Anais do IX Seminário Nacional de História da Matemática Sociedade Brasileira de História da Matemática

Tamanho: px
Começar a partir da página:

Download "Anais do IX Seminário Nacional de História da Matemática Sociedade Brasileira de História da Matemática"

Transcrição

1 Anais do IX Seminário Nacional de História da Matemática Sociedade Brasileira de História da Matemática Números Negativos: Uma trajetória Histórica Negative Numbers: A Historical Trajectory Pedro Franco de Sá 1 Luis Jorge Souza dos Anjos 2 Resumo Este trabalho apresenta os resultados de uma pesquisa bibliográfica sobre a História dos números relativos que teve como objetivo responder a seguinte questão: como a idéia dos números negativos se desenvolveu ao longo da história? A motivação da pesquisa foi o fato que desde a nossa formação escolar elementar nos questionamos, sem obter uma resposta plausível, o porquê das regras operatórias com números negativos, em particular para a regra da multiplicação de dois números negativos. A pesquisa ocorreu por meio da consulta de diversos trabalhos sobre História da Matemática e o trabalho ficou dividido nas seguintes partes: números negativos na antiguidade, números negativos na idade média, números negativos na idade moderna e números negativos contemporânea. Durante a apresentação de cada idade histórica são apresentados personagens envolvidos com as operações envolvendo os números negativos. Os resultados indicam que na idade antiga temos registro na civilização grega onde são encontrados indícios de operações com números negativos, na obra de Diofanto e na obra chinesa os noves capítulos da arte de calcular. Na idade média encontramos que os hindus introduziram os números negativos para representar débitos e também créditos, sendo Brahmagupta quem também estabeleceu as quatro operações com números negativos. Na modernidade os números relativos começaram a aparecer em trabalhos de Matemáticos como o de Simon Stevin, Colin MacLaurin, Leonhard Euler e René Descartes, nesse contexto a discussão do conceito de número negativo praticamente não se alterou. Porém, mesmo com os números negativos sendo mais tratados como objeto de estudo seu conceito ainda continuou fortemente ligado a idéia da metaforização do número. Na idade Contemporânea, tal problema foi superado no fim do século XIX, como consequência do movimento de aritimização da análise, com os trabalhos de Hankel e Dedekind nos quais eles apresentam os números como fruto da abstração da mente humana, o que extinguiu a necessidade da metáfora. Como conseqüência disso surgiram outras construções para os números negativos como a teoria dos pares ordenados proposta por Hankel e desenvolvida por Stolz e a teoria das congruências proposta por Kronecker, que culminou com a interpretação das regras operatórias dos números inteiros como conseqüência do referido conjunto possuir a estrutura do anel comutativo com unidade. Palavras-chave: História. História da Matemática. História dos Números Negativos. Abstract This paper presents the results of a literature on the history of figures aimed to answer the following question: how the idea of negative numbers was developed throughout history? The motivation of the research was the fact that since our elementary school education in question, without getting a plausible answer, why the operative rules with negative numbers, in particular for the rule of multiplying two negative numbers. The research was undertaken through consultation of several works on history of mathematics and the work was divided into the following parts: negative numbers of old, negative numbers in middle age, negative numbers in modern and contemporary negative numbers. During the presentation of each age are presented historical characters involved in operations involving negative numbers. The 1 Universidade do Estado do Pará. pedro.franco.sa@gmail.com 2 Universidade Federal do Pará. luisjorge.mat.edu@gmail.com

2 Anais do IX Seminário Nacional de História da Matemática 2 results indicate that in old age in Greek civilization we have record where they found traces of operations with negative numbers in the work of Diophantus and Chinese work in the nine chapters of the art of calculating. In the Middle Ages we find that the Hindus introduced negative numbers to represent debts and credits as well, with Brahmagupta who also established the four operations with negative numbers. In modernity the figures began to appear in works of mathematicians such as Simon Stevin, Colin MacLaurin, Leonhard Euler, and Rene Descartes, in this context to discuss the concept of negative number has hardly changed. However, even with negative numbers being treated more as objects of study the concept is still strongly linked to continued idea of the number of metaphors. Contemporary age, this problem was overcome in the late nineteenth century as a consequence of movement arithmetization of analysis, the work of Hankel and Dedekind in which they present the numbers as a result of abstraction of the human mind, which eliminated the need for metaphor. As a consequence other buildings appeared to negative numbers as ordered pairs of the theory proposed by Hankel and developed by Stolz and the theory of congruences proposed by Kronecker, which culminated in the interpretation of the operative rules of whole numbers as a consequence of this package has the structure commutative ring with unity. Keywords: History. History of the Mathematics. History of the Negative Number. Introdução A trajetória histórica dos números pode ser dividida em duas categorias: uma que tem sua origem por motivação externa ou das atividades de contagem e medida e outra que tem sua origem interna ou das necessidades da própria matemática. Os números naturais e as frações têm sua origem das atividades de contagem e medida, o que talvez tenha levado os membros da escola pitagórica a postularem que na natureza tudo é número devido acreditarem que tudo podia ser contado, logo atribuído um número, e que a qualquer medida também se poderia atribuir um número ou uma razão entre números. Essa crença foi abalada com a descoberta das grandezas incomensuráveis o que fez a matemática grega privilegiar o estudo da geometria em detrimento da aritmética como fonte de rigor para as verdades matemáticas. Os números negativos, os irracionais e os complexos têm sua trajetória originada nas necessidades da própria matemática, mais particularmente das manipulações algébricas. Neste trabalho apresentaremos algumas informações sobre a trajetória histórica do conceito de número negativo. Os números negativos na Antiguidade A Idade Antiga foi marcada pelos feitos das grandes civilizações. Entre elas temos a civilização babilônica, a egípcia, a grega e a chinesa. Os autores como (BOYER, 1996) e (EVES, 2004) afirmam que nas civilizações babilônica e egípcia não foram encontrados registros que permitam concluir que algum uso dos números negativos por estas civilizações. Segundo (EVES, 2004) um dos trabalhos mais antigos de matemática na china é o livro intitulado I-Ching ou livro das permutações datado do período Shang, que foi uma dinastia surgida por volta de 1500 a.c. e que ruiu por volta de 1027 a.c. Acredita-se que esse livro tenha sido escrito por Wön-Wang ( a.c.). É nesse livro que aparece o mais antigo exemplo de quadrado mágico que se tem registro.

