Cap.08: Dinâmica II: Movimento no Plano

Tamanho: px
Começar a partir da página:

Download "Cap.08: Dinâmica II: Movimento no Plano"

Transcrição

1 Cap.08: Dinâmica II: Movimento no Plano Do professor para o aluno ajudando na avaliação de compreensão do capítulo. Fundamental que o aluno tenha lido o capítulo. 8.1 Dinâmica em duas dimensões A equação da segunda lei de Newton é geral, determina a aceleração em qualquer sistema de coordenadas e de qualquer tipo de movimento, linear ou no plano. Os componentes X e Y do vetor aceleração: As equações de posição e de velocidade são: Aplicação: Exemplo 8.1 Movimento dos projéteis O movimento dos projéteis, sem a resistência do ar, foi estudado no Cap. 4 e concluiu-se que o a trajetória é parabólica. O efeito resistivo do ar, força de arraste, sobre um corpo em movimento foi estudado no Cap. 6 e esta força é diretamente proporcional ao quadrado da velocidade e está dirigida no sentido contrário ao movimento, F D = A v 2 /4. Deduzir a Eq.8.4: Dedução feita em sala de aula.

2 A figura abaixo representa a trajetória y(x) do movimento da bola lançada no ar. A resolução numérica da eq. 8.4, acima, foi realizada com os valores vo = 25,0m/s, A= 2,00 x 10-3 m 2, m = 5,00x10-3 g. Os ângulos de lançamentos escolhidos são 30 0, 60 o (as linhas tracejadas) e 45 o, linha contínua. O alcance máximo da bola não corresponde a um ângulo de lançamento de 45 o. O alcance máximo de 14,5m atingido corresponde quando a bola é lançada com ângulo de 30 o e as trajetórias não são parabólicas. No vácuo, o alcance máximo será aproximadamente 64,0m e as trajetórias são parabólicas. y m x m Na figura ao lado estão representadas as variações das velocidades vy(t), linha tracejada, e vx(t), linha contínua, em ângulo de lançamento de 60 o. O tempo de voo sem a resistência do ar é 4,40s. O tempo de movimento da bola com a resistência do ar lançado neste ângulo é t=2,60s. Diferentemente de movimento da bola num meio desprovido de ar, o componente horizontal da velocidade, vx, não é constante, diminui com o tempo e lentamente após o tempo de 1,0s. Aproximadamente neste instante o componente vertical da velocidade é nula, v y =0, quando a bola alcança a altura máxima, 8,0m. v m s t s

3 Responda a questão Pare E Pense Velocidade e aceleração no movimento circular uniforme Num movimento circular uniforme existe somente a aceleração centrípeta dada pela Eq Obs. O autor, na página 213, escreve: O sistema de coordenadas XY no centro do círculo e a partícula em movimento circular são representadas na Fig.(HS01) Os vetores unitários radial, ˆr, e tangencial, ˆt, foram apresentados nas aulas. As relações destes vetores unitários com os do sistema cartesiano são, conforme a figura ao lado, x rcos ; y rsen r rr ˆ xi ˆ yj ˆ x ˆ ˆ y r i ˆj r r rˆ cos i ˆ sen ˆj eˆt é + /2 ˆt sen i ˆ cos ˆj Os dois vetores unitários ˆr e ˆt definem a orientação dos eixos do sistema de coordenadas polares cilíndricas, (r,, z). Um corpo em movimento circular é descrito por este sistema de coordenadas. Vale lembrar que o raio r tem como origem o centro do círculo, o ângulo começa do eixo x positivo crescente no sentido anti-horário e z, eixo longitudinal do cilindro, é o eixo perpendicular ao plano XY. Dessa forma expressamos sempre o vetor aceleração radial ou centrípeta na forma 2 v a ˆ c r r

4 Obs. Na página 213, o autor afirma que o eixo r aponta da partícula para o centro do círculo. Isto não é correto! O sistema de coordenadas cilíndricas, apresentado em aula, tem como origem no centro do círculo, dessa forma o eixo r aponta do centro do círculo para a partícula. O centro do círculo pode ser a origem do sistema inercial, lugar em que não há nenhuma força e está em repouso ou a velocidade constante. A partícula num movimento circular não constitui um sistema inercial, pois contraria a primeira lei de Newton, ela está sob a ação de uma força, a força, comumente, denominada centrípeta. Responda a questão Pare E Pense Dinâmica do movimento circular uniforme Uma partícula ( carro, espaçonave e outros corpos) em movimento circular uniforme possui uma aceleração dirigida para o centro do círculo. Pela segunda lei de Newton, uma força, direcionada para o centro do círculo, mantém a partícula em sua trajetória circular. Esta força por estar direcionada para o centro do círculo é, comumente, denominada força centrípeta. Esta força não é novo tipo de força. Veremos que ela pode ser uma força de atrito, uma força gravitacional, a força exercida pela lateral do carro ou por uma corda ou qualquer outra força. Dizemos: Uma força centrípeta acelera (taxa de variação da velocidade) um corpo modificando a direção de sua velocidade, sem alterar o módulo da velocidade do corpo. Expressão: Estudar o Exemplo 8.3: Girando o carrinho em um círculo horizontal. Nesta figura, qual a direção do percurso quando a corda é cortada? Qual lei de Newton você utiliza em sua resposta?

5 Estudar o Exemplo 8.4, o veículo faz uma curva numa rodovia não inclinada. Responder: (a) A velocidade máxima depende da massa do veículo? (b) Suponha que a pista esteja úmida. O que pode acontecer com o carro na curva ao atingir a velocidade calculada no Exemplo 8.4? Estudar o Exemplo 8.5, o veículo faz uma curva numa rodovia inclinada. A equação final deste exemplo depende da massa do carro? (a) Se a rapidez do carro é de 13,4 m/s e o raio da curva é de 35,0m, a que ângulo a curva deveria ser inclinada para que o carro não dependa do atrito para fazer a curva sem derrapar? (b) O que acontece com o carro, se o motorista tenta fazer a curva com velocidade maior que 13,4m/s? Faça o diagrama de corpo livre. (c) O que acontece com o carro, se o motorista tenta fazer a curva com velocidade menor que 13,4m/s? Faça o diagrama de corpo livre. Pergunta : Imagine que, numa futura colonização em Marte, esta mesma estrada fosse construída neste planeta. Ela poderia ser percorrida com a mesma velocidade? Explicar. Carro em uma curva: Imagine um passageiro sentado no assento traseiro de um carro que se move com grande velocidade escalar constante ao longo de uma estrada plana. O carro vira à esquerda fazendo uma curva na forma de um arco de círculo de raio r, o passageiro desliza para a direita sobre o assento e então fica comprimido contra aparte lateral do carro durante o movimento curvilíneo do veículo. Como se explica isso? Enquanto o carro está fazendo uma curva, ele está, digamos, em movimento circular uniforme; ou seja, ele possui uma aceleração dirigida para o centro do círculo. Pela segunda Lei de Newton, uma força deve ser a causa desta aceleração. Além disso, a força deve também estar dirigida para o centro do círculo. Denomina-se essa força de força centrípeta. No caso do movimento deste carro, a força centrípeta é uma força de atrito exercida pela estrada sobre os pneus; ela faz com que a trajetória curvilínea seja possível. Para que o passageiro no carro possa deslocar em movimento circular uniforme juntamente com o veículo, também deve existir um força centrípeta sobre ele. Essa força centrípeta é exercida pelo assento sobre o passageiro. Entretanto, essa força não sendo suficiente para acompanhar o movimento circular, o passageiro desliza lateralmente sobre o assento até pressionar a porta. Desta forma, a compressão exercida pela parte lateral do carro fornece a

