAMA 06/02
Funções EXERCÍCIOS ( ) ( )
Funções Quando relacionamos grandezas variáveis, onde variando uma interfere no valor de outra, estamos trabalhando com conceito de função. Por eemplo, um taista abastece seu carro no posto de combustível
CIÊNCIAS 9 ANO PROF.ª GISELLE PALMEIRA PROF.ª MÁRCIA MACIEL ENSINO FUNDAMENTAL
CIÊNCIAS 9 ANO PROF.ª MÁRCIA MACIEL ENSINO FUNDAMENTAL PROF.ª GISELLE PALMEIRA REVISÃO Unidade IV Ser humano e saúde 2 REVISÃO Aula 24.1 Revisão e Avaliação 3 REVISÃO 1 A Ciência do movimento Vamos observar
Ficha de Avaliação Sumativa 1
Ficha de Avaliação Sumativa 1 DISCIPLINA: Física e Química 9 ºAno de escolaridade 2018/2019 Data: Nome: Turma: N.º Classificação: (%) A Docente: E. E: As respostas às questões deste enunciado devem ser
Escola Secundária de Casquilhos FQA11 - APSA1 - Unidade 1- Correção
Escola Secundária de Casquilhos FQA11 - APSA1 - Unidade 1- Correção / GRUPO I (Exame 2013-2ª Fase) 1. (B) 2. 3. 3.1. Para que a intensidade média da radiação solar seja 1,3 x 10 3 Wm -2 é necessário que
EXAME ENSINO PROFISSIONAL
AGRUPAMENTO DE ESCOLAS DE OLIVEIRA DE FRADES EXAME ENSINO PROFISSIONAL Disciplina: Física e Química Módulo: F1 Tipo de Prova: Escrita Duração: 90 minutos Ano letivo: 2012/2013 Conteúdos Objetivos Estrutura
Lista 3 de Mecânica Clássica Movimento Retilíneo Uniformemente Variado - Queda Livre
Lista 3 de Mecânica Clássica Movimento Retilíneo Uniformemente Variado - Queda Livre Prof. Ismael Rodrigues Silva ismael [email protected] As questões com uma bolinha são elementares e requerem uso de
Mecânica: Cinemática
UNIVERSIDADE FEDERAL DE ALAGOAS CENTRO DE TECNOLOGIA PAESPE : Cinemática Prof. Carlos Ruberto Fragoso Jr. I- CONCEITOS BÁSICOS DE CINEMÁTICA 1. Cinemática: É a parte da mecânica que estuda os movimentos
FUNÇÕES QUADRÁTICAS. Mottola. 1) A lei da função do gráfico é 3/2 3
FUNÇÕES QUADRÁTICAS 1) A lei da função do gráfico é y 3/ 3 9 (a) y = + 3-9 (b) y = - + 3-9 (c) y = - 3-9 (d) y = - - 3-9 (e) y = + 3 + 9 ) O vértice da parábola y = + b + 6 está no ponto (, k). O valor
Bacharelado em Ciências da Computação Profª. Adriana FUNÇÕES
número de bactérias Bacharelado em Ciências da Computação Profª. Adriana FUNÇÕES. Um biólogo, ao estudar uma cultura bacteriológica, contou o número de bactérias num determinado instante ao qual chamou
Cálculo Diferencial e Integral I
Faculdade de Engenharias, Arquitetura e Urbanismo Universidade do Vale do Paraíba Cálculo Diferencial e Integral I Prof. Rodrigo Sávio Pessoa São José dos Campos 0 Sumário Tópico Tópico Tópico Tópico Tópico
; ; c) Qual a quantia deve ser vendida para dar uma receita igual a R$ 450,00.
PRIMEIRA LISTA Universidade Federal de Viçosa DEPARTAMENTO DE MATEMÁTICA MAT 40 - Cálculo I 0/ I FUNÇÕES E LIMITES. Se 4 3 calcule f ( 4), f (8), f (3).. Dada a função, qual é o valor de f ( ) + f ( )
3. FUNÇÃO. NOÇÕES FUNDAMENTAIS
7 3. FUNÇÃO. NOÇÕES FUNDAMENTAIS 3.1. INTRODUÇÃO Observamos, no dia a dia, que muitos objetos ou grandezas estão relacionados. Por eemplo, trabalhando com números reais estamos sempre comparando uns com
Volume de um gás em um pistão
Universidade de Brasília Departamento de Matemática Cálculo Volume de um gás em um pistão Suponha que um gás é mantido a uma temperatura constante em um pistão. À medida que o pistão é comprimido, o volume