3 Anais do IX Seminário Nacional de História da Matemática 3 O Jiu-Zhang Suan-Shu ou nove capítulos sobre a arte aritmética ele foi escrito por vários autores entres o décimo e o segundo século antes de cristo. Tal livro contém 246 problemas sobre mensuração de terras, agricultura, sociedades, engenharia, impostos, cálculos, solução de equações e propriedades dos triângulos retângulos. Segundo (STRUIK, 1992) problema ligado ao dia a dia dos matemáticos chineses conduziria os a sistemas de equações lineares que era escrito na forma de matriz dos coeficientes. A solução era dada pelo que nós chamamos hoje de transformação de matrizes. É nestas matrizes que encontramos pela primeira vez na história da matemática a presença dos números negativos. No entanto, de acordo com (FOSSA E ANJOS, 2007) afirmam que durante os primeiros mil anos da era cristã os chineses não concebiam o número negativo como entidades matemáticas independentes. Na Grécia antiga foi onde ocorreu o inicio da matemática demonstrativa. Naquela região ao longo das costas da Ásia Menor e posteriormente na parte continental da Grécia o pensamento racionalista floresceu com perguntas do tipo como e por quê. Na antiga Grécia existiu uma escola filosófica denominada escola pitagórica. Ela baseava-se na suposição de que a causa última das várias características do homem e da matéria são os números inteiros. Entre as mais variadas contribuições dos pitagóricos à matemática está o famoso teorema de Pitágoras. Tal teorema, assim como outras descobertas matemáticas, não se sabe ao certo quem realmente o descobriu, pois eles tinham uma espécie de código de conduta o qual todas as descobertas deveriam ser atribuídas ao líder e fundador Pitágoras. (EVES, 2004) Nesse contexto surgiu a figura de Diofanto de Alexandria (250 a.c-350 a.c). Ele escreveu três trabalhos: Aritmética, da qual só restam seis de treze livros, Sobre números poligonais do qual restou uma pequena parte do original e prismas que foi totalmente perdido. Ele foi considerado criador da álgebra por introduzir notações abreviadas para representar potências e quantidades desconhecidas e, além disso, por abordar a resolução de equações algébricas sem utilizar-se da geometria. Embora Diofanto tenha dado várias contribuições à álgebra ele, não fez qualquer referência aos números negativos. No entanto, no começo do livro I da sua Aritmética, que consiste em uma coleção de 150 problemas, ele apresentou uma declaração muito importante a respeito do que hoje é a multiplicação de números negativos afirmando que o que está em falta multiplicado pelo que falta resulta em algo positivo; enquanto que o que está em falta multiplicado pelo que é positivo resulta em algo que está em falta. Daí pode-se observar que os matemáticos gregos já conheciam a famosa regra de sinais menos por menos dá mais e menos por mais dá menos ainda muito utilizadas nos dias de hoje. Mesmo tendo um enfoque prático Diofanto sinaliza a necessidade

4 Anais do IX Seminário Nacional de História da Matemática 4 da criação de um novo tipo de número ainda que na prática diária da época eles não fossem tão importantes. (GONZALEZ, 1990), (BOYER, 1996) e (GLAESER, 1985). Os números negativos na Idade média No período de 200 d.c. a 1200 a civilização de Alexandria influenciou os hindus. Como conseqüência a matemática hindu sofreu a mesma influencia (KLINE, 1972). Um dos grandes matemáticos indianos foi Brahmagupta. Ele foi matemático e astrônomo nascido na cidade Ujjain, na Índia central. Em 628 d.c. ele escreveu obra intitulada BrahmasphutaSidd hanta ( A abertura do universo ). Esse livro é um trabalho sobre astronomia em vinte e um capítulos, dos quais o 12º e o 18º se ocuparam da matemática. Neste livro ele define o zero como resultado de uma subtração de um número por ele mesmo. A aritmética sistematizada dos números negativos e do zero encontram-se pela primeira vez em sua obra. Brahmagupta dá em sua obra regras aritméticas de adição e multiplicação e também introduz os números negativos em termos de fortunas (números positivos) e débitos (números negativos). Ele, em sua obra fornece as seguintes regras operatórias com os números negativos: positivo dividido por positivo, ou negativo dividido por negativo, é afirmativo. Cifra dividida por cifra é nada. Positivo dividido por negativo é negativo. Negativo dividido por positivo é negativo. Positivo ou negativo dividido por cifra é uma fração com esse denominador. Brahmagupta complicou-se um pouco ao fazer a afirmação de que 0/0=0, mas na questão de a : 0 ele não se comprometeu (BOYER, 1996). Entretanto, a visão dos números negativos como débito não preenchia o requisito da necessidade da uma metáfora que tinha sido adotado pelos gregos, ou seja, a idéia de debito não era um modelo em termos de realidade (MEDEIROS e MEDEIROS, 1992). Outro matemático hindu muito notável foi Bhaskara ( ). Seus trabalhos versaram sobre astronomia e matemática. Seu livro mais famoso é o Siddahanta S iromani ( Diadema sobre um sistema astronômico ) esta publicação faz poucas inovações em relação ao trabalho de Brahmagupta escrito cinco séculos antes. As obras mais importantes de Bhaskara são o Lilavati e o Vija-Ganita. Nestas obras encontramos numerosos problemas sobre tópicos mais utilizados pelos hindus como equações lineares e quadráticas. Num desses livros Bhaskara resolve uma equação do segundo grau e encontra as raízes 50 e -5 como soluções do problema. Para o segundo valor ele considerou inadequado devido as pessoas ainda não aceitarem soluções negativas. Bhaskara também afirmava que as raízes negativas não podiam existir porque um número negativo não é um quadrado. Essa afirmação ele fez sem dar definições, axiomas ou teoremas. Contudo, os números negativos ganharam com isso uma aceitação, ainda que vagarosamente (KLINE, 1972), (BOYER, 1996) e (EVES, 2004).

5 Anais do IX Seminário Nacional de História da Matemática 5 Os árabes apesar de sua contribuição para o aperfeiçoamento do sistema de numeração hindu por meio dos trabalhos de um dos seus maiores matemáticos, Al-Kwarizmi que faleceu em 850 d.c. Em oposição a Brahmagupta, Al-Kwarizmi e outros matemáticos árabes só consideravam raízes positivas e não utilizavam nenhum tipo de abreviatura ou símbolos de notação. Era totalmente oral, isto é, utilizavam-se apenas da linguagem natural e careciam de um simbolismo específico. Com isso, apesar dos árabes conhecerem os números negativos, devido a influencia hindu a aplicação dos números negativos foi não utilizada pelos árabes na idade media. (KLINE, 1972) Os números negativos na Idade Moderna Apesar dos desenvolvimentos de Brahmagupta, muitos matemáticos europeus, nos séculos XVI e XVII, não apreciavam os números negativos e se esses números apareciam nos seus cálculos, eles os consideravam falsos ou impossíveis. Simon Stevin ( ) um matemático Belga, contribuiu para o processo de incorporação dos números negativos no meio acadêmico quando aceitou esse tipo de número como raízes e coeficientes de equações com o uso da proposição de que as raízes negativas das equações são as raízes positivas da equação obtida pela substituição de x por (-x), ou seja, se -2 era raiz de uma equação x 2 -px = q, isto implicava que +2 é raiz de -x 2 + px = -q. Ele admitiu a adição de x + (-y) em lugar de considerar a subtração de y de x. Também justificou geometricamente a regra da multiplicação de números negativos utilizando uso da identidade algébrica: (a-b).(c-d) = acbc- ad+ bd. Mas nada afirmou sobre seu direito de existir como símbolo de uma quantidade, ou seja, um número propriamente dito. Seu uso restringiu-se como um artifício de cálculo e seu êxito nos cálculos justificavam seu uso (GLAESER, 1985) e (KLINE, 1972). Girolamo Cardano ( ) em sua obra Ars Magna dividiu os números entre números verdadeiros, ou seja, os números considerados reais em sua época, naturais, frações positivas e alguns racionais; e números fictícios ou números falsos correspondendo aos negativos e suas raízes complexas. É no século XVIII que a situação dos números negativos mudou consideravelmente quando foi descoberta uma interpretação geométrica dos números positivos e negativos como sendo segmentos de direções opostas. Os números negativos começaram a aparecer naturalmente em trabalhos científicos, justificados pela seguinte frase: a eficácia do cálculo é suficiente para confortar o matemático em sua fé. Porém, em trabalhos de cunho didático para iniciantes, ainda não houvera um pesquisador capaz de formalizar com clareza de raciocínio a validade dos números negativos. Aos poucos foram surgindo matemáticos que começaram a inserir novas idéias na ciência. Mas