6 força centrípeta necessária para o passageiro acompanhar o carro em movimento circular uniforme (uma razão pelo uso do cinto de segurança). Estudar o Exemplo 8.6: Uma pedra em uma funda. A expressão obtida da velocidade da pedra depende da massa. À medida que aumenta o valor da velocidade o que acontece com o ângulo do cipó? Concluir a resposta analiticamente. Converta a expressão final do Exemplo 8.6 em independente da massa da pedra. Este Exemplo é o mesmo modelo do pêndulo cônico apresentado em aula. Responda a questão Pare E Pense Órbitas circulares O modelo explicativo de órbita ao redor de um planeta é de um corpo em constante queda. Neste item deve-se considerar o satélite de massa m numa órbita circular ao redor de um planeta de massa M: mafmar ; - ˆˆ Fr c g c g GMm GM ma c a (=g; Eq.(8.13) 2 c 2 r r Note-se que g não é constante, diminui com a distância r. A medida de r é a partir do centro do planeta. A Eq.(8.14), na sua forma correta, deve ser escrita como v orb GM r Verifica-se a velocidade orbital independe da massa do corpo em órbita. Problema: Calcular a velocidade orbital de um satélite a uma distância h =320 km da superfície da Terra. Orbitando a Terra: O astronauta no ônibus espacial flutua em sua cabine durante a órbita ao redor da Terra. O que está acontecendo? Tanto astronauta como ônibus espacial estão em movimento circular uniforme e possuem acelerações dirigidas para o centro do círculo ( centro da Terra). Pela segunda lei de Newton, forças centrípetas devem ser a causa destas acelerações. Desta vez, as forças centrípetas são as

7 forças gravitacionais ( a atração sobre o astronauta e sobre o ônibus espacial) exercidas pela Terra e dirigidas radialmente em direção ao centro da Terra. Tanto no carro como no ônibus espacial, o passageiro e o astronauta estão em movimento circular uniforme; apesar de ambos experimentarem sensações diferentes em cada situação. No carro, o passageiro é comprimido contra a parte lateral, ele sente a pressão lateral. No ônibus espacial, o astronauta flutuando pela cabine não tem a sensação de qualquer força atuando sobre ele. Por que esta diferença? A diferença está na natureza das duas forças centrípetas. No passageiro, a força centrípeta é a compressão do corpo em contato com a parte lateral do carro. No astronauta, a força centrípeta é a atração gravitacional da Terra sobre cada átomo do corpo. É uma força sem contato, não há compressão ou empurrão sobre o corpo do astronauta, isto é, nenhuma sensação de força (conhecida como ausência de peso). Esta ideia é enganosa, existe a atração exercida pela Terra sobre o astronauta, só que ela é um pouco menor do que se estivesse na superfície da Terra, pois a força gravitacional diminui com o quadrado da distância ao centro da Terra. 8.5 Forças fictícias As forças reais satisfazem as três leis de Newton, ou seja, medido pelo observador no referencial inercial. As medidas das forças realizadas pelo observador não inercial são chamadas forças fictícias. Exemplos de forças fictícias: 1. O trem freia bruscamente e o passageiro acelera para frente, e ele pode concluir que uma força atuou sobre ele e provocou sua aceleração. Explicar que essa força é fictícia. 2. O exemplo anterior é da mudança na sua velocidade. Outro exemplo de uma força fictícia devido a uma mudança na direção do vetor velocidade pode-se citar um carro fazendo uma curva. O passageiro é deslocado lateralmente em direção à porta do veículo e ele explica que este deslocamento é devido a atuação de uma força sobre ele. Explicar que essa força é fictícia. 3. Uma pequena esfera de massa m pendurada em uma corda do teto de um vagão, que está acelerando para a direita, fig.(a). Os dois observadores, inercial, (A), e não inercial, (B), concordam que a corda faz um ângulo com relação à vertical. O observador não inercial diz que uma força causa o desvio da corda observado da vertical. (a) Ambos os observadores veem o vagão acelerando? (b) O modelo utilizado para a esfera pelos observadores é o mesmo, ou seja, ela está em equilíbrio estático, dinâmico ou somente em uma direção? (c) Aplicar a segunda lei de Newton na forma de componentes à esfera de acordo com os observadores inercial e não inercial. (d) Como o módulo da força fictícia está relacionado com a aceleração do vagão medido pelo observador inercial (A)?

8 Força centrífuga? O veículo ao fazer uma curva, ele constitui um referencial inercial ou não inercial? Força centrífuga? Ao resolver problema envolvendo um movimento circular uniforme, é muito comum incluir uma força extra para fora m v 2 /r para manter o corpo no lugar ou para mantê-lo em equilíbrio; essa força para fora é usualmente chamada de força centrífuga. Resista a essa tentação, por que esse procedimento é simplesmente errado! Apresentaremos aqui três motivos para isso. Em primeiro lugar, o corpo não fica no lugar; ele está em movimento constante descrevendo uma trajetória circular. A direção da velocidade varia constantemente, portanto ele não está em equilíbrio. Em segundo lugar, caso existisse uma força orientada para fora (centrífuga) para equilibrar a força orientada para dentro, não existiria nenhuma força resultante para dentro para causar o movimento circular uniforme, e o corpo deveria mover em linha reta (primeira lei de Newton). Em terceiro lugar, a quantidade m v 2 /r não é uma força. Ela corresponde ao membro m a de F res = m a e não deve aparecer em F res. É verdade que o passageiro de um carro que se desloca seguindo a trajetória circular de uma estrada plana tende a deslizar para fora da curva em resposta a uma força centrífuga. Porém esse passageiro está em um sistema acelerado, um sistema de referência não inercial no qual não vale nem a primeira nem a segunda lei de Newton. O que realmente ocorre é que o passageiro tende a manter seu movimento retilíneo, enquanto o lado externo do carro se desloca para dentro do passageiro à medida que o carro faz a curva. Em um sistema inercial não existe nenhuma força centrífuga atuando sobre o corpo. Obs. No texto, pag. 222, em vez de pássaro, poderia ser um guarda rodoviário parado no acostamento da pista. A gravidade em uma Terra que gira. Obs. Terra, quando planeta, se escreve com maiúscula. Minha correção: O sistema de coordenadas utilizado é fixo no centro do planeta, considerando somente a sua rotação. A figura ao lado apresenta duas posições, uma no equador e outra na latitude, nas quais são calculadas os efeitos da rotação da Terra na medida da aceleração da gravidade, chamada aceleração da gravidade efetiva. (Texto extraído das minhas notas sobre a gravitação.)

9 g = g 0 0,03 = 9,80 m/s 2.

10 8.6 Por que a água fica no balde? Qual é a condição para que o vagão de montanha russa não se desprenda dos trilhos no topo do loop? O que acontece com o vagão de montanha russa se a força normal, N, for nula e negativa? Qual é a expressão da velocidade mínima com que o vagão pode completar o círculo? Explicar. Comente a semelhança desta velocidade com a da Eq, 8.14 Caso da água no balde. Um fio suficientemente forte deve estar amarrado ao balde tal que a tensão no fio faz o papel semelhante ao do trilho sobre o vagão. (a) Expressar a tensão no fio, T, nos casos em que c, c e c, Fig Responda a questão Pare E Pense Movimento circular não uniforme Quais são as acelerações envolvidas no movimento circular não uniforme? O vagão de uma montanha russa, ao percorrer um loop, acelera ao descer por uma lado e desacelera ao subir pelo outro. Represente, na figura ao lado, os vetores acelerações centrípeta, tangencial e resultante nos pontos A e B indicados. Por causa da definição do sistema de coordenadas polares apresentada nas aulas, a força radial sempre está dirigida em direção ao centro do círculo. A direção da força tangencial é um vetor tangente ao círculo apontando no sentido anti-horário ou horário.

11 Responda a questão Pare E Pense 8.5. Problemas Nos problemas abaixo, primeiro construir o diagrama de corpo livre e depois aplicar a segunda lei de Newton Respostas: (30.) 5,5 m/s. (31) coeficiente de atrito estático (concreto-borracha) = 1,0; 0 e tan(15 ) v rg 34 m / s 0 1 e tan(15 )

12 Resp. Calcular a velocidade angular máxima possível da moeda sob a ação da força de atrito estático em direção ao centro da plataforma. Esta velocidade calculada é maior do que 60 rpm, portanto a moeda não escorregará para fora da plataforma. Resp. Falta o coeficiente de atrito estático, 0,80. Descreverá um círculo horizontal. Resp. (A) -9,8 m/s 2 ; (B) -12,9 m/s 2 ; (C) -6,7 m/s 2.

13 Resp. Identifique a força de 1000N citado no texto. O coeficiente de atrito estático entre o concreto e a borracha é 1,0. (a) acelerações tangencial, 0,667m/s 2, centrípeta, 1,78 m/s 2, e resultante, 1,90 m/s 2, e 21 o. (b) t= 24s. Construir o diagrama vetorial da aceleração do item (a).

Cap.04 Cinemática em duas Dimensões

Cap.04 Cinemática em duas Dimensões Cap.04 Cinemática em duas Dimensões Do professor para o aluno ajudando na avaliação de compreensão do capítulo. Fundamental que o aluno tenha lido o capítulo. 4.1 Aceleração Entender a Eq. 4.1: o vetor

Leia mais

Fundamentos de Mecânica 15ª Lista de Exercícios Junho de 2019

Fundamentos de Mecânica 15ª Lista de Exercícios Junho de 2019 Sumário Aplicações das leis de Newton ao Movimento Circular... 2 Um corpo em movimento circular uniforme... 2 1) RHK E4.21 Lançamento de funda... 2 2) Velocidade e aceleração dos ponteiros do relógio...

Leia mais

Física I Prova 1 04/06/2016a

Física I Prova 1 04/06/2016a Física I Prova 1 04/06/016a NOME MATRÍCULA TURMA PROF. Lembrete: A prova consta de 0 questões de múltipla escolha valendo 0,5 ponto cada. Utilize: g = 9,80 m/s, exceto se houver alguma indicação em contrário.

Leia mais

EXEMPLOS FORÇA CENTRÍFUGA AULA 23. Prof a Nair Stem Instituto de Física da USP

EXEMPLOS FORÇA CENTRÍFUGA AULA 23. Prof a Nair Stem Instituto de Física da USP EXEMPLOS FORÇA CENTRÍFUGA AULA 3 Prof a Nair Stem Instituto de Física da USP FORÇA CENTRÍFUGA Forças que aparecem em um referencial S em rotação uniforme em relação a um referencial S. Como por exemplo

Leia mais

Física I. Aula 05 Forças e Movimentos IV 2010/2011. Movimento Circular

Física I. Aula 05 Forças e Movimentos IV 2010/2011. Movimento Circular Física I 2010/2011 Aula 05 Forças e Movimentos IV Movimento Circular Sumário Movimento circular Movimento circular uniforme Movimento relativo a uma dimensão Movimento relativo a duas dimensões Física

Leia mais

Física I Prova 1 04/06/2016c

Física I Prova 1 04/06/2016c Física I Prova 1 04/06/016c NOME MATRÍCULA TURMA PROF. Lembrete: A prova consta de 0 questões de múltipla escolha valendo 0,5 ponto cada. Utilize:g = 9,80 m/s, exceto se houver alguma indicação em contrário.

Leia mais

Física 1. 1 a prova 22/09/2018. Atenção: Leia as recomendações antes de fazer a prova.

Física 1. 1 a prova 22/09/2018. Atenção: Leia as recomendações antes de fazer a prova. Física 1 1 a prova 22/09/2018 Atenção: Leia as recomendações antes de fazer a prova. 1- Assine seu nome de forma LEGÍVEL na folha do cartão de respostas. 2- Leia os enunciados com atenção. 3- Analise sua

Leia mais

Problemas propostos. Questões Demonstrativas

Problemas propostos. Questões Demonstrativas Problemas propostos Módulo 01 Nota: (i)ler atentamente o enunciado três ou mais vezes. (ii)traduzir o enunciado em um diagrama. (iii) Nomear as grandezas citadas e colocar seus valores, quando houver.

Leia mais

28/Fev/2018 Aula Aplicações das leis de Newton do movimento 4.1 Força de atrito 4.2 Força de arrastamento Exemplos.

28/Fev/2018 Aula Aplicações das leis de Newton do movimento 4.1 Força de atrito 4.2 Força de arrastamento Exemplos. 28/Fev/2018 Aula 4 4. Aplicações das leis de Newton do movimento 4.1 Força de atrito 4.2 Força de arrastamento Exemplos 5/Mar/2018 Aula 5 5.1 Movimento circular 5.1.1 Movimento circular uniforme 5.1.2

Leia mais

Bacharelado Engenharia Civil

Bacharelado Engenharia Civil Bacharelado Engenharia Civil Física Geral e Experimental I Prof.a: Érica Muniz 1 Período Lançamentos Movimento Circular Uniforme Movimento de Projéteis Vamos considerar a seguir, um caso especial de movimento

Leia mais

VETOR POSIÇÃO 𝑟 = 𝑥𝑖 + 𝑦𝑗 + 𝑧𝑘

VETOR POSIÇÃO 𝑟 = 𝑥𝑖 + 𝑦𝑗 + 𝑧𝑘 VETOR POSIÇÃO r = xi + yj + zk VETOR DESLOCAMENTO Se uma partícula se move de uma posição r 1 para outra r 2 : r = r 2 r 1 r = x 2 x 1 i + y 2 y 1 j + z 2 z 1 k VETORES VELOCIDADE MÉDIA E VELOCIDADE INSTANTÂNEA

Leia mais

SUGESTÃO DE ESTUDOS PARA O EXAME FINAL DE FÍSICA- 1 ANO Professor Solon Wainstein SEGUE ABAIXO UMA LISTA COMPLEMENTAR DE EXERCÍCIOS

SUGESTÃO DE ESTUDOS PARA O EXAME FINAL DE FÍSICA- 1 ANO Professor Solon Wainstein SEGUE ABAIXO UMA LISTA COMPLEMENTAR DE EXERCÍCIOS SUGESTÃO DE ESTUDOS PARA O EXAME FINAL DE FÍSICA- 1 ANO Professor Solon Wainstein # Ler todas as teorias # Refazer todos os exercícios dados em aula. # Refazer todos os exercícios feitos do livro. # Refazer

Leia mais

Forças centrípetas. Considere um ponto material de massa m sob a ação de três forças e descrevendo uma trajetória curva situado num certo plano.

Forças centrípetas. Considere um ponto material de massa m sob a ação de três forças e descrevendo uma trajetória curva situado num certo plano. Forças centrípetas Considere um ponto material de massa m sob a ação de três forças e descrevendo uma trajetória curva situado num certo plano. Decompondo essas forças nas direções tangente e normal à

Leia mais

Como os antigos egípcios levantaram os gigantescos blocos de pedra para construir a grande Pirâmide?

Como os antigos egípcios levantaram os gigantescos blocos de pedra para construir a grande Pirâmide? Como os antigos egípcios levantaram os gigantescos blocos de pedra para construir a grande Pirâmide? Força de Atrito A importância do atrito na vida diária: Cerca de 20 % da gasolina usada em um automóvel

Leia mais

FORÇA e INTERAÇÕES. Forças de contacto Quando uma força envolve o contacto direto entre dois corpos

FORÇA e INTERAÇÕES. Forças de contacto Quando uma força envolve o contacto direto entre dois corpos FORÇA e INTERAÇÕES Forças de contacto Quando uma força envolve o contacto direto entre dois corpos Forças de longo alcance Acuam mesmo quando os corpos não estão em contacto, como por exemplo as forças

Leia mais

MATEMÁTICA 1ª QUESTÃO. O valor do número real que satisfaz a equação =5 é. A) ln5. B) 3 ln5. C) 3+ln5. D) ln5 3. E) ln5 2ª QUESTÃO

MATEMÁTICA 1ª QUESTÃO. O valor do número real que satisfaz a equação =5 é. A) ln5. B) 3 ln5. C) 3+ln5. D) ln5 3. E) ln5 2ª QUESTÃO MATEMÁTICA 1ª QUESTÃO O valor do número real que satisfaz a equação =5 é A) ln5 B) 3 ln5 C) 3+ln5 D) ln5 3 E) ln5 ª QUESTÃO O domínio da função real = 64 é o intervalo A) [,] B) [, C), D), E), 3ª QUESTÃO

Leia mais

FORÇA e INTERAÇÕES. Forças de contacto Quando uma força envolve o contacto direto entre dois corpos

FORÇA e INTERAÇÕES. Forças de contacto Quando uma força envolve o contacto direto entre dois corpos FORÇA e INTERAÇÕES Forças de contacto Quando uma força envolve o contacto direto entre dois corpos Forças de longo alcance Acuam mesmo quando os corpos não estão em contacto, como por exemplo as forças

Leia mais

Física I VS 18/07/2015

Física I VS 18/07/2015 Física I VS 18/07/2015 NOME MATRÍCULA TURMA PROF. Lembrete: 20 questões de múltipla escolha. Cada questão vale 0,5 ponto Utilize: g = 9,80 m/s 2, exceto se houver alguma indicação em contrário. Nota 1.

Leia mais

FORÇA e INTERAÇÕES. Forças de contacto Quando uma força envolve o contacto direto entre dois corpos

FORÇA e INTERAÇÕES. Forças de contacto Quando uma força envolve o contacto direto entre dois corpos FORÇA e INTERAÇÕES Forças de contacto Quando uma força envolve o contacto direto entre dois corpos Forças de longo alcance Acuam mesmo quando os corpos não estão em contacto, como por exemplo as forças

Leia mais

Lista de exercícios e Mais Vetores

Lista de exercícios e Mais Vetores Lista de exercícios 11... e Mais Vetores Fís1 04/1 G.4 Ex. 11 p. 4 tons IF UFRJ 2004/1 Física 1 IFA (prof. Marta) 1. O produto vetorial de dois vetores é uma operação que associa a dois vetores ~a e ~

Leia mais

Exercícios de Fixação 24/08/2018. Professora Daniele Santos Física 2 ano Física Instituto Gay-Lussac

Exercícios de Fixação 24/08/2018. Professora Daniele Santos Física 2 ano Física Instituto Gay-Lussac Exercícios de Fixação 24/08/2018 Professora Daniele Santos Física 2 ano Física Instituto Gay-Lussac 1 - Um carteiro desloca-se entre os pontos A e B de certo bairro. Sabendo que cada quarteirão é aproximadamente

Leia mais

Lista 10: Energia. Questões. encontrar razões plausíveis para justificar suas respostas sem o uso de equações.

Lista 10: Energia. Questões. encontrar razões plausíveis para justificar suas respostas sem o uso de equações. Lista 10: Energia Importante: 1. Ler os enunciados com atenção. 2. Responder a questão de forma organizada, mostrando o seu raciocínio de forma coerente. 3. Siga a estratégia para resolução de problemas

Leia mais

Lista de Exercícios (Profº Ito) Dinâmica no Movimento Circular

Lista de Exercícios (Profº Ito) Dinâmica no Movimento Circular TEXTO PARA A PRÓXIMA QUESTÃO SE NECESSÁRIO, ADOTE g = 10 m/s. 1. Um circuito de Fórmula Mundial circular, com 320 m de raio, tem como velocidade de segurança 40 m/s. Calcule a tangente do ângulo de inclinação

Leia mais

Física 1 Resumo e Exercícios*

Física 1 Resumo e Exercícios* Física 1 Resumo e Exercícios* *Exercícios de provas anteriores escolhidos para você estar preparado para qualquer questão na prova. Resoluções grátis em CINEMÁTICA Movimento Linear Movimento Angular Espaço

Leia mais

Mecânica da Partícula 2ª lista de exercícios

Mecânica da Partícula 2ª lista de exercícios Mecânica da Partícula 2ª lista de exercícios 1. Um satélite em órbita ao redor da Terra é atraído pelo nosso planeta e, como reação, atrai a Terra. A figura que representa corretamente esse par ação-reação

Leia mais

IDEIAS - CHAVE. A massa de um corpo é uma medida da sua inércia.

IDEIAS - CHAVE. A massa de um corpo é uma medida da sua inércia. IDEIAS - CHAVE Os corpos interatuam por ação de forças. As interações são devidas ao contacto entre os corpos ou podem ocorrer à distância. Por exemplo, a força gravitacional é uma força de ação à distância.

Leia mais

EXERCÍCIOS PARA PROVA ESPECÍFICA E TESTÃO 1 ANO 4 BIMESTRE

EXERCÍCIOS PARA PROVA ESPECÍFICA E TESTÃO 1 ANO 4 BIMESTRE 1. (Unesp 89) Um cubo de aço e outro de cobre, ambos de massas iguais a 20 g estão sobre um disco de aço horizontal, que pode girar em torno de seu centro. Os coeficientes de atrito estático para aço-aço

Leia mais

Cap.06 Dinâmica I: Movimento em uma Dimensão

Cap.06 Dinâmica I: Movimento em uma Dimensão Cap.06 Dinâmica I: Movimento em uma Dimensão Do professor para o aluno ajudando na avaliação de compreensão do capítulo. Fundamental que o aluno tenha lido o capítulo. 6.1 Equilíbrio Estudar anotando a

Leia mais

1.3. Forças e movimentos. Professora Paula Melo Silva

1.3. Forças e movimentos. Professora Paula Melo Silva 1.3. Forças e movimentos Professora Paula Melo Silva QUEDA LIVRE O filósofo grego Aristóteles acreditava que os corpos mais pesados, abandonados de uma mesma altura, alcançariam o solo antes dos mais leves.

Leia mais

FAP151 - FUNDAMENTOS DE MECÂNICA. Junho de a. Lista de Exercícios. Aplicações das leis de Newton

FAP151 - FUNDAMENTOS DE MECÂNICA. Junho de a. Lista de Exercícios. Aplicações das leis de Newton FAP151 - FUNDAMENTOS DE MECÂNICA. Junho de 2017 9 a. Lista de Exercícios. Aplicações das leis de Newton Força conhecida, mas não constante, com cinemática completa. 1. Um carro de uma tonelada está parado

Leia mais

Fís. Leonardo Gomes (Guilherme Brigagão)

Fís. Leonardo Gomes (Guilherme Brigagão) Semana 11 Leonardo Gomes (Guilherme Brigagão) Este conteúdo pertence ao Descomplica. Está vedada a cópia ou a reprodução não autorizada previamente e por escrito. Todos os direitos reservados. CRONOGRAMA

Leia mais

Lista de Exercícios para a P1-2014

Lista de Exercícios para a P1-2014 Lista de Exercícios para a P1-2014 OBJETIVAS www.engenhariafacil.weebly.com 1)(Halliday-Adaptad Uma pessoa saltou do topo de um edifício de H m, caindo em cima da caixa de um ventilador metálico, que afundou

Leia mais

LISTAGEM DE CONTEÚDOS DE FÍSICA PARA O EXAME 1 ANO / 2012

LISTAGEM DE CONTEÚDOS DE FÍSICA PARA O EXAME 1 ANO / 2012 LISTAGEM DE CONTEÚDOS DE FÍSICA PARA O EXAME 1 ANO / 2012 # Velocidade escalar média # Movimento retilíneo uniforme # Movimento retilíneo uniformemente variado # Movimento de queda livre dos corpos # Movimento

Leia mais

LISTA 05 FUNDAMENTOS DE MECÂNICA

LISTA 05 FUNDAMENTOS DE MECÂNICA LISTA 05 FUNDAMENTOS DE MECÂNICA 01) Em 72s um móvel cuja velocidade escalar é 20km/h descreve uma trajetória circular de raio 0,10km. Determine o ângulo descrito pelo móvel nesse intervalo. R: Δ φ= 4,0rad

Leia mais

Física 1. 1 a prova 14/04/2018. Atenção: Leia as recomendações antes de fazer a prova.

Física 1. 1 a prova 14/04/2018. Atenção: Leia as recomendações antes de fazer a prova. Física 1 1 a prova 14/04/2018 Atenção: Leia as recomendações antes de fazer a prova. 1- Assine seu nome de forma LEGÍVEL na folha do cartão de respostas. 2- Leia os enunciados com atenção. 3- Analise sua

Leia mais

FUNDAMENTOS DE MECÂNICA. Junho de a Lista de Exercícios. Aplicações das leis de Newton

FUNDAMENTOS DE MECÂNICA. Junho de a Lista de Exercícios. Aplicações das leis de Newton 4300151 - FUNDMENTOS DE MECÂNIC. Junho de 2018 9 a Lista de Exercícios. plicações das leis de Newton Força conhecida, mas não constante, com cinemática completa. 1. Um carro de uma tonelada está parado

Leia mais

~é a força normal do bloco de cima sobre o bloco de baixo É o peso do bloco de cima (baixo)

~é a força normal do bloco de cima sobre o bloco de baixo É o peso do bloco de cima (baixo) Q1. (2,0 pontos) O coeficiente de atrito estático entre os blocos da figura vale 0,60. O coeficiente de atrito cinético entre o bloco inferior e o piso é de 0,20. A força F, aplicada ao bloco superior,

Leia mais

Lista 5: Trabalho e Energia

Lista 5: Trabalho e Energia Lista 5: Trabalho e Energia NOME: Matrícula: Turma: Prof. : Importante: i. Nas cinco páginas seguintes contém problemas para se resolver e entregar. ii. Ler os enunciados com atenção. iii. Responder a

Leia mais

Parte 2 - PF de Física I NOME: DRE Teste 1

Parte 2 - PF de Física I NOME: DRE Teste 1 Parte 2 - PF de Física I - 2017-1 NOME: DRE Teste 1 Nota Q1 Questão 1 - [2,5 ponto] Um astronauta está ligado a uma nave no espaço através de uma corda de 120 m de comprimento, que está completamente estendida

Leia mais

Lista 8 : Cinemática das Rotações NOME:

Lista 8 : Cinemática das Rotações NOME: Lista 8 : Cinemática das Rotações NOME: Turma: Prof. : Matrícula: Importante: i. Nas cinco páginas seguintes contém problemas para se resolver e entregar. ii. Ler os enunciados com atenção. iii. Responder

Leia mais

Aplicações de Leis de Newton

Aplicações de Leis de Newton Aplicações de Leis de Newton Evandro Bastos dos Santos 22 de Maio de 2017 1 Introdução Na aula anterior vimos o conceito de massa inercial e enunciamos as leis de Newton. Nessa aula, nossa tarefa é aplicar

Leia mais

Apresentação Outras Coordenadas... 39

Apresentação Outras Coordenadas... 39 Sumário Apresentação... 15 1. Referenciais e Coordenadas Cartesianas... 17 1.1 Introdução... 17 1.2 O Espaço Físico... 18 1.3 Tempo... 19 1.3.1 Mas o Tempo é Finito ou Infinito?... 21 1.3.2 Pode-se Viajar

Leia mais

FORÇA E MOVIMENTO Leis de Newton

FORÇA E MOVIMENTO Leis de Newton PROF. OSCAR FORÇA E MOVIMENTO Leis de Newton Qual é o fator responsável pela sensação de perigo para alguém que está no último carro de uma montanha russa? Uma força aceleração. atuando sobre o quilograma

Leia mais

3. Mecânica de Newton

3. Mecânica de Newton 3. Mecânica de Newton 3.1. Uma partícula carregada com carga q, quando colocada num campo eléctrico E, fica sujeita a uma força F = q E. Considere o movimento de um electrão e um protão colocados num campo

Leia mais

Lista de exercícios 2 Mecânica Geral III

Lista de exercícios 2 Mecânica Geral III Lista de exercícios 2 Mecânica Geral III 13.3 O trem de 160 Mg parte do repouso e começa a subir o aclive, como mostrado na figura. Se o motor exerce uma força de tração F de 1/8 do peso do trem, determine

Leia mais

Física I Prova 1 09/01/2016

Física I Prova 1 09/01/2016 Nota Física I Prova 1 09/01/2016 NOME MATRÍCULA TURMA PROF. Lembrete: A prova consta de 3 questões discursivas (que deverão ter respostas justificadas, desenvolvidas e demonstradas matematicamente) e 10

Leia mais

FORÇA e INTERAÇÕES. A unidade de força do SI é o newton A unidade de força do Sistema CGS é o Dine (dyn) ou Dina (Brasil)

FORÇA e INTERAÇÕES. A unidade de força do SI é o newton A unidade de força do Sistema CGS é o Dine (dyn) ou Dina (Brasil) Dinâmica Nota: As fotografias assinaladas com (1) foram retiradas do livro (1) A. Bello, C. Portela e H. Caldeira Ritmos e Mudança, Porto editora. As restantes são retiradas de Sears e Zemansky Física

Leia mais

Lista de exercícios Mecânica Geral III

Lista de exercícios Mecânica Geral III Lista de exercícios Mecânica Geral III 12.5 Uma partícula está se movendo ao longo de uma linha reta com uma aceleração de a = (12t 3t 1/2 ) m/s 2, onde t é dado em segundos. Determine a velocidade e a

Leia mais

Problemas e exercícios do capítulo 5

Problemas e exercícios do capítulo 5 Problemas e exercícios do capítulo 5 CAPÍTULO 5: 1) Um circuito de Fórmula Mundial circular, com 320 m de raio, tem como velocidade de segurança 40 m/s. Calcule a tangente do ângulo de inclinação da pista.

Leia mais

Dinâmica Circular Força Centrípeta

Dinâmica Circular Força Centrípeta Dinâmica Circular Força Centrípeta Quando um móvel realiza um MCU, a resultante das forças que atuam nesse móvel é radial CENTRÍPETA, ou seja, tem a direção do raio da curva e sentido para o centro. Globo

Leia mais

Disciplina: Física Ano: 2º Ensino Médio Professora: Daniele Santos Lista de Exercícios 04 Cinemática Vetorial e Composição de Movimentos

Disciplina: Física Ano: 2º Ensino Médio Professora: Daniele Santos Lista de Exercícios 04 Cinemática Vetorial e Composição de Movimentos INSTITUTO GAY-LUSSAC Disciplina: Física Ano: 2º Ensino Médio Professora: Daniele Santos Lista de Exercícios 04 Cinemática Vetorial e Composição de Movimentos Questão 1. Um automóvel percorre 6,0km para

Leia mais

MOVIMENTO EM DUAS E TRÊS DIMENSÕES

MOVIMENTO EM DUAS E TRÊS DIMENSÕES CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: MECÂNICA E TERMODINÂMICA MOVIMENTO EM DUAS E TRÊS DIMENSÕES Prof. Bruno Farias Introdução Neste módulo

Leia mais

FAP151 - FUNDAMENTOS DE MECÂNICA. Junho de a Lista de Exercícios. Aplicações das leis de Newton a sistemas com atrito.

FAP151 - FUNDAMENTOS DE MECÂNICA. Junho de a Lista de Exercícios. Aplicações das leis de Newton a sistemas com atrito. FAP151 - FUNDAMENTOS DE MECÂNICA. Junho de 2009 10 a Lista de Exercícios. Aplicações das leis de Newton a sistemas com atrito. Força conhecida, mas não constante, com cinemática completa. 1. Um carro de

Leia mais

Princípios da Dinâmica

Princípios da Dinâmica Princípios da Dinâmica Parte 6 Componentes da Força Resultante Profa. Kelly Pascoalino Imagine uma partícula qualquer que descreve uma trajetória curvilínea como indicado na figura. Suponhamos que no instante

Leia mais

Lista de exercícios: Dinâmica do movimento circular.

Lista de exercícios: Dinâmica do movimento circular. Lista de exercícios: Dinâmica do movimento circular. 1. (VUNESP) Uma partícula de massa m descreve uma trajetória circular com movimento uniforme, no sentido horário, como mostra a figura. Qual dos seguintes

Leia mais

LECTURE NOTES PROF. CRISTIANO. Movimento em 3 dimensões. Posição e vetor Velocidade

LECTURE NOTES PROF. CRISTIANO. Movimento em 3 dimensões. Posição e vetor Velocidade Fisica I IO Movimento em 3 dimensões Prof. Cristiano Oliveira Ed. Basilio Jafet sala 202 crislpo@if.usp.br Posição e vetor Velocidade 1 Durante o intervalo de tempo t a partícula se move do ponto P 1 onde

Leia mais

Lista 12: Rotação de corpos rígidos

Lista 12: Rotação de corpos rígidos Lista 12: Rotação de Corpos Rígidos Importante: i. Ler os enunciados com atenção. ii. Responder a questão de forma organizada, mostrando o seu raciocínio de forma coerente. iii. Siga a estratégia para

Leia mais

Exercícios 2 MU, MUV, Gráficos

Exercícios 2 MU, MUV, Gráficos Exercícios 2 MU, MUV, Gráficos 1) (Unitau-SP) Um móvel parte do quilômetro 50, indo até o quilômetro 60, de onde, mudando o sentido do movimento, vai até o quilometro 32. Quais são, respectivamente, a

Leia mais

Física 1. Resumo e Exercícios P1

Física 1. Resumo e Exercícios P1 Física 1 Resumo e Exercícios P1 Fórmulas e Resumo Teórico Parte 1 Derivada de polinômios - Considerando um polinômio P x = ax %, temos: d P x = anx%() dx Integral de polinômios - Considerando um polinômio

Leia mais

DINÂMICA APLICADA. Livro Texto adotado: Dinâmica: Mecânica para Engenheiros R.C. Hibbeler.

DINÂMICA APLICADA. Livro Texto adotado: Dinâmica: Mecânica para Engenheiros R.C. Hibbeler. DINÂMICA APLICADA Livro Texto adotado: Dinâmica: Mecânica para Engenheiros R.C. Hibbeler. Samuel Sander de Carvalho Samuel.carvalho@ifsudestemg.edu.br Juiz de Fora - MG Introdução: Objetivo: Estabelecer

Leia mais

Forças II Forças de Atrito

Forças II Forças de Atrito Forças II Forças de Atrito Forças de atrito: são forças que surgem durante o contato dos corpos e que se opõem ao movimento ou à tendência de movimento relativo entre os corpos. A força de atrito entre

Leia mais

Resultante Centrípeta

Resultante Centrípeta Questão 01) Uma criança está em um carrossel em um parque de diversões. Este brinquedo descreve um movimento circular com intervalo de tempo regular. A força resultante que atua sobre a criança a) é nula.

Leia mais

Física I Prova 1 29/03/2014

Física I Prova 1 29/03/2014 Posição na sala Física I Prova 1 9/03/014 NOME MATRÍCULA TURMA PROF. Lembrete: Todas as questões discursivas deverão ter respostas justificadas, desenvolvidas e demonstradas matematicamente. BOA PROVA

Leia mais

Física 1. 1 a prova 29/04/2017. Atenção: Leia as recomendações antes de fazer a prova.

Física 1. 1 a prova 29/04/2017. Atenção: Leia as recomendações antes de fazer a prova. Física 1 1 a prova 9/04/017 Atenção: Leia as recomendações antes de fazer a prova. 1- Assine seu nome de forma LEGÍVEL na folha do cartão de respostas. - Leia os enunciados com atenção. 3- Analise sua

Leia mais

Exercícios de Forças em Trajetórias Curvilíneas

Exercícios de Forças em Trajetórias Curvilíneas Exercícios de Forças em Trajetórias Curvilíneas 1. Na figura seguinte, um carrinho de massa 1,0kg descreve movimento circular e uniforme ao longo de um trilho envergado em forma de circunferência de 2,0m

Leia mais

FÍSICA - 1 o ANO MÓDULO 23 FORÇA CENTRÍPETA

FÍSICA - 1 o ANO MÓDULO 23 FORÇA CENTRÍPETA FÍSICA - 1 o ANO MÓDULO 23 FORÇA CENTRÍPETA N T P R O A B C T B P Como pode cair no enem? O Brasil pode se transformar no primeiro país das Américas a entrar no seleto grupo das nações que dispõem

Leia mais

1 Movimento Circular Lista de Movimento circular Cinemática do Ponto Material 7

1 Movimento Circular Lista de Movimento circular Cinemática do Ponto Material 7 Sumário 1 Movimento Circular 3 1.1 Lista de Movimento circular................................... 3 2 Cinemática do Ponto Material 7 3 Equilíbrio de Corpos no Espaço 9 3.1 Equilíbrio de Partícula.....................................

Leia mais

Lista 12: Rotação de corpos rígidos

Lista 12: Rotação de corpos rígidos Lista 12: Rotação de Corpos Rígidos Importante: i. Ler os enunciados com atenção. ii. Responder a questão de forma organizada, mostrando o seu raciocínio de forma coerente. iii. iv. Siga a estratégia para

Leia mais

Física 1. 1 a prova 08/10/2016. Atenção: Leia as recomendações antes de fazer a prova.

Física 1. 1 a prova 08/10/2016. Atenção: Leia as recomendações antes de fazer a prova. Física 1 1 a prova 08/10/2016 Atenção: Leia as recomendações antes de fazer a prova. 1- Assine seu nome de forma LEGÍVEL na folha do cartão de respostas. 2- Leia os enunciados com atenção. 3- Analise sua

Leia mais

Física 1. 2 a prova 02/07/2016. Atenção: Leia as recomendações antes de fazer a prova.

Física 1. 2 a prova 02/07/2016. Atenção: Leia as recomendações antes de fazer a prova. Física 1 2 a prova 02/07/2016 Atenção: Leia as recomendações antes de fazer a prova. 1- Assine seu nome de forma LEGÍVEL na folha do cartão de respostas. 2- Leia os enunciados com atenção. 3- Analise sua

Leia mais

Física I Prova 2 20/02/2016

Física I Prova 2 20/02/2016 Física I Prova 2 20/02/2016 NOME MATRÍCULA TURMA PROF. Lembrete: A prova consta de 3 questões discursivas (que deverão ter respostas justificadas, desenvolvidas e demonstradas matematicamente) e 10 questões

Leia mais

LISTA 1 DE EXERCÍCIOS

LISTA 1 DE EXERCÍCIOS CURSO: ENGENHARIAS LISTA 1 DE EXERCÍCIOS DISCIPLINA: FÍSICA GERAL E EXPERIMENTAL - MECÂNICA Professora: Paula Beghelli paula-beghelli@anhanguera.com Instruções: Resolver esta lista INDIVIDUAL ou em GRUPO

Leia mais

Mecânica I (FIS-14) Prof. Dr. Ronaldo Rodrigues Pelá Sala 2602A-1 Ramal 5785

Mecânica I (FIS-14) Prof. Dr. Ronaldo Rodrigues Pelá Sala 2602A-1 Ramal 5785 Mecânica I (FIS-14) Prof. Dr. Ronaldo Rodrigues Pelá Sala 2602A-1 Ramal 5785 rrpela@ita.br www.ief.ita.br/~rrpela Onde estamos? Nosso roteiro ao longo deste capítulo A equação do movimento Equação do movimento

Leia mais

Professor: Janner Matéria: Física

Professor: Janner Matéria: Física Professor: Janner Matéria: Física 1. (Unicamp) Um pêndulo cônico é formado por um fio de massa desprezível e comprimento L = 1,25 m, que suporta uma massa m = 0,5 kg na sua extremidade inferior. A extremidade

Leia mais

Importante: i. Nas cinco páginas seguintes contém problemas para se resolver e entregar. ii. Ler os enunciados com atenção.

Importante: i. Nas cinco páginas seguintes contém problemas para se resolver e entregar. ii. Ler os enunciados com atenção. Lista 10: Energia NOME: Turma: Prof. : Matrícula: Importante: i. Nas cinco páginas seguintes contém problemas para se resolver e entregar. ii. Ler os enunciados com atenção. iii. Responder a questão de

Leia mais

INSTITUTO GEREMÁRIO DANTAS COMPONENTE CURRICULAR: FÍSICA CIOS DE RECUPERAÇÃO FINAL

INSTITUTO GEREMÁRIO DANTAS COMPONENTE CURRICULAR: FÍSICA CIOS DE RECUPERAÇÃO FINAL INSTITUTO GEREMÁRIO DANTAS Educação Infantil, Ensino Fundamental e Médio Fone: (21) 21087900 Rio de Janeiro RJ www.igd.com.br Aluno(a): 1º Ano: C11 Nº Professora: Saionara Chagas Data: / /2016 COMPONENTE

Leia mais

FEP2195-Física Geral e Exp. para a Engenharia I - 1 a Prova - Gabarito 11/04/2013

FEP2195-Física Geral e Exp. para a Engenharia I - 1 a Prova - Gabarito 11/04/2013 FEP2195-Física Geral e Exp. para a Engenharia I - 1 a Prova - Gabarito 11/04/2013 1) Sabendo-se que a posição de uma partícula, em relação à origem O do plano xy, é determinada pelo vetor: ( ) 1 m r (t)

Leia mais

Notação Científica. n é um expoente inteiro; N é tal que:

Notação Científica. n é um expoente inteiro; N é tal que: Física 1 Ano Notação Científica n é um expoente inteiro; N é tal que: Exemplos: Notação Científica Ordem de Grandeza Qual a ordem de grandeza? Distância da Terra ao Sol: Massa de um elétron: Cinemática

Leia mais

PSVS/UFES 2014 MATEMÁTICA 1ª QUESTÃO. O valor do limite 2ª QUESTÃO. O domínio da função real definida por 3ª QUESTÃO

PSVS/UFES 2014 MATEMÁTICA 1ª QUESTÃO. O valor do limite 2ª QUESTÃO. O domínio da função real definida por 3ª QUESTÃO MATEMÁTICA 1ª QUESTÃO O valor do limite 3 x 8 lim é x 2 x 2 2ª QUESTÃO O domínio da função real definida por é 3ª QUESTÃO A imagem da função real definida por, para todo, é GRUPO 1 PROVA DE MATEMÁTICA

Leia mais

Notação Científica. n é um expoente inteiro; N é tal que:

Notação Científica. n é um expoente inteiro; N é tal que: Física 1 Ano Notação Científica n é um expoente inteiro; N é tal que: Exemplos: Notação Científica Ordem de Grandeza Qual a ordem de grandeza? Distância da Terra ao Sol: Massa de um elétron: Cinemática

Leia mais

Figura 3.2: Quadro artisticamente suspenso

Figura 3.2: Quadro artisticamente suspenso 3.1. Uma partícula carregada com carga q, quando colocada num campo eléctrico E, fica sujeita a uma força F = q E. Considere o movimento de um electrão e um protão colocados num campo eléctrico E = 10

Leia mais

DATA: 10/12/2018 ALUNO (a): Nº SÉRIE: 1 TURMA: DISCIPLINA: FÍSICA SETOR: A PROFESSOR(A): SILVANA ANTUNES EXAME

DATA: 10/12/2018 ALUNO (a): Nº SÉRIE: 1 TURMA: DISCIPLINA: FÍSICA SETOR: A PROFESSOR(A): SILVANA ANTUNES EXAME DATA: 10/12/2018 ALUNO (a): Nº SÉRIE: 1 TURMA: DISCIPLINA: FÍSICA SETOR: A PROFESSOR(A): SILVANA ANTUNES EXAME 1) A posição de um corpo só pode ser determinada em relação a outro tomado como referencial.

Leia mais

Grupo I. 4. Determine a distância percorrida pela bola desde o instante em que foi lançada até chegar ao solo. Apresente todas as etapas de resolução.

Grupo I. 4. Determine a distância percorrida pela bola desde o instante em que foi lançada até chegar ao solo. Apresente todas as etapas de resolução. Ficha 3 Forças e movimentos Considere g = 10 m s -2 Grupo I De uma janela a 6,0 m de altura do solo, uma bola, de massa 100 g, é lançada verticalmente para cima, com velocidade de módulo A força de resistência

Leia mais

3. Considere as duas diferentes situações em que uma mala está suspensa por dois dinamómetros como representado na Fig.1.

3. Considere as duas diferentes situações em que uma mala está suspensa por dois dinamómetros como representado na Fig.1. 1 II. 2. Mecânica de Newton 1. Um partícula carregada com carga q quando colocada num campo eléctrico E fica sujeita a uma força F = q E. Considere o movimento de um electrão e um protão colocados num

Leia mais

1

1 1. (Fgv) Uma criança está parada em pé sobre o tablado circular girante de um carrossel em movimento circular e uniforme, como mostra o esquema (uma vista de cima e outra de perfil). O correto esquema

Leia mais

Alexandre Diehl Departamento de Física UFPel

Alexandre Diehl Departamento de Física UFPel - 6 Alexandre Diehl Departamento de Física UFPel Características do movimento Módulo do vetor velocidade é constante. O vetor velocidade muda continuamente de direção e sentido, ou seja, existe aceleração.

Leia mais

Física 1. 3 a prova 07/01/2017. Atenção: Leia as recomendações antes de fazer a prova.

Física 1. 3 a prova 07/01/2017. Atenção: Leia as recomendações antes de fazer a prova. Física 1 3 a prova 07/01/2017 Atenção: Leia as recomendações antes de fazer a prova. 1- Assine seu nome de forma LEGÍVEL na folha do cartão de respostas. 2- Leia os enunciados com atenção. 3- Analise sua

Leia mais

Cap.12: Rotação de um Corpo Rígido

Cap.12: Rotação de um Corpo Rígido Cap.12: Rotação de um Corpo Rígido Do professor para o aluno ajudando na avaliação de compreensão do capítulo. Fundamental que o aluno tenha lido o capítulo. Introdução: Produto vetorial Ilustração da

Leia mais

Física. Física Módulo 1 Velocidade Relativa, Movimento de Projéteis, Movimento Circular

Física. Física Módulo 1 Velocidade Relativa, Movimento de Projéteis, Movimento Circular Física Módulo 1 Velocidade Relativa, Movimento de Projéteis, Movimento Circular Velocidade Relativa Um Gedankenexperiment Imagine-se agora em um avião, a 350 km/h. O destino (a direção) é por conta de

Leia mais

Gravitação IME. Lista de Exercícios 3

Gravitação IME. Lista de Exercícios 3 Gravitação 4300156 IME Lista de Exercícios 3 Q1 Considere as afimações abaixo e considere se são corretas ou incorretas, justificando. a) A segunda Lei de Kepler implica que velocidade dos planetas ao

Leia mais

Universidade Federal do Rio de Janeiro Instituto de Física Física 1 - Turmas de 6 horas 2015/2 Oficinas de Física 1 Exercícios E4*

Universidade Federal do Rio de Janeiro Instituto de Física Física 1 - Turmas de 6 horas 2015/2 Oficinas de Física 1 Exercícios E4* Universidade Federal do Rio de Janeiro Instituto de Física Física 1 - Turmas de 6 horas 2015/2 Oficinas de Física 1 Exercícios E4* 1) Um trabalhador de uma fábrica exerce uma força horizontal para empurrar

Leia mais

Halliday Fundamentos de Física Volume 1

Halliday Fundamentos de Física Volume 1 Halliday Fundamentos de Física Volume 1 www.grupogen.com.br http://gen-io.grupogen.com.br O GEN Grupo Editorial Nacional reúne as editoras Guanabara Koogan, Santos, Roca, AC Farmacêutica, LTC, Forense,

Leia mais

3ª Ficha de Avaliação de Conhecimentos Turma: 11ºA. Física e Química A - 11ºAno

3ª Ficha de Avaliação de Conhecimentos Turma: 11ºA. Física e Química A - 11ºAno 3ª Ficha de Avaliação de Conhecimentos Turma: 11ºA Física e Química A - 11ºAno Professora Paula Melo Silva Data: 22 de novembro Ano Letivo: 2016/2017 135 min + 15 min 1. Considere o gráfico v(t) correspondente

Leia mais

Lista de Exercícios de Física Professor Ganso 2º Bimestre

Lista de Exercícios de Física Professor Ganso 2º Bimestre 1) (Uff) Dois corpos, um de massa m e outro de massa 5m, estão conectados entre si por um fio e o conjunto encontra-se originalmente em repouso, suspenso por uma linha presa a uma haste, como mostra a

Leia mais

Física 1. 2 a prova 02/07/2016. Atenção: Leia as recomendações antes de fazer a prova.

Física 1. 2 a prova 02/07/2016. Atenção: Leia as recomendações antes de fazer a prova. Física 1 2 a prova 02/07/2016 Atenção: Leia as recomendações antes de fazer a prova. 1- Assine seu nome de forma LEGÍVEL na folha do cartão de respostas. 2- Leia os enunciados com atenção. 3- Analise sua

Leia mais

Gabarito. (a)[0,3] (b)[1,0] Pela segunda lei de Newton teremos que. m~a = ~ F R = ~ F + ~ P + ~ f + ~ N.

Gabarito. (a)[0,3] (b)[1,0] Pela segunda lei de Newton teremos que. m~a = ~ F R = ~ F + ~ P + ~ f + ~ N. Questão 1 [valor 2,3] Um bloco de massa m desce acelerado ao longo de uma rampa inclinada de um ângulo em relação à horizontal. Um dispositivo exerce sobre o bloco uma força ~ F constante horizontal, como

Leia mais