Lista de Exercícios Glossário Básico
|
|
|
- Stéphanie Sousa Ferretti
- 9 Há anos
- Visualizações:
Transcrição
1 Nota: Os exercícios desta aula são referentes ao seguinte vídeo Matemática Zero Aula 8 - Notação Matemática e Glossário Básico - (parte 2 de 2) Endereço: Gabarito e Resolução nas últimas páginas. É bastante complicado numa única aula ou mesmo numa única lista de exercícios, apresentar todas as representações que você necessitará conhecer ao longo do curso. É um processo gradual. Se o seu aproveitamento nesta aula não for satisfatório, não desanime. Vários outros conceitos e notações serão melhor fixados ao longo do curso. Nota: Pular as aulas do curso, vê-las fora da ordem ou ir direto para as atividades sem ver os vídeos de teoria apenas irá prejudicar seu aprendizado. Não faça isso, você só tem a perder, estude com responsabilidade. Só avance para a aula seguinte quando dominar a anterior! RESPONDA OS EXERCÍCIOS ABAIXO SEM CONSULTAR!!! E1: Escreva, resumidamente, o que cada item significa. a) b) c) d) e) f) g) h) i) j) E2: Sabemos que a multiplicação pode ser representada pelo sinal de vezes ( ) pelo ponto mediano ( ) ou até mesmo a ausência de sinal, como em xy. Justifique o motivo pelo qual, no Ensino Médio, evitamos a representação ( ) para a multiplicação e em que casos é vantajosa a omissão do sinal. E3: Por qual motivo não podemos confundir o ponto mediano ( ) com o ponto final? E4: A divisão pode ser representada pelo símbolo ou mesmo por dois pontos ( : ) além da representação em fração. Justifique o fato de evitarmos as duas primeiras representações. Página 1 de 7
2 E5: Qual a utilidade dos parênteses em expressões simples? Justifique. E6: Escreva as letras gregas minúsculas alfa, beta, gama e delta. E7: Diferencie de. E8: O que significa o símbolo na equação? E9: Um professor deu ao aluno a seguinte questão: Resolva. Considere N. Ao resolvê-la, ele obteve o resultado e a colocou como resposta final da questão, errando-a. Explique qual foi o erro cometido pelo aluno. E10: Em relação à representação V = {x N/4 x< 11 x 7}: a) Explique sucintamente o que ela quer dizer. b) Represente todos os elementos nela citados. E11: Em!"#, o que representa o símbolo e qual a sua função? E12: Represente os símbolos: Existe, Não Existe, Qualquer que Seja e Portanto. E13: Escreva utilizando notação matemática: O número 2,99 é aproximadamente igual a 3. E14: Represente, através de símbolos matemáticos, os conjuntos: Reais, Naturais e Racionais. Represente também os Reais não negativos. Página 2 de 7
3 E15: Calcule o seguinte Somatório: 6 i= 3 2i Página 3 de 7
4 Gabarito e Resolução Nota: Novamente enfatizamos: não se apavore caso o seu desempenho nesta aula não tenha sido satisfatório. Ela é realmente complexa. Recomendamos que você reveja a aula para aprofundar um pouco mais seu conhecimento acerca das notações. No entanto, se o seu desempenho (SEM CONSULTAR a aula ou livros) foi acima de 70%, parabéns! De qualquer forma, você notará que este tipo de aprendizado será ampliado ao longo do curso. E1: a) a é igual a b b) a é maior que b c) a é maior ou igual a b d) a é menor que b e) a é menor ou igual a b f) a é diferente de b g) a é maior que b, que é maior que c h) c é menor que b, que é menor que a i) x ou y j) x e y E2: No Ensino Fundamental (nas séries iniciais) os problemas aritméticos são mais frequentes e a álgebra é bem simples. Assim sendo, o operador ( ) é mais simples de ser escrito e visto e não causa grandes problemas. No Ensino Fundamental II ou Médio, surge o x (xis) como incógnita e variável em diversas situações e o uso do operador (vezes) causaria confusão. Assim sendo, passa a ser preferível a utilização do ponto mediano ( ) para representar produtos, como em 2 3. Nos casos impossibilitados de haver confusão, podemos omitir o sinal de multiplicação (por exemplo, xy representa x vezes y). Note que o mesmo não pode ser feito com produtos numéricos como 2 3 (se escrevêssemos 23 isso representaria o número vinte e três e não 2 vezes 3). Página 4 de 7
5 E3: Simples: pelo fato de representarem coisas diferentes. O ponto no Brasil é utilizado para separação de milhares, como em (três mil e duzentos) e, incorretamente, como separador de casas decimais como 3.2 (essa notação é incorreta no Brasil, devemos utilizar vírgula, ou seja, a forma correta do caso apresentado é 3,2). Nos EUA e em diversos produtos de tecnologia americana (como a maioria das calculadoras de bolso) os separadores de casas decimais são pontos, daí a confusão. Se quisermos representar uma multiplicação com um ponto, este deverá ser o ponto mediano (como em 2 3) Assim, 2 3 representa dois vezes 3 cujo resultado é 6, enquanto 2,3 representa o número 2 seguido de uma casa decimal, o 3. E4: Imagine a seguinte representação: , ou mesmo Podemos interpretar de duas formas: a) b) Como você deve imaginar, isso é péssimo, pois quando apresentamos uma expressão matemática, queremos que ela seja interpretada de uma única forma, sem possibilidade de dupla interpretação. É como na frase Ele a matou em seu quarto. Ué, ele a matou no quarto DELE ou no quarto DELA? Ou no MEU? Para evitar conflitos como esse, frações são muito melhores. Poderíamos escrever:,- 4 (equivalente à solução apresentada no item a),- (equivalente à solução apresentada no item b) Página 5 de 7
6 E5: Ao contrário do caso mostrado em E4, a expressão! ". possui uma única interpretação: devemos fazer primeiro a multiplicação e depois a soma ou subtração. Fica então = 17. No entanto, há casos em que a adição ou subtração necessitam ser feitos antes da multiplicação. Para garantirmos isso (tomando o exemplo anterior) escrevemos /! "0.. Pronto! Como os parênteses devem ser resolvidos primeiro (quando possível) podemos escrever A própria expressão mostrada no exemplo 4 perderia a dupla interpretação com o uso de parênteses. Poderíamos escrever /3 0 para garantir a mesma resposta do item a, ou ainda 3 / 0 para garantir a mesma resposta do item b do exercício anterior. Assim, parênteses evitam as duplas interpretações e definem a ordem das operações. E6: As letras são 4 /560, 8 /9:0, ; /<= 0 9 >/?95: 0. Nota: não confunda o delta minúsculo (>) com o maiúsculo (A) (esse último mais conhecido devido às variações na Física e ao próprio símbolo bastante utilizado na fórmula de Bhaskara). E7: Em B temos um índice 2, já em B, temos um expoente 2. Índices são úteis na representação de termos de alguma forma relacionados (por exemplo, as quatro árvores de um mesmo pomar podem ser chamadas de,,, C 9. São muito usados em sequências, notadamente em progressões aritméticas e geométricas. Já os expoentes representam uma operação de Potenciação (por exemplo, ) que será melhor vista em uma aula específica de Potenciação. Claro que em outras ciências (como, por exemplo, na Química) tais representações podem ganhar novos significados. E8: Na fórmula de Bhaskara, o símbolo citado resume as duas representações possíveis: E ou Página 6 de 7
7 E9: O erro foi que a solução encontrada é incompatível com o conjunto universo determinado pelo professor ( N ). Explicitamente, apenas as soluções naturais deveriam ser aceitas. Logo, pelo fato de a solução encontrada (-2) não ser um natural, o problema não tem solução para as limitações apresentadas. E10: V = {x N/4 x< 11 x 7}: a) O conjunto Verdade é definido por: conjunto dos números naturais maiores ou iguais a 4 e também menores que 11, porém diferentes de 7 (numa interpretação mais livre). b) Devemos então representar todos os naturais entre 4 e 11 (incluindo o 4, mas excluindo o 11) sem incluir o 7: V = { 4, 5, 6, 8, 9, 10} E11: O símbolo significa equivale e nos mostra que existe uma equivalência lógica entre as passagens. No exemplo citado, temos que a equação x + 3 = 7 é equivalente à nova forma x = 4. O símbolo citado garante também uma exibição mais consistente do raciocínio ao mostrar a equivalência dos passos intermediários até a conclusão. E12: (existe), (não existe), (qualquer que seja), (portanto). E13: 2,99 3. E14: R (Reais), N (Naturais), Q (Racionais) e R + (Reais não negativos) E15: 6 i= 3 2i= = = 36 Página 7 de 7
Unidade I MATEMÁTICA. Prof. Celso Ribeiro Campos
Unidade I MATEMÁTICA Prof. Celso Ribeiro Campos Números reais Três noções básicas são consideradas primitivas, isto é, são aceitas sem a necessidade de definição. São elas: a) Conjunto. b) Elemento. c)
E essa procura pela abstração da natureza foi fundamental para a evolução, não só, mas também, dos conjuntos numéricos
A história nos mostra que desde muito tempo o homem sempre teve a preocupação em contar objetos e ter registros numéricos. Seja através de pedras, ossos, desenhos, dos dedos ou outra forma qualquer, em
Cálculo Diferencial e Integral I
Cálculo Diferencial e Integral I Prof. Lino Marcos da Silva Atividade 1 - Números Reais Objetivos De um modo geral, o objetivo dessa atividade é fomentar o estudo de conceitos relacionados aos números
Matemática Básica. Capítulo Conjuntos
Capítulo 1 Matemática Básica Neste capítulo, faremos uma breve revisão de alguns tópicos de Matemática Básica necessários nas disciplinas de cálculo diferencial e integral. Os tópicos revisados neste capítulo
Planificação anual 2018/19
Planificação anual Propõe-se a seguinte distribuição dos conteúdos pelos diferentes períodos: 1. Período 2. Período 3. Período Números racionais Expressões algébricas. Potenciação. Raízes quadradas e cúbicas
E.E SENADOR LUIZ NOGUEIRA MARTINS
6º A/B Decompor um número natural nas unidades das diversas ordens, de acordo com seu valor posicional. 79,31% FÁCIL Decompor um número natural nas unidades das diversas ordens, de acordo com seu valor
Operações Fundamentais com Números
Capítulo 1 Operações Fundamentais com Números 1.1 QUATRO OPERAÇÕES Assim como na aritmética, quatro operações são fundamentais em álgebra: adição, subtração, multiplicação e divisão. Quando dois números
Monster. Concursos. Matemática 1 ENCONTRO
Monster Concursos Matemática 1 ENCONTRO CONJUNTOS NUMÉRICOS Conjuntos numéricos podem ser representados de diversas formas. A forma mais simples é dar um nome ao conjunto e expor todos os seus elementos,
POTENCIAÇÃO. Por convenção temos que: 1) Todo o número elevado ao expoente 1 é igual à própria base, exemplo: a) 8¹ = 8 b) 5¹ = 5
POTENCIAÇÃO 6º ANO - Prof. Patricia Caldana Consideremos uma multiplicação em que todos os fatores são iguais Exemplo: 5 x 5 x 5, indicada por 5³, ou seja, 5³ = 5 x 5 x 5 = 125 onde: 5 é a base (fator
Planificação Anual de Matemática 7º Ano
Temas transversais: Planificação Anual de Matemática 7º Ano Resolução de Problemas Resolver problemas usando números racionais, utilizando equações e funções em contextos matemáticos e não matemáticos,
RADICIAÇÃO, POTENCIAÇÃO, LOGARITMAÇÃO. Potência POTENCIAÇÃO, RADICIAÇÃO E LOGARITMAÇÂO NOS NÚMEROS REAIS. Potenciação 1
RADICIAÇÃO, POTENCIAÇÃO, LOGARITMAÇÃO Potência POTENCIAÇÃO, RADICIAÇÃO E LOGARITMAÇÂO NOS NÚMEROS REAIS Potenciação 1 Neste texto, ao classificarmos diferentes casos de potenciação, vamos sempre supor
Desenho e Projeto de Tubulação Industrial Nível II
Desenho e Projeto de Tubulação Industrial Nível II Módulo I Aula 02 EQUAÇÕES Pense no seguinte problema: Uma mulher de 25 anos é casada com um homem 5 anos mais velho que ela. Qual é a soma das idades
ROTEIRO DE RECUPERAÇÃO SEMESTRAL MATEMÁTICA 7º ANO. Nome: Nº - Série/Ano. Data: / / Professor(a): Eloy/Marcello/Renan
ROTEIRO DE RECUPERAÇÃO SEMESTRAL MATEMÁTICA 7º ANO Nome: Nº - Série/Ano Data: / / Professor(a): Eloy/Marcello/Renan Os conteúdos essenciais do semestre. Capítulo 1 Números inteiros Ideia de número positivo
Curso destinado à preparação para Concursos Públicos e Aprimoramento Profissional via INTERNET RACIOCÍNIO LÓGICO AULA 05
RACIOCÍNIO LÓGICO AULA 05 NÚMEROS NATURAIS O sistema aceito, universalmente, e utilizado é o sistema decimal, e o registro é o indo-arábico. A contagem que fazemos: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, e assim
ROTEIRO DE RECUPERAÇÃO DE MATEMÁTICA (1º SEMESTRE) 7º ANO. Nome: Nº - Série/Ano. Data: / / Professor(a): Marcello, Eloy e Décio.
ROTEIRO DE RECUPERAÇÃO DE MATEMÁTICA (1º SEMESTRE) 7º ANO Nome: Nº - Série/Ano Data: / / 2017. Professor(a): Marcello, Eloy e Décio. Os conteúdos essenciais do semestre. Capítulo 1 Números inteiros Ideia
Material Teórico - Módulo de Potenciação e Dízimas Periódicas. Números Irracionais e Reais. Oitavo Ano. Prof. Ulisses Lima Parente
Material Teórico - Módulo de Potenciação e Dízimas Periódicas Números Irracionais e Reais Oitavo Ano Prof. Ulisses Lima Parente 1 Os números irracionais Ao longo deste módulo, vimos que a representação
Material Teórico - Módulo de Potenciação e Dízimas Periódicas. Números Irracionais e Reais. Oitavo Ano
Material Teórico - Módulo de Potenciação e Dízimas Periódicas Números Irracionais e Reais Oitavo Ano Autor: Prof. Angelo Papa Neto Revisor: Prof. Antonio Caminha M. Neto 1 Os números irracionais Ao longo
Pré-Cálculo. Humberto José Bortolossi. Aula 5 27 de agosto de Departamento de Matemática Aplicada Universidade Federal Fluminense
Pré-Cálculo Humberto José Bortolossi Departamento de Matemática Aplicada Universidade Federal Fluminense Aula 5 27 de agosto de 200 Aula 5 Pré-Cálculo Expansões decimais: exemplo Números reais numericamente
Introdução à Ciência da Computação
Créditos Introdução à Ciência da Computação Tópicos Preliminares em Programação Exceto por adaptações e complementos menores, o material a seguir é composto de slides gentilmente cedidos por: Prof. Rudinei
Algoritmo e Programação Matemática
Algoritmo e Programação Matemática Fundamentos de Algoritmos Parte 1 Renato Dourado Maia Instituto de Ciências Agrárias Universidade Federal de Minas Gerais Dados A funcionalidade principal de um computador
Prof. a : Patrícia Caldana
CONJUNTOS NUMÉRICOS Podemos caracterizar um conjunto como sendo uma reunião de elementos que possuem características semelhantes. Caso esses elementos sejam números, temos então a representação dos conjuntos
Ano Letivo 2018/2019 TEMAS/DOMÍNIOS CONTEÚDOS APRENDIZAGENS ESSENCIAIS Nº DE AULAS AVALIAÇÃO
Matemática / 7º ano Página 1 de 5 Documentos Orientadores: PLANIFICAÇÃO ANUAL Programa, Metas de Aprendizagem, apoiado pelas novas Orientações de Gestão para o Ensino Básico S- DGE/2016/3351 DSDC e Aprendizagens
Cálculo Algébrico. a) 4m + m = e) x + x = b) 7x x = f) 9a 9a = c) 8a 4 6a 4 = g) 3ab 9ab = d) xy 10xy = h) 7cd 2 5cd 2 =
Cálculo Algébrico Efetue as operações com monômios abaixo: 1ª parte: Adição e Subtração 1. Efetue: a) 4m + m e) x + x b) 7x x f) 9a 9a c) 8a 4 6a 4 g) ab 9ab d) xy 10xy h) 7cd 5cd. Reduza dos termos semelhantes:
EXPRESSÕES NUMÉRICAS FRACIONÁRIAS
EXPRESSÕES NUMÉRICAS FRACIONÁRIAS Introdução: REGRA DE SINAIS PARA ADIÇÃO E SUBTRAÇÃO: Sinais iguais: Adicionamos os algarismos e mantemos o sinal. Sinais diferentes: Subtraímos os algarismos e aplicamos
FORMAÇÃO CONTINUADA EM MATEMÁTICA. Fundação CECIERJ Consórcio CEDERJ. Matemática do 3º Ano 3º Bimestre Plano de Trabalho 1
FORMAÇÃO CONTINUADA EM MATEMÁTICA Fundação CECIERJ Consórcio CEDERJ Matemática do 3º Ano 3º Bimestre 2014 Plano de Trabalho 1 Conjunto dos Números Complexos Tarefa: 001 PLANO DE TRABALHO 1 Cursista: CLÁUDIO
CAPÍTULO 4 - OPERADORES E EXPRESSÕES
CAPÍTULO 4 - OPERADORES E EXPRESSÕES 4.1 - OPERADORES ARITMÉTICOS Os operadores aritméticos nos permitem fazer as operações matemáticas básicas, usadas no cálculo de expressões aritméticas. A notação usada
FLEXIBILIZAÇÃO CURRICULAR. Planificação Anual 7ºano Disciplina/Área disciplinar: MATEMÁTICA
FLEXIBILIZAÇÃO CURRICULAR Ano letivo 2018/2019 Planificação Anual 7ºano Disciplina/Área disciplinar: MATEMÁTICA Objetivos essenciais de aprendizagem, conhecimentos, capacidades e atitudes transversais
Planificação Anual Matemática 7º Ano
ESCOLA SECUNDÁRIA/3 RAINHA SANTA ISABEL 402643 ESTREMOZ Planificação Anual Matemática 7º Ano Ano letivo 2018/2019 PERÍODO Nº de AULAS PREVISTAS (45 min) 1º 60 2º 60 3º 35 Total: 155 1º Período Total de
Exemplos: -5+7=2; 12-5=7; -4-3=-7; -9+5=-4; -8+9=1; -4-2=-6; -6+10=4
0 - OPERAÇÕES NUMÉRICAS ) Adição algébrica de números inteiros envolve dois casos: os números têm sinais iguais: soma-se os números e conserva-se o sinal; os números têm sinais diferentes: subtrai-se o
Hewlett-Packard CONJUNTOS NUMÉRICOS. Aulas 01 a 08. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Ramos
Hewlett-Packard CONJUNTOS NUMÉRICOS Aulas 01 a 08 Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Ramos Ano: 2019 Sumário CONJUNTOS NUMÉRICOS... 2 Conjunto dos números Naturais... 2 Conjunto dos números
Técnicas de Programação
Técnicas de Programação Algoritmos Anderson Gomes Eleutério Lógica A lógica de programação é necessária para pessoas que desejam trabalhar com desenvolvimento de sistemas e programas, ela permite definir
CONJUNTO DOS NÚMEROS INTEIROS. No conjunto dos números naturais operações do tipo
CONJUNTO DOS NÚMEROS INTEIROS No conjunto dos números naturais operações do tipo 9-5 = 4 é possível 5 5 = 0 é possível 5 7 =? não é possível e para tornar isso possível foi criado o conjunto dos números
CURSO PRF 2017 MATEMÁTICA
AULA 001 1 MATEMÁTICA PROFESSOR AULA 001 MATEMÁTICA DAVIDSON VICTOR 2 AULA 01 - CONJUNTOS NUMÉRICOS CONJUNTO DOS NÚMEROS NATURAIS É o primeiro e o mais básico de todos os conjuntos numéricos. Pertencem
1º Período Total tempos previstos: 49
AGRUPAMENTO DE ESCOLAS DE MARTIM DE FREITAS Ano letivo 2018/2019 PLANIFICAÇÃO DA DISCIPLINA DE MATEMÁTICA 7ºANO 1º Período Total tempos previstos: 49 TEMAS CONTEÚDOS APRENDIZAGENS ESSENCIAIS TEMPOS (Previstos)
O conjunto dos números naturais é representado pela letra N e possui como elementos: N = { 0, 1, 2, 3, 4,...}
07 I. Números naturais e inteiros O conjunto dos números naturais é representado pela letra N e possui como elementos: N = { 0,,,, 4,...} Já o conjunto dos números inteiros é representado pela letra Z
MAT Laboratório de Matemática I - Diurno Profa. Martha Salerno Monteiro
MAT 1511 - Laboratório de Matemática I - Diurno - 2005 Profa. Martha Salerno Monteiro Representações decimais de números reais Um número real pode ser representado de várias maneiras, sendo a representação
AGRUPAMENTO DE ESCOLAS DR. VIEIRA DE CARVALHO
AGRUPAMENTO DE ESCOLAS DR. VIEIRA DE CARVALHO DEPARTAMENTO DE MATEMÁTICA E CIÊNCIAS EXPERIMENTAIS MATEMÁTICA 7.º ANO PLANIFICAÇÃO GLOBAL Múltiplos e divisores. Critérios de divisibilidade. - Escrever múltiplos
REVISÃO DE ÁLGEBRA. Apareceu historicamente em processos de contagem. Obs.: dependendo da conveniência, o zero pode pertencer aos naturais.
REVISÃO DE ÁLGEBRA 1ª. AULA CONJUNTOS BÁSICOS: Conjuntos dos números naturais: * + Apareceu historicamente em processos de contagem. Obs.: dependendo da conveniência, o zero pode pertencer aos naturais.
DISCIPLINA DE MATEMÁTICA 7.º Ano
1. COMPETÊNCIAS ESSENCIAIS COMPETÊNCIAS GERAIS DISCIPLINA DE MATEMÁTICA 7.º Ano COMPETÊNCIAS ESPECÍFICAS (1) Mobilizar saberes culturais, científicos e tecnológicos para compreender a realidade e para
a é sempre o coeficiente de x²; b é sempre o coeficiente de x, c é o coeficiente ou termo independente.
Definições Denomina-se equação do 2º grau na incógnita x, toda equação da forma: ax 2 + bx + c = 0; a, b, c Exemplo: x 2-5x + 6 = 0 é um equação do 2º grau com a = 1, b = -5 e c = 6. 6x 2 - x - 1 = 0 é
Nº de aulas de 45 minutos previstas 66. 1º Período. 1- Isometrias Nº de aulas de 45 minutos previstas 18
Escola Secundária de Lousada Planificação anual disciplina de Matemática Ano: 8º Ano lectivo: 01-013 CALENDARIZAÇÃO Nº de aulas de 5 minutos previstas 1 1º Período º Período 3º Período 9 7 DISTRIBUIÇÃO
Introdução à Linguagem de Programação C: Variáveis, Constantes, Expressões, Atribuição, Tipos de dados, Entrada e Saída de Dados
Introdução à Linguagem de Programação C: Variáveis, Constantes, Expressões, Atribuição, Tipos de dados, Entrada e Saída de Dados Disciplina de Programação de Computadores I Universidade Federal de Ouro
Nível II (6º ao 9º ano) Sistema de Recuperação 3º período e Anual Matemática
Nível II (6º ao 9º ano) Sistema de Recuperação 3º período e Anual Matemática Orientações aos alunos e pais A prova de dezembro abordará o conteúdo desenvolvido nos três períodos do ano letivo. Ela será
MÓDULO 1 RECORDANDO AS QUATRO OPERAÇÕES FUNDAMENTAIS
MATEMÁTICA MÓDULO 1 RECORDANDO AS QUATRO OPERAÇÕES FUNDAMENTAIS Todos os dias, você usa dos recursos da Matemática para resolver pequenos e grandes problemas que aparecem na sua vida. Nesse módulo você
AGRUPAMENTO DE ESCOLAS DR. VIEIRA DE CARVALHO
AGRUPAMENTO DE ESCOLAS DR. VIEIRA DE CARVALHO DEPARTAMENTO DE MATEMÁTICA E CIÊNCIAS EXPERIMENTAIS MATEMÁTICA 7.º ANO PLANIFICAÇÃO ANUAL Planificação 7º ano 2010/2011 Página 1 DOMÍNIO TEMÁTICO: NÚMEROS
(Aprovado em Conselho Pedagógico de 18 de julho de 2016 ) CONHECIMENTOS CONTEÚDOS OBJETIVOS/METAS CURRICULARES CAPACIDADES
Escola EB1 João de Deus COD. 242 937 Escola Secundária 2-3 de Clara de Resende COD. 346 779 Critérios de Avaliação Perfil de Aprendizagens Específicas (Aprovado em Conselho Pedagógico de 18 de julho de
PLANIFICAÇÃO ANUAL DE MATEMÁTICA - 7º ANO
PLANIFICAÇÃO ANUAL DE MATEMÁTICA - 7º ANO 1º Período... 53 Ano Lectivo 17/ 18 PROGRESSÃO 2º Período... 40 Turma: A e C 7º Ano 3º Período... 30 Professor: João Constantino N.º aulas Proposta de Testes 1º
MATEMÁTICA PLANEJAMENTO 2º BIMESTRE º B - 11 Anos
PREFEITURA MUNICIPAL DE IPATINGA ESTADO DE MINAS GERAIS SECRETARIA MUNICIPAL DE EDUCAÇÃO DEPARTAMENTO PEDAGÓGICO/ SEÇÃO DE ENSINO FORMAL Centro de Formação Pedagógica CENFOP MATEMÁTICA PLANEJAMENTO 2º
Agrupamento de Escolas António Correia de Oliveira PLANIFICAÇÃO ANUAL DE MATEMÁTICA 7.º ANO ANO LETIVO 2018/19
Agrupamento de Escolas António Correia de Oliveira PLANIFICAÇÃO ANUAL DE MATEMÁTICA 7.º ANO ANO LETIVO 2018/19 1.º PERÍODO Tema/Subtema Objetivos Essenciais de Aprendizegem Aulas previstas (45 min) Aprendizagens
Assunto: Equação do 2º grau
FUNDAÇÃO CECIERJ/ CONSÓRCIO CEDERJ Matemática 9º Ano 2º Bimestre/2013 Plano de Trabalho I Assunto: Equação do 2º grau Cursista: Derli Aleixo Carvalho Onofre Tutor: Emílio Rubem Batista Junior S u m á r
Podemos concluir que o surgimento do número fracionário veio da necessidade de representar quantidades menores que inteiros, por exemplo, 1 bolo é um
FRAÇÕES Podemos concluir que o surgimento do número fracionário veio da necessidade de representar quantidades menores que inteiros, por exemplo, 1 bolo é um inteiro, mas se comermos um pedaço, qual seria
OS QUATRO QUATROS. Agora já resolvemos vários números e alguns com mais de uma solução, mas continua faltando
INTRODUÇÃO O PROBLEMA D, tem sua história, sua evolução e generalizações citadas na página REFERÊNCIA da MATEMÁTICA. Entre as referências destaca-se o livro "O Homem que Calculava", de Malba Tahan, pseudônimo
Conjuntos. Notações e Símbolos
Conjuntos A linguagem de conjuntos é interessante para designar uma coleção de objetos. Quando os estatísticos selecionam indivíduos de uma população eles usam a palavra amostra, frequentemente. Todas
Giovanna ganhou reais de seu pai pra fazer. sua festa de 15 anos. Ao receber o dinheiro, no. entanto, resolveu abri mão da festa.
LOGARITMOS QUAL É O TEMPO? Giovanna ganhou 1 000 reais de seu pai pra fazer sua festa de 15 anos. Ao receber o dinheiro, no entanto, resolveu abri mão da festa. É que ela queria comprar um computador.
Matemática I MAT I Plano de Ensino Revisão de Aritmética. Prof.: Joni Fusinato 1
Matemática I MAT I Plano de Ensino Revisão de Aritmética Prof.: Joni Fusinato [email protected] [email protected] 1 Plano de Ensino Competências: Análise e equacionamento dos fenômenos naturais
Agrupamento de Escolas Eugénio de Castro Escola Básica Eugénio de Castro 3º Ciclo Planificação Anual
Objetivos essenciais de aprendizagem, conhecimentos, capacidades e atitudes transversais a todos os temas Raciocínio matemático Desenvolver a capacidade de abstração e de generalização, e de compreender
ATIVIDADES ESTRATÉGIAS
ENSINO BÁSICO Agrupamento de Escolas Nº 1 de Abrantes ESCOLA BÁSICA DOS 2.º E 3.º CICLOS D. MIGUEL DE ALMEIDA DISCIPLINA: MATEMÁTICA ANO: 7º ANO LETIVO 2013/2014 METAS DE APRENDIZAGEM: Multiplicar e dividir
DEPARTAMENTO DE MATEMÁTICA INFORMÁTICA DISCIPLINA:
ANO LETIVO 2015/2016 DEPARTAMENTO DE MATEMÁTICA INFORMÁTICA DISCIPLINA: Matemática (7º Ano) METAS CURRICULARES/CONTEÚDOS... 1º Período Metas / Objetivos Conceitos / Conteúdos Aulas Previstas Números e
SCS Sistemas de Controle / Servomecanismos. Aula 01 Introdução ao software MATLAB
Aula 01 Introdução ao software MATLAB O MATLAB (Matrix Laboratory) é um ambiente de programação de alto desempenho voltado para a resolução de problemas expressos em notação matemática, projeto e simulação
RECRO MATEMÁTICA 6º ANO 1º BIMESTRE EIXO: NÚMEROS E OPERAÇÕES
6º ANO 1º BIMESTRE S Compreender o sistema de numeração decimal como um sistema de agrupamentos e trocas na base 10; Compreender que os números Naturais podem ser escritos de formas diferenciadas e saber
Disciplina de MATEMÁTICA 7.º ANO
GRUPO DE MATEMÁTICA ANO LETIVO 2018 / 2019 Disciplina de MATEMÁTICA 7.º ANO Professores: Sandra Almeida 7ºA, B Margarida Guégués 7ºC 2 PLANIFICAÇÃO ANUAL DE MATEMÁTICA - 7º ANO Professor: Sandra Almeida
Equações de 2º grau. Denomina-se equação do 2º grau na incógnita x, toda equação da forma: IR e
Equações de 2º grau Definições Denomina-se equação do 2º grau na incógnita x, toda equação da forma: ax 2 + bx + c = 0; a, b, c IR e Exemplo: x 2-5x + 6 = 0 é um equação do 2º grau com a = 1, b = -5 e
Curso de Educação e Formação Empregado de Restaurante/Bar 1º Ano. Planificação Anual de Matemática
Curso de Educação e Formação Empregado de Restaurante/Bar 1º Ano Planificação Anual de Matemática Tema Conteúdos Competências Específicas Nº aulas de 45 Adição, subtração, multiplicação e divisão de números
Matemática I MAT I Plano de Ensino Revisão de Aritmética. Prof.: Joni Fusinato 1
Matemática I MAT I Plano de Ensino Revisão de Aritmética Prof.: Joni Fusinato [email protected] [email protected] 1 Plano de Ensino Competências: Análise e equacionamento dos fenômenos naturais
Aula 1: Conjunto dos Números Inteiros
Aula 1: Conjunto dos Números Inteiros 1 Introdução Observe que, no conjunto dos números naturais N = {0, 1, 2, 3, 4, 5,..., a operação de subtração nem sempre é possível. a) 5 3 = 2 (é possível: 2 N) b)
SISTEMA ANGLO DE ENSINO G A B A R I T O
Prova Anglo P-02 Tipo D8-08/200 G A B A R I T O 0. C 07. D 3. C 9. A 02. B 08. A 4. A 20. C 03. D 09. C 5. B 2. B 04. B 0. C 6. C 22. B 05. A. A 7. A 00 06. D 2. B 8. D DESCRITORES, RESOLUÇÕES E COMENTÁRIOS
Todos os exercícios sugeridos nesta apostila se referem ao volume 1. MATEMÁTICA I 1 CONJUNTOS NUMÉRICOS
CONJUNTO DOS NÚMEROS NATURAIS... 2 RETA NUMERADA... 2 CONJUNTO DOS NÚMEROS INTEIROS... 4 SUBCONJUNTOS DE Z... 5 NÚMEROS OPOSTOS... 5 VALOR ABSOLUTO DE UM NÚMERO INTEIRO... 6 CONJUNTO DOS NÚMEROS RACIONAIS...
Sinais iguais, soma e conserva o sinal. Sinais diferentes, subtrai e conserva o sinal do maior.
Curso preparatório SEED-PR Data Escolaridade: Nível médio; Possíveis organizadoras: COPS.UEL, NC.UFPR ou PUC.PR Início do curso: 29/01 Término: 03/05 Aulas: Segunda a quinta-feira MATEMÁTICA 1-Sistema
EXPRESSÕES ARITMÉTICAS PARTE 1
AULA 5 EXPRESSÕES ARITMÉTICAS PARTE 1 5.1 Operadores aritméticos Os operadores aritméticos definem as operações aritméticas que podem ser realizadas sobre os números inteiros e reais. Para os inteiros,
Planificação anual de Matemática - 7ºANO
Planificação anual de Matemática - 7ºANO Ano letivo 2018 / 2019 Professores: Ana Figueira, Elsa Ferreira e Raquel Barreto 1 - Estrutura e Finalidades da disciplina A disciplina de Matemática constitui-se
Fundamentos Tecnológicos
Fundamentos Tecnológicos Equações Algébricas e Equação de 1º Grau Início da aula 06 Equações Algébricas Expressões Algébricas - Definição Expressões algébricas são expressões matemáticas que apresentam
Algoritmos. Algoritmos e Linguagem de Programação - Prof Carlos Vetorazzi
Algoritmos Algoritmos e Linguagem de Programação - Prof Carlos Vetorazzi Conceitos Linhas de Código de um Algoritmo ou Programa escrita do programa linha a linha, ou seja, a sintaxe do programa, podendo-se
AGRUPAMENTO DE ESCOLAS DR. VIEIRA DE CARVALHO
AGRUPAMENTO DE ESCOLAS DR. VIEIRA DE CARVALHO DEPARTAMENTO DE MATEMÁTICA E CIÊNCIAS EXPERIMENTAIS MATEMÁTICA 6.º ANO PLANIFICAÇÃO GLOBAL ANO LECTIVO 2011/2012 Compreender a noção de volume. VOLUMES Reconhecer
MATEMÁTICA DESCRITORES BIM4/2017
4º ANO Calcular o resultado de uma multiplicação ou de uma divisão de números naturais. Em um problema, estabelecer trocas entre cédulas e moedas do Sistema Monetário Brasileiro, em função de seus valores.
PLANIFICAÇÃO ANUAL DE MATEMÁTICA
1.º Período Agrupamento de Escolas António Correia de Oliveira PLANIFICAÇÃO ANUAL DE MATEMÁTICA 7.º ANO ANO LETIVO 2016/17 Números Racionais Números e operações NO7 Números racionais - Simétrico da soma
Entrada/Saída, Operadores. Curso: Técnico em Informática Disciplina: Algoritmos Prof. Abrahão Lopes
1 Entrada/Saída, Operadores Curso: Técnico em Informática Disciplina: Algoritmos Prof. Abrahão Lopes [email protected] O Visualg Editor e interpretador de algoritmoscriado pelo professor Cláudio
Apostila de Revisão dos Fundamentos Básicos da Álgebra. (versão 1: 12/03/2012)
Apostila de Revisão dos Fundamentos Básicos da Álgebra (versão 1: 12/03/2012) 1. Operações com frações 1.1. Fração A representação de uma fração é dada dois valores separados por uma barra horizontal.
REVISÃO DOS CONTEÚDOS
REVISÃO DOS CONTEÚDOS As quatro operações fundamentais As operações fundamentais da matemática são quatro: Adição (+), Subtração (-), Multiplicação (* ou x ou.) e Divisão (: ou / ou ). Em linguagem comum,
ALGORITMOS E APLICAÇÕES. FATEC IPIRANGA ADS Noturno 1º semestre de 2012 Prof. Luiz Carlos de Jesus Junior
ALGORITMOS E APLICAÇÕES FATEC IPIRANGA ADS Noturno 1º semestre de 2012 Prof. Luiz Carlos de Jesus Junior Formato Básico do Pseudocódigo Tipos de dados O VisuAlg prevê quatro tipos de dados: inteiro, real,
Tipos de Dados e Expressões
Tipos de Dados e Expressões Prof. Ranieri Alves dos Santos [email protected] www.ranierisantos.com Tipos de dados Real Inteiro Lógico Literal Variáveis Estrutura de algoritmos Expressões Aritméticas
Exercícios Complementares de Matemática
Exercícios Complementares de Matemática Professora: Beatriz Dias dos Reis Nome: Nº: 1º trimestre - 018 Caro aluno, Aqui você encontra exercícios complementares das matérias que estamos estudando no caderno
Números Racionais. Geometria. 2º Bimestre 2018 CONTEÚDO DO BIMESTRE CRITÉRIOS DE AVALIAÇÃO TÓPICOS DO CONTEÚDO CONTEÚDO DO BIMESTRE
Matemática Profª Paula Neves Geometria Números Racionais CONTEÚDO DO BIMESTRE Ponto, reta e plano Módulo e oposto de um nº racional Ângulos e seus elementos Representa ção na reta numérica Construção de
AGRUPAMENTO de ESCOLAS Nº1 de SANTIAGO do CACÉM Ano Letivo 2013/2014 PLANIFICAÇÃO ANUAL
AGRUPAMENTO de ESCOLAS Nº1 de SANTIAGO do CACÉM Ano Letivo 2013/2014 PLANIFICAÇÃO ANUAL Documento(s) Orientador(es): Programa e Metas de Aprendizagem e manual adoptado 3º CICLO MATEMÁTICA 7ºANO TEMAS/DOMÍNIOS
Aula 4: Bases Numéricas
Aula 4: Bases Numéricas Diego Passos Universidade Federal Fluminense Fundamentos de Arquiteturas de Computadores Diego Passos (UFF) Bases Numéricas FAC 1 / 36 Introdução e Justificativa Diego Passos (UFF)
PORTUGUÊS ESTRUTURADO: INTRODUÇÃO INTRODUÇÃO À PROGRAMAÇÃO PROF. ALEXANDRO DOS SANTOS SILVA
PORTUGUÊS ESTRUTURADO: INTRODUÇÃO INTRODUÇÃO À PROGRAMAÇÃO PROF. ALEXANDRO DOS SANTOS SILVA SUMÁRIO Introdução Conceitos básicos Formato básico Tipos primitivos Variáveis Constantes Operadores Operações
Ciência da Computação A&P
Algoritmos e Programação Informática II Ciência da Computação Prof. Dr. Leandro Alves Neves Prof. Dr. Adriano M. Cansian 1 Sumário Operações e Expressões Definição Operadores: Aritméticos. Relacionais.
PLANO DE ESTUDOS DE MATEMÁTICA - 7.º ANO
DE MATEMÁTICA - 7.º ANO Ano Letivo 2014 2015 PERFIL DO ALUNO No domínio dos Números e Operações, o aluno deve ser capaz de multiplicar e dividir números racionais relativos. No domínio da Geometria e Medida,
Matemática I MAT I Eletroeletrônica Plano de Ensino Revisão de Aritmética. Prof.: Joni Fusinato
Matemática I MAT I Eletroeletrônica Plano de Ensino Revisão de Aritmética Prof.: Joni Fusinato [email protected] [email protected] 1 Plano de Ensino Competências: Análise e equacionamento dos
Professora Martha Spalenza Professora de Informática da Faetec
Algoritmos em Estrutura seqüencial 1. Tipos de dados São quatro os tipos básicos de dados, e podem assumir os seguintes valores válidos: - números inteiros: -,, -3, -2, -1, 0, 1, 2, 3,, + ; - números reais:
Concurso Público Conteúdo
Concurso Público 2016 Conteúdo 1ª parte Números inteiros e racionais: operações (adição, subtração, multiplicação, divisão, potenciação); expressões numéricas; múltiplos e divisores de números naturais;
Chama-se conjunto dos números naturais símbolo N o conjunto formado pelos números. OBS: De um modo geral, se A é um conjunto numérico qualquer, tem-se
UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA Conjuntos Numéricos Prof.:
Existem conjuntos em todas as coisas e todas as coisas são conjuntos de outras coisas.
MÓDULO 3 CONJUNTOS Saber identificar os conjuntos numéricos em diferentes situações é uma habilidade essencial na vida de qualquer pessoa, seja ela um matemático ou não! Podemos dizer que qualquer coisa
MAT001 Cálculo Diferencial e Integral I
1 MAT001 Cálculo Diferencial e Integral I GEOMETRIA ANALÍTICA Coordenadas de pontos no plano cartesiano Distâncias entre pontos Sejam e dois pontos no plano cartesiano A distância entre e é dada pela expressão
Quadro de conteúdos MATEMÁTICA
Quadro de conteúdos MATEMÁTICA 1 Apresentamos a seguir um resumo dos conteúdos trabalhados ao longo dos quatro volumes do Ensino Fundamental II, ou seja, um panorama dos temas abordados na disciplina de
Bacharelado em Ciência e Tecnologia Processamento da Informação. Equivalência Portugol Java. Linguagem Java
Linguagem Java Objetivos????? ADAPTAR O TEXTO ABAIXO????? Aprender a sintaxe da Estrutura de Repetição ENQUANTO-FAÇA na linguagem PORTUGOL Aprender a resolver problemas que requeiram o uso de ESTRUTURAS
PROFICIÊNCIA EM MATEMÁTICA Conjuntos Numéricos, Potenciação e Radiciação
PROFICIÊNCIA EM MATEMÁTICA Conjuntos Numéricos, Potenciação e Radiciação Professor Alexandre M. M. P. Ferreira Sumário Definição dos conjuntos numéricos... 3 Operações com números relativos: adição, subtração,
Universidade Federal de Uberlândia Faculdade de Computação. Representação e aritmética binária
Universidade Federal de Uberlândia Faculdade de Computação Representação e aritmética binária Prof. Renato Pimentel 1 Tipos de informação Representação por meio de sequências binárias: 8 bits (byte) Também
PLANO DE ESTUDOS DE MATEMÁTICA 7.º ANO
DE MATEMÁTICA 7.º ANO Ano Letivo 2015 2016 PERFIL DO ALUNO No domínio dos Números e Operações, o aluno deve ser capaz de multiplicar e dividir números racionais relativos. No domínio da Geometria e Medida,