6 Anais do IX Seminário Nacional de História da Matemática 6 inicialmente vamos falar um pouco de famosos matemáticos que repudiavam os negativos (GLAESER, 1985) e (BOYER, 1996). François Viète ( ) é conhecido como um dos introdutores dos símbolos "+", "-" e "=", entretanto estes símbolos referiam-se apenas à operação de subtração entre números 'verdadeiros', isto é, positivos. Para Viète, os números negativos eram desprovidos do significado intuitivo e físico, era do tipo de que em vez de dizer acrescente -3, diria diminua 3. Mas, Viète acabou contribuindo para o amadurecimento dos números relativos, com a inserção de uma nova notação na matemática que passou a ser abundantemente utilizada pelos matemáticos no futuro. Descartes ( ) na obra, La Géometre, inclui a aplicação da álgebra à geometria, o que originou a Geometria Cartesiana. Ele tomou como 'falsas as raízes negativas, alegando serem menores que nada e desenvolveu a transformação das raízes negativas em positivas, tal atitude mostra que ele se desvia do problema revelando insegurança diante do uso dos números negativos. Com isso, ele estabelecia que o número de raízes verdadeiras era igual a, no máximo, o número de trocas de sinais nos coeficientes da equação. Já G. Leibniz ( ) afirmou que se poderia calcular com as proporções, -1: 1 = 1: -1, uma vez que 'formalmente' isto equivalia a calcular com quantidades imaginárias, que já àquela época haviam sido introduzidas. Leibniz, nada mais fez que condicionar a validade das operações com os negativos, até então obscuras. Na ausência de fundamentação estrutural, até mesmo para os positivos, tomou a regra (-) x (-) = (+) sem discussão (MEDEIROS e MEDEIROS, 1992). Outros matemáticos dos séculos XVI e XVII, que não aceitaram os números negativos como mais que meros símbolos e os que o aceitavam não os admitiam como raízes de equações, a exemplo temos Pierre de Fermat ( ) que fez com que seu amigo Jacques de Billy redigisse conselhos sobe o comportamento a adotar diante de uma raiz falsa em uma equação diofantina a fim de se obter uma solução aceitável. Até aqui percebemos que a difusão dos números negativos não se deu de forma tranqüila e imediata. E esta descrença quanto aos números negativos vão permanecer até o século XIX (GLAESER, 1985). Foi no final do século XVII que nasceu um matemático que começou a mudar definitivamente a aceitação dos números negativos neste momento em que a matemática européia desenvolvia-se nasceu um matemático que começou a mudar definitivamente a aceitação dos números negativos, seu nome era Colin MacLaurin ( ) em seu livro "Tratado da Álgebra" (1748) publicado postumamente que se tornou uma obra de referência

7 Anais do IX Seminário Nacional de História da Matemática 7 na Grã-Bretanha, pois tratou de definições sobre quantidades negativas o que representou um grande avanço na época. Nesta obra, MacLaurin expõe a idéia de que uma quantidade negativa é tão real quanto uma positiva, porém tomada em sentido oposto. Entretanto, ele afirmava que esta quantidade só existiria por comparação e nunca isoladamente. Para isto ele enunciou: se uma quantidade negativa não possui outra que lhe seja oposta não se pode desta subtrair outra menor. Ou seja, Maclaurin somente admitia quantidades negativas em relação ao zero origem. Algo que outrora causava grandes conflitos, pois não se faziam a distinção do zero absoluto ao zero relativo à origem. Em um trecho de sua obra ele define a regra de sinais, esta dedução deu início a uma era de formalismo até então inexistente. Ele foi o primeiro matemático moderno que chegou muito perto de compreender os números negativos tornando-se, portanto, uma importante referência para as futuras gerações de matemáticos (MEDEIROS e MEDEIROS, 1992) e (BOYER, 1996). Leonhard Euler ( ) foi um dos mais destacados matemáticos do século XVIII, manipulava números negativos e complexos com extrema naturalidade, porém, sem levantar polêmicas sobre o grau de validade de seus métodos. Desenvolveu uma obra de cunho pedagógico para principiantes, em 1770, tentando justificar a regra. Em sua obra Elementos de Álgebra, Euler discorre sobre os números negativos com extrema naturalidade, divaga a respeito de números simétricos e dá vários exemplos de operações com números negativos. É claro que este tipo de argumentação vem demonstrar que qualquer matemático mais rigoroso, não pode ficar satisfeito, pois principalmente o terceiro argumento de Euler não consegue provar ou mesmo justificar coerentemente que negativo por negativo é igual a positivo. No fundo, este tipo de argumentação denota que Euler não tinha ainda conhecimentos suficientes para justificar estes resultados convincentemente. Na mesma obra de Euler podemos verificar que ele entende os números negativos como sendo apenas uma quantidade que se pode representar por uma letra precedida do sinal (menos). Euler não compreende ainda que os números negativos sejam quantidades menores que zero (BOYER, 1996) e (GLAESER, 1985). Jean Le Rond D Alembert ( ) foi enciclopedista e demonstrou-se confuso na assimilação dos números relativos, conforme mostra o artigo Negativo que escreveu na Enciclopédia temos: "Dizer que as quantidades negativas estão abaixo de nada é afirmar uma coisa que não se pode conceber" e "Quantidades negativas encontradas no cálculo algébrico indicam realmente quantidades positivas que supusemos numa falsa posição. O sinal de menos que encontramos antes de uma quantidade serve para retificar um erro que cometemos na hipótese inicial". (GLAESER, 1985, p. 73)

8 Anais do IX Seminário Nacional de História da Matemática 8 Os números negativos na idade contemporânea Augustin Louis Cauchy ( ) em meio a todas essas idéias que tangenciavam a historia dos números negativos, Cauchy foi o responsável pelo início de uma confusão entre (+ e -) operatórios e predicativos e que futuramente irá despertar o interesse de Hankel. Ele, em um de seus artigos define as leis de crescimento e diminuição, respectivamente, pelos sinais + e - (operatórios) e em seguida define quantidades negativas por grandezas que diminuem representadas por um número precedido do sinal e positivas precedido pelo sinal +. No entanto estas definições caíram em contradição, pois podemos diminuir um número (grandeza) positivo multiplicando-o por um fator entre 0 e 1, e além disto sabe-se que o produto de duas quantidades negativas resultaria num aumento, contradizendo portanto, às definições cauchynianas. Porém, ele se pôs a refletir e então adotou um novo ponto de vista, apresentando a multiplicação de modo formal. A partir destas quatro equações Cauchy define a regra de sinais. Finalmente Richard Dedekind ( ), estabeleceu uma relação de equivalência entre pares de números naturais e faz referência da subtração como inversa da adição: a- b = c- d, logo a + d = b + d. Dedekind demonstrou que esta relação é de equivalência, e que o conjunto das classes de equivalência será o conjunto dos números inteiros. Porém, a legitimidade dos números negativos deve-se definitivamente a Hermann Hankel (BOYER, 1996) e (EVES, 2004). Hermann Hankel ( ) foi quem publicou em 1867, "Teoria do Sistema dos números Complexos". Ele formulou o princípio de permanência das formas equivalentes e das leis formais que estabelece um critério geral de algumas aplicações do conceito de número, que atinge o máximo de compreensão sobre os números relativos. É importante destacar que Hankel tinha o propósito de definir a teoria sobre números complexos e foi apenas de passagem, em algumas de suas demonstrações que ele desvendou por completo todas as dúvidas que pairavam sobre os números negativos. Ele afirmava que os números não são descobertos e sim inventados, imaginados. Ou seja, aqueles que se aventurarem em procurar todas as explicações lógicas na natureza, ou mundo real, jamais conseguirão adquirir maturidade em conceitos matemáticos, que outrora, são definidos para um mundo ideal. Sob esta linha de raciocínio ele abandonou o ponto de vista "concreto" baseado em exemplos práticos passando a adotar o "formal" a partir das propriedades aditivas de IR e multiplicativas em IR +, Hankel propôs estender estas propriedades de IR + a IR (BOYER, 1996) e (EVES, 2004). Diante da revolução causada pela obra de Hankel, surge então a seguinte indagação seria possível obter-se este nível de compreensão sobre os números negativos, séculos

9 Anais do IX Seminário Nacional de História da Matemática 9 antes?. Se os antecessores de Hankel dispusessem de um bom modelo capaz de sustentar as principais propriedades sobre o conjunto dos números negativos, certamente a resposta para esta pergunta seria óbvia, sim. Porém a história mostrou que os dois principais modelos, comercial (dívidas e bens) e geométrico (produto equivalente a área), possuíam falhas que de certo só serviram para desnortear o raciocínio de grandes matemáticos que calcaram suas teorias sobre tais modelos. Portanto, a revolução principal realizada por Hankel foi a de recusar a busca por um modelo (GLAESER, 1985) e (MEDEIROS e MEDEIROS, 1992). No final do século XIX surgiram teorias com o objetivo de dar existência ao numero inteiro ou de construir o sistema dos números inteiros Z, sem se importar com o significado concreto ou metafórico buscado pelos matemáticos anteriores. Praticamente todas as teorias se basearam no principio da permanência das formas. Essas teorias podem ser classificadas em dois grandes grupos: extensão do número cardinal e extensão do número ordinal. No grupo das teorias dos números inteiros como extensão do número cardinal temos a teoria dos pares ordenados. Essa teoria foi construída a partir da idéia de Hankel de conceber um número negativo como a diferença de dois naturais com o minuendo menor que o subtraendo, junto com a idéia de Hamilton de considerar os números complexos como pares de números reais. A primeira versão da teoria dos pares foi dada pro Hankel em Posteriormente foi desenvolvida por Otto Stolz em 1885, depois por Tannery em 1886 e finalmente por Dedekind. Além da teoria dos pares ordenados temos a teoria das congruências que foi proposta por Leopold Kronecker em 1887, a teoria das congruências interpretou o calculo dos números inteiros como o calculo de congruências modulo x +1 em um anel de polinômios em uma variável com coeficientes naturais. A intenção de Kronecker foi justificar o cálculo com os números inteiros sem propor uma definição dos mesmos. Outra teoria dentro do grupo em questão foi a teoria dos operadores que foi proposta por Méray que no ano de 1889 realizou um tratamento das frações como operadores e devido ao sucesso obtido em 1890 propôs uma teoria para os números inteiros com base no tratamento dado as frações, ou seja, interpretando os números inteiros como operadores. Dentre as teorias dos números inteiros como extensão do cardinal a teoria dos pares foi a mais amplamente difundida. As teorias dos números inteiros como extensão do número ordinal se basearam na idéia intuitiva de que os números inteiros estendem a ordem preexistente entre os números positivos e materializaram a reta numérica que já vinha desde os tempos de Isaac Newton. Com esta concepção o numero inteiro designa uma posição de objetos de uma série que procede ilimitadamente não somente após cada elemento, mas também antes de cada elemento. Uma versão da teoria dos números inteiros como extensão do número ordinal foi desenvolvida por Alessandro Padoa que propôs

10 Anais do IX Seminário Nacional de História da Matemática 10 uma teoria axiomática, uma generalização da axiomática de Peano para o número natural. Outro matemático que contribuiu com uma teoria dos números inteiros como extensão do número ordinal foi Bertrand Russel que propôs uma definição de numero inteiro baseada na relação de ordem. Caracterizou a idéia de ordem como uma relação assimétrica e transitiva e definiu os números inteiros como relações assimétricas entre números naturais. A teoria de Russel também se relacionou com a teoria de Dedekind, pois para este um número inteiro era uma classe de equivalência de pares ordenados de números naturais que coincidia com o grafo da relação proposta por Russel (GONZALEZ, 1990). Considerações finais A realização deste estudo permitiu o resgate histórico preliminar do desenvolvimento histórico das regras operatórias dos números negativos que culminou na construção dos números inteiros. Talvez o conhecimento dessa trajetória viria a facilitar o entendimento das regras operatórias. E também que a justificativa plena da regra de sinais da multiplicação de números negativos não seria possível na escolarização elementar e que, portanto, mesmo sendo falha a regra da amizade ainda seria mais atraente para explicar a referida regra e dessa forma de não utilizar o dito inglês menos vezes menos dá mais, a razão disso não interessa. Referências BOYER, B. C. História da Matemática. São Paulo: Edgard Blücher, EVES, Howard. Introdução à historia da matemática. Trad.: Hygino H. Domingues. Campinas: Editora da Unicamp, FOSSA, John Andrew e ANJOS, Marta Figueiredo dos. Sobre a incompatibilidade dos números negativos com o conceito grego de Arithmós. Revista Brasileira de História da Matemática. V.7, n.14, p , 2007 GLAESER, Georges. Epistemologia dos números negativos. Boletim do GEPEM, n 17. p , GONZALEZ, J.L. Numeros Enteros. Madrid: Sintesis, KLINE, Morris. Mathematical thought from ancient to modern times. Vol. 1. New York: Oxford University MEDEIROS, Alexandre & MEDEIROS, Cleide. Números Negativos: Uma história de incertezas. Bolema, ano 7, n. 8, p , STRUIK, Dirk. História concisa das matemáticas. 2ª ed.trad.: João Cosme S. Guerreiro. Lisboa: Gradiva, 1992

RESENHA. O surgimento do número negativo

RESENHA. O surgimento do número negativo UNIVERSIDADE FEDERAL DO PAMPA UNIPAMPA PROGRAMA INSTITUCIONAL DE BOLSA DE INICIAÇÃO A DOCÊNCIA- PIBID/ SUBPROJETO MATEMÁTICA RESENHA Titulo: O surgimento do número negativo Coordenador de área do subprojeto:

Leia mais

O surgimento do número negativo

O surgimento do número negativo UNIVERSIDADE FEDERAL DO PAMPA UNIPAMPA PROGRAMA INSTITUCIONAL DE BOLSA DE INICIAÇÃO A DOCÊNCIA- PIBID/ SUBPROJETO MATEMÁTICA ESCOLA DE ENCINO FUNDAMENTAL PATRICIO DIAS FERREIRA PLANO DE AULA Coordenador

Leia mais

ORIGEM DOS NÚMEROS NEGATIVOS

ORIGEM DOS NÚMEROS NEGATIVOS ORIGEM DOS NÚMEROS NEGATIVOS O número é um conceito fundamental em Matemática que tomou forma num longo desenvolvimento histórico. A origem e formulação deste conceito ocorreu simultaneamente com o despontar,

Leia mais

CONTEXTO HISTÓRICO Leia e descubra que eu não vim do além

CONTEXTO HISTÓRICO Leia e descubra que eu não vim do além ESPECIALIZAÇÃO EM INSTRUMENTALIZAÇÃO PARA O ENSINO DE MATEMÁTICA TICA ANÁLISE DE MÉTODOS M MÁTEMÁTICOSTICOS CONTEXTO HISTÓRICO Leia e descubra que eu não vim do além Ensino de Matemá Prof. M.Sc.. Armando

Leia mais

JOGO DAS SOMAS ALGÉBRICAS ENVOLVENDO NÚMEROS INTEIROS NEGATIVOS

JOGO DAS SOMAS ALGÉBRICAS ENVOLVENDO NÚMEROS INTEIROS NEGATIVOS ISSN 2316-7785 JOGO DAS SOMAS ALGÉBRICAS ENVOLVENDO NÚMEROS INTEIROS NEGATIVOS Tânia Baier Universidade Regional de Blumenau taniabaier@gmail.com Adrieli Retke Universidade Regional de Blumenau adrieli.retke@gmail.com

Leia mais

ÁLGEBRA TEORIA DOS NÚMEROS INTEIROS

ÁLGEBRA TEORIA DOS NÚMEROS INTEIROS ÁLGEBRA TEORIA DOS NÚMEROS INTEIROS FUN JOÃO CARLOS MOREIRA ÁLGEBRA TEORIA DOS NÚMEROS INTEIROS ÁLGEBRA TEORIA DOS NÚMEROS INTEIROS JOÃO CARLOS MOREIRA Professor do Instituto de Ciências Exatas e Naturais

Leia mais

HISTÓRIA DOS NÚMEROS

HISTÓRIA DOS NÚMEROS HISTÓRIA DOS NÚMEROS O número é um conceito fundamental em matemática que foi construído numa longa história. Existem evidências arqueológicas de que o homem, já há 50.000 anos, era capaz de contar. O

Leia mais

NÚMEROS REAIS RELATIVOS

NÚMEROS REAIS RELATIVOS NÚMEROS REAIS RELATIVOS Os números negativos apareceram, primeiramente, na China antiga, na tentativa de formular um algoritmo para resolução de equações de segundo grau. O matemático grego Diofanto operava

Leia mais

A origem de i ao quadrado igual a -1

A origem de i ao quadrado igual a -1 A origem de i ao quadrado igual a -1 No estudo dos números complexos deparamo-nos com a seguinte igualdade: i 2 = 1. A justificativa para essa igualdade está geralmente associada à resolução de equações

Leia mais

Conjuntos Numéricos 2016_1 Notas de Aula

Conjuntos Numéricos 2016_1 Notas de Aula UNIVERSIDADE FEDERAL DO PARANÁ UFPR CAMPUS AVANÇADO EM JANDAIA DO SUL LICENCIATURA EM COMPUTAÇÃO LICENCIATURA EM CIÊNCIAS EXATAS Disciplina: JLC048 Pré-Cálculo Professor: Carlos Galvão Disciplina: JCE023

Leia mais

OFICINA 14 DESCOBRINDO E CONSTRUINDO NÚMEROS IRRACIONAIS

OFICINA 14 DESCOBRINDO E CONSTRUINDO NÚMEROS IRRACIONAIS OFICINA 4 DESCOBRINDO E CONSTRUINDO NÚMEROS IRRACIONAIS Profª Dra. Virgínia Cardia Cardoso I PROBLEMAS. Uma estrada é muito perigosa, com muitos acidentes. Existem dois trechos retilíneos onde resolveram

Leia mais

Programação anual. 6 º.a n o. Sistemas de numeração Sequência dos números naturais Ideias associadas às operações fundamentais Expressões numéricas

Programação anual. 6 º.a n o. Sistemas de numeração Sequência dos números naturais Ideias associadas às operações fundamentais Expressões numéricas Programação anual 6 º.a n o 1. Números naturais 2. Do espaço para o plano Sistemas de numeração Sequência dos números naturais Ideias associadas às operações fundamentais Expressões numéricas Formas geométricas

Leia mais

Números complexos na forma algébrica

Números complexos na forma algébrica Números complexos na forma algébrica A gênese do complexos Durante dois mil anos a matemática cresceu sem se importar com o fato de que as raízes quadradas dos negativos não podiam ser calculadas. Os gregos,

Leia mais

Formação Continuada em Matemática Fundação CECIERJ / Consórcio CEDERJ Matemática 3º Ano - 3º Bimestre / 2014 Plano de Trabalho Números Complexos

Formação Continuada em Matemática Fundação CECIERJ / Consórcio CEDERJ Matemática 3º Ano - 3º Bimestre / 2014 Plano de Trabalho Números Complexos Formação Continuada em Matemática Fundação CECIERJ / Consórcio CEDERJ Matemática 3º Ano - 3º Bimestre / 2014 Plano de Trabalho Números Complexos Tarefa 1 Cursista: Thiago Thompson Pereira Tutora: Danúbia

Leia mais

Educação Matemática MATEMÁTICA LICENCIATURA. Professora Andréa Cardoso

Educação Matemática MATEMÁTICA LICENCIATURA. Professora Andréa Cardoso Educação Matemática MATEMÁTICA LICENCIATURA Professora Andréa Cardoso OBJETIVO DA AULA: Valorizar a linguagem matemática na resolução de problemas científicos e sociais 2 UNIDADE I: EDUCAÇÃO MATEMÁTICA

Leia mais

FORMAÇÃO CONTINUADA EM MATEMÁTICA. Fundação CECIERJ Consórcio CEDERJ. Matemática do 3º Ano 3º Bimestre Plano de Trabalho 1

FORMAÇÃO CONTINUADA EM MATEMÁTICA. Fundação CECIERJ Consórcio CEDERJ. Matemática do 3º Ano 3º Bimestre Plano de Trabalho 1 FORMAÇÃO CONTINUADA EM MATEMÁTICA Fundação CECIERJ Consórcio CEDERJ Matemática do 3º Ano 3º Bimestre 2014 Plano de Trabalho 1 Conjunto dos Números Complexos Tarefa: 001 PLANO DE TRABALHO 1 Cursista: CLÁUDIO

Leia mais

Lógica e Computação. Uma Perspectiva Histórica

Lógica e Computação. Uma Perspectiva Histórica Lógica e Computação Uma Perspectiva Histórica Alfio Martini Facin - PUCRS A Lógica na Cultura Helênica A Lógica foi considerada na cultura clássica e medieval como um instrumento indispensável ao pensamento

Leia mais

Quadro de conteúdos MATEMÁTICA

Quadro de conteúdos MATEMÁTICA Quadro de conteúdos MATEMÁTICA 1 Apresentamos a seguir um resumo dos conteúdos trabalhados ao longo dos quatro volumes do Ensino Fundamental II, ou seja, um panorama dos temas abordados na disciplina de

Leia mais

Assumem-se alguns preliminares, nomeadamente: conhecimentos básicos de Teoria dos Números.

Assumem-se alguns preliminares, nomeadamente: conhecimentos básicos de Teoria dos Números. Curso de Álgebra II Introdução Estas notas incluem com algum pormenor os principais conceitos e resultados apresentados nas aulas teóricas, completados aqui e acolá com alguns exemplos, observações e exercícios.

Leia mais

Datas de Avaliações 2016

Datas de Avaliações 2016 ROTEIRO DE ESTUDOS MATEMÁTICA (6ºB, 7ºA, 8ºA e 9ºA) SÉRIE 6º ANO B Conteúdo - Sucessor e Antecessor; - Representação de Conjuntos e as relações entre eles: pertinência e inclusão ( ). - Estudo da Geometria:

Leia mais

Definição. Geometria plana

Definição. Geometria plana Geometria analítica Definição A palavra geometria vem do grego geometrien onde geo significa terra e metrien medida. Geometria foi, em sua origem, a ciência de medição de terras. O historiador grego Heródoto

Leia mais

Pontuando na linha do tempo. Inventou-se o NÚMERO: é o começo da Matemática

Pontuando na linha do tempo. Inventou-se o NÚMERO: é o começo da Matemática Pontuando na linha do tempo Inventou-se o NÚMERO: é o começo da Matemática 1 Muitas vezes, escolhemos a História como fio condutor dos nossos trabalhos. Para oferecer uma visão histórica da evolução da

Leia mais

PROFMAT. Produto de Números Negativos: Identicando um Obstáculo. por. Marcelo Luís da Cruz Lisboa. Preprint PROFMAT 2 (2013) 11 de abril, 2013

PROFMAT. Produto de Números Negativos: Identicando um Obstáculo. por. Marcelo Luís da Cruz Lisboa. Preprint PROFMAT 2 (2013) 11 de abril, 2013 PROFMAT Departamento de Matemática Universidade Federal do Paraná 81531-990, Curitiba, PR Brazil Produto de Números Negativos: Identicando um Obstáculo por Marcelo Luís da Cruz Lisboa Preprint PROFMAT

Leia mais

Números Complexos. Rafael Aguilar, Gabriella Martos - PIBID Matemática

Números Complexos. Rafael Aguilar, Gabriella Martos - PIBID Matemática Números Complexos Rafael Aguilar, Gabriella Martos - PIBID Matemática 7 de outubro de 2015 0.1 Números Complexos Durante anos, muitos matemáticos foram movidos por problemas que eram aparentemente insolúveis,

Leia mais

Introdução: Um pouco de História

Introdução: Um pouco de História Números Complexos Introdução: Um pouco de História Houve um momento na História da Matemática em que a necessidade de expressar a raiz de um número negativo se tornou fundamental. Em equações quadráticas

Leia mais

PLANO DE ENSINO E APRENDIZAGEM

PLANO DE ENSINO E APRENDIZAGEM SERVIÇO PÚBLICO FEDERAL UNIVERSIDADE FEDERAL DO PARÁ INSTITUTO DE CIÊNCIAS EXATAS E NATURAIS CURSO DE LICENCIATURA PLENA EM MATEMÁTICA PARFOR PLANO DE ENSINO E APRENDIZAGEM I IDENTIFICAÇÃO: PROFESSOR (A)

Leia mais

A seguir, estão três afirmativas sobre números reais:

A seguir, estão três afirmativas sobre números reais: Questão 01) O conjunto X = {4m + 5n;m,n Z + } contém todos os números inteiros positivos a) pares, a partir de 4. b) ímpares, a partir de 5. c) a partir de 9, inclusive. d) a partir de 12, inclusive. e)

Leia mais

DISCIPLINA DE MATEMÁTICA OBJETIVOS: 1ª Série

DISCIPLINA DE MATEMÁTICA OBJETIVOS: 1ª Série DISCIPLINA DE MATEMÁTICA OBJETIVOS: 1ª Série Compreender os conceitos, procedimentos e estratégias matemáticas que permitam a ele desenvolver estudos posteriores e adquirir uma formação científica geral.

Leia mais

Referências Bibliográficas

Referências Bibliográficas Referências Bibliográficas [1] Courant, Richard Gauss and the present situation of the exact sciences in The Spirit and the uses of the Mathematical Sciences - McGraw-Hill - paperbacks - 1969 [2] Hilbert,

Leia mais

Planificação anual 2018/19

Planificação anual 2018/19 Planificação anual Propõe-se a seguinte distribuição dos conteúdos pelos diferentes períodos: 1. Período 2. Período 3. Período Números racionais Expressões algébricas. Potenciação. Raízes quadradas e cúbicas

Leia mais

SUMÁRIO. Unidade 1 Matemática Básica

SUMÁRIO. Unidade 1 Matemática Básica SUMÁRIO Unidade 1 Matemática Básica Capítulo 1 Aritmética Introdução... 12 Expressões numéricas... 12 Frações... 15 Múltiplos e divisores... 18 Potências... 21 Raízes... 22 Capítulo 2 Álgebra Introdução...

Leia mais

Segue, abaixo, o Roteiro de Estudo para a Verificação Global 2 (VG2), que acontecerá no dia 03 de abril de º Olímpico Matemática I

Segue, abaixo, o Roteiro de Estudo para a Verificação Global 2 (VG2), que acontecerá no dia 03 de abril de º Olímpico Matemática I 6º Olímpico Matemática I Sistema de numeração romano. Situações problema com as seis operações com números naturais (adição, subtração, multiplicação, divisão, potenciação e radiciação). Expressões numéricas

Leia mais

PLANO DE ENSINO E APRENDIZAGEM

PLANO DE ENSINO E APRENDIZAGEM SERVIÇO PÚBLICO FEDERAL UNIVERSIDADE FEDERAL DO PARÁ INSTITUTO DE CIÊNCIAS EXATAS E NATURAIS CURSO DE LICENCIATURA PLENA EM MATEMÁTICA PARFOR PLANO DE ENSINO E APRENDIZAGEM I IDENTIFICAÇÃO: PROFESSOR (A)

Leia mais

A Equação Quadrática. Alexandre Trovon Departamento de Matemática UFPR 2012

A Equação Quadrática. Alexandre Trovon Departamento de Matemática UFPR 2012 A Equação Quadrática Alexandre Trovon Departamento de Matemática UFPR 01 A Equação Quadrática Como vimos antes equações quadráticas já eram resolvidas por meio de completamento de quadrados desde os tempos

Leia mais

Os números reais. Capítulo O conjunto I

Os números reais. Capítulo O conjunto I Capítulo 4 Os números reais De todos os conjuntos numéricos que estudamos agora, a transição de um para outro sempre era construída de forma elementar A passagem do conjunto dos números racionais aos reais

Leia mais

PLANIFICAÇÃO ANUAL: ANO LETIVO 2013/2014 DISCIPLINA DE MATEMÁTICA 7 º ANO

PLANIFICAÇÃO ANUAL: ANO LETIVO 2013/2014 DISCIPLINA DE MATEMÁTICA 7 º ANO DEPARTAMENTO DE MATEMÁTICA E TECNOLOGIAS ÁREA DISCIPLINAR DE MATEMÁTICA PLANIFICAÇÃO ANUAL: ANO LETIVO 2013/2014 DISCIPLINA DE MATEMÁTICA 7 º ANO CALENDARIZAÇÃO DO ANO LETIVO Período Início Fim Nº Semanas

Leia mais

PITÁGORAS: UM MATEMÁTICO INSUPERÁVEL. ¹Discente do Curso de Matemática da UEG-UnU de Santa Helena de Goiás

PITÁGORAS: UM MATEMÁTICO INSUPERÁVEL. ¹Discente do Curso de Matemática da UEG-UnU de Santa Helena de Goiás 7ª JORNADA ACADÊMICA 2013 18 a 23 de Novembro Unidade Universitária de Santa Helena de Goiás Crescimento Regional Inovação e tecnologia no mercado de trabalho PITÁGORAS: UM MATEMÁTICO INSUPERÁVEL Gleiciane

Leia mais

Profa. Andréa Cardoso UNIFAL-MG MATEMÁTICA-LICENCIATURA 2015/1

Profa. Andréa Cardoso UNIFAL-MG MATEMÁTICA-LICENCIATURA 2015/1 Profa. Andréa Cardoso UNIFAL-MG MATEMÁTICA-LICENCIATURA 2015/1 Aula 21: A Matemática Árabe e o Nascimento da Álgebra 18/05/2015 2 Império árabe Arábia situada numa região desértica entre o mar Vermelho

Leia mais

1ª Ana e Eduardo. Competência Objeto de aprendizagem Habilidade

1ª Ana e Eduardo. Competência Objeto de aprendizagem Habilidade Matemática 1ª Ana e Eduardo 8º Ano E.F. Competência Objeto de aprendizagem Habilidade Competência 1 Foco: Leitura Compreender e utilizar textos, selecionando dados, tirando conclusões, estabelecendo relações,

Leia mais

CONTEÚDO PROGRAMÁTICO CONCURSO DE BOLSAS 2018

CONTEÚDO PROGRAMÁTICO CONCURSO DE BOLSAS 2018 CONTEÚDO PROGRAMÁTICO CONCURSO DE BOLSAS 2018 1- Português: Ensino Fundamental I- do 2º ao 5º ano Leitura, interpretação e produção de texto, ortografia, pontuação, feminino/masculino, sinônimo, antônimo,

Leia mais

Metas/Objetivos/Domínios Conteúdos/Competências/Conceitos Número de Aulas

Metas/Objetivos/Domínios Conteúdos/Competências/Conceitos Número de Aulas DEPARTAMENTO DE MATEMÁTICA E INFORMÁTICA DISCIPLINA: MATEMÁTICA ANO: 8º ANO Planificação (Conteúdos)... Período Letivo: 1º Metas/Objetivos/Domínios Conteúdos/Competências/Conceitos Número de Aulas Geometria

Leia mais

RECRO MATEMÁTICA 6º ANO 1º BIMESTRE EIXO: NÚMEROS E OPERAÇÕES

RECRO MATEMÁTICA 6º ANO 1º BIMESTRE EIXO: NÚMEROS E OPERAÇÕES 6º ANO 1º BIMESTRE S Compreender o sistema de numeração decimal como um sistema de agrupamentos e trocas na base 10; Compreender que os números Naturais podem ser escritos de formas diferenciadas e saber

Leia mais

UNIVERSIDADE SEVERINO SOMBRA NIVELAMENTO EM MATEMÁTICA 1 PROF. ILYDIO SÁ UNIDADE 1: OS NÚMEROS REAIS

UNIVERSIDADE SEVERINO SOMBRA NIVELAMENTO EM MATEMÁTICA 1 PROF. ILYDIO SÁ UNIDADE 1: OS NÚMEROS REAIS 1 UNIVERSIDADE SEVERINO SOMBRA NIVELAMENTO EM MATEMÁTICA 1 PROF. ILYDIO SÁ UNIDADE 1: OS NÚMEROS REAIS Para esta primeira unidade de nosso curso, que adaptamos a partir de material utilizado em curso de

Leia mais

DEPARTAMENTO DE MATEMÁTICA E INFORMÁTICA DISCIPLINA: Matemática (8º Ano) METAS CURRICULARES/CONTEÚDOS ANO LETIVO 2016/

DEPARTAMENTO DE MATEMÁTICA E INFORMÁTICA DISCIPLINA: Matemática (8º Ano) METAS CURRICULARES/CONTEÚDOS ANO LETIVO 2016/ DEPARTAMENTO DE MATEMÁTICA E INFORMÁTICA DISCIPLINA: Matemática (8º Ano) METAS CURRICULARES/CONTEÚDOS ANO LETIVO 2016/2017... 1º Período Metas/ Objetivos Conceitos/ Conteúdos Aulas Previstas Geometria

Leia mais

DEPARTAMENTO DE MATEMÁTICA INFORMÁTICA DISCIPLINA:

DEPARTAMENTO DE MATEMÁTICA INFORMÁTICA DISCIPLINA: ANO LETIVO 2015/2016 DEPARTAMENTO DE MATEMÁTICA INFORMÁTICA DISCIPLINA: Matemática (7º Ano) METAS CURRICULARES/CONTEÚDOS... 1º Período Metas / Objetivos Conceitos / Conteúdos Aulas Previstas Números e

Leia mais

DEPARTAMENTO DE MATEMÁTICA E INFORMÁTICA DISCIPLINA: Matemática (8º Ano) METAS CURRICULARES/CONTEÚDOS ANO LETIVO 2017/

DEPARTAMENTO DE MATEMÁTICA E INFORMÁTICA DISCIPLINA: Matemática (8º Ano) METAS CURRICULARES/CONTEÚDOS ANO LETIVO 2017/ DEPARTAMENTO DE MATEMÁTICA E INFORMÁTICA DISCIPLINA: Matemática (8º Ano) METAS CURRICULARES/CONTEÚDOS ANO LETIVO 2017/2018... 1º Período Metas/ Objetivos Conceitos/ Conteúdos Aulas Previstas Geometria

Leia mais

Agrupamento de Escolas de Águeda Escola Básica Fernando Caldeira

Agrupamento de Escolas de Águeda Escola Básica Fernando Caldeira Agrupamento de Escolas de Águeda Escola Básica Fernando Caldeira Currículo da disciplina de Matemática - 8ºano Capacidades transversais Objetivos gerais da aprendizagem Resolver problemas em contextos

Leia mais

Capítulo 1. Os Números. 1.1 Notação. 1.2 Números naturais não nulos (inteiros positivos) Última atualização em setembro de 2017 por Sadao Massago

Capítulo 1. Os Números. 1.1 Notação. 1.2 Números naturais não nulos (inteiros positivos) Última atualização em setembro de 2017 por Sadao Massago Capítulo 1 Os Números Última atualização em setembro de 2017 por Sadao Massago 1.1 Notação Números naturais: Neste texto, N = {0, 1, 2, 3,...} e N + = {1, 2, 3, }. Mas existem vários autores considerando

Leia mais

AULA 01 CONJUNTOS NUMÉRICOS

AULA 01 CONJUNTOS NUMÉRICOS AULA 01 CONJUNTOS NUMÉRICOS Apostila M1 página: 34 Para trabalharmos com números, devemos primeiramente ter um conhecimento básico de quais são os conjuntos ("tipos") de números existentes atualmente.

Leia mais

DISCIPLINA SÉRIE CAMPO CONCEITO

DISCIPLINA SÉRIE CAMPO CONCEITO Reforço escolar M ate mática Real ou imaginário? Dinâmica 1 3º Série 3º Bimestre DISCIPLINA SÉRIE CAMPO CONCEITO Matemática 3ª Série do Ensino Médio Algébrico Simbólico Números Complexos Aluno Primeira

Leia mais

7.º Ano. Planificação Matemática 2016/2017. Escola Básica Integrada de Fragoso 7.º Ano

7.º Ano. Planificação Matemática 2016/2017. Escola Básica Integrada de Fragoso 7.º Ano 7.º Ano Planificação Matemática 201/2017 Escola Básica Integrada de Fragoso 7.º Ano Geometria e medida Números e Operações Domínio Subdomínio Conteúdos Objetivos gerais / Metas Números racionais - Simétrico

Leia mais

dividendo e reconhecer que.

dividendo e reconhecer que. Agrupamento de Escolas General Humberto Delgado Sede na Escola Secundária/3 José Cardoso Pires Santo António dos Cavaleiros 3º Ciclo - 7º Ano Planificação Anual 2016-2017 - Matemática METAS CURRICULARES

Leia mais

Calendarização da Componente Letiva

Calendarização da Componente Letiva Calendarização da Componente Letiva 2015/2016 7º Ano Matemática s 1º 2º 3º Número de aulas previstas (45 minutos) 61 50 48 Apresentação e Diagnóstico 2 Avaliação (preparação, fichas de avaliação e correção)

Leia mais

7º Ano. Planificação Matemática 2014/2015. Escola Básica Integrada de Fragoso 7º Ano

7º Ano. Planificação Matemática 2014/2015. Escola Básica Integrada de Fragoso 7º Ano 7º Ano Planificação Matemática 2014/2015 Escola Básica Integrada de Fragoso 7º Ano Domínio Subdomínio Conteúdos Objetivos gerais / Metas Números e Operações Números racionais - Simétrico da soma e da diferença

Leia mais

Funções Polinomiais: uma visão analítica

Funções Polinomiais: uma visão analítica Funções Polinomiais: uma visão analítica Uma das principais razões pelas quais estamos interessados em estudar o gráfico de uma função é determinar o número e a localização (pelo menos aproximada) de seus

Leia mais

1. CONJUNTOS NUMÉRICOS

1. CONJUNTOS NUMÉRICOS . CONJUNTOS NUMÉRICOS.. INTRODUÇÃO Uma exposição sistemática dos conjuntos numéricos, utilizados na Matemática, pode ser feita a partir dos números usados para contar, chamados de números naturais. Estes

Leia mais

ESCOLA BÁSICA DE MAFRA 2016/2017 MATEMÁTICA (2º ciclo)

ESCOLA BÁSICA DE MAFRA 2016/2017 MATEMÁTICA (2º ciclo) (2º ciclo) 5º ano Operações e Medida Tratamento de Dados Efetuar com números racionais não negativos. Resolver problemas de vários passos envolvendo com números racionais representados por frações, dízimas,

Leia mais

E essa procura pela abstração da natureza foi fundamental para a evolução, não só, mas também, dos conjuntos numéricos

E essa procura pela abstração da natureza foi fundamental para a evolução, não só, mas também, dos conjuntos numéricos A história nos mostra que desde muito tempo o homem sempre teve a preocupação em contar objetos e ter registros numéricos. Seja através de pedras, ossos, desenhos, dos dedos ou outra forma qualquer, em

Leia mais

Profa. Andréa Cardoso UNIFAL-MG MATEMÁTICA-LICENCIATURA 2015/1

Profa. Andréa Cardoso UNIFAL-MG MATEMÁTICA-LICENCIATURA 2015/1 Profa. Andréa Cardoso UNIFAL-MG MATEMÁTICA-LICENCIATURA 2015/1 Aula 26: Estudo de Curvas no século XVII 08/06/2015 2 Matemática na Europa do século XVII A Geometria como principal domínio da Matemática;

Leia mais

AGRUPAMENTO DE ESCOLAS DE MIRA Escola Sec/3 Drª. Maria Cândida. PLANIFICAÇÃO ANUAL MATEMÁTICA 8º Ano Ano Letivo 2016/2017. Objetivos específicos

AGRUPAMENTO DE ESCOLAS DE MIRA Escola Sec/3 Drª. Maria Cândida. PLANIFICAÇÃO ANUAL MATEMÁTICA 8º Ano Ano Letivo 2016/2017. Objetivos específicos 1º Período TEMA 1: NÚMEROS RACIONAIS. NÚMEROS REAIS N. de blocos previstos: 15 1.1. Representação de números reais através de dízimas 1.2. Conversão em fração de uma dízima infinita periódica 1.3. Potências

Leia mais

Matemática. Sumários

Matemática. Sumários Matemática Sumários Sumário Vamos começar! 8 4 Números naturais: multiplicação e divisão 92 1 Números naturais e sistemas de numeração 14 1 Números para contar 15 2 Números para ordenar e transmitir informações

Leia mais

1.1. Conhecer e aplicar propriedades dos números primos Representar e comparar números positivos e negativos.

1.1. Conhecer e aplicar propriedades dos números primos Representar e comparar números positivos e negativos. Agrupamento de Escolas General Humberto Delgado Sede na Escola Secundária/3 José Cardoso Pires Santo António dos Cavaleiros 3º Ciclo - 7º Ano Planificação Anual 2012-2013 Matemática METAS CURRICULARES

Leia mais

MATEMÁTICA PLANEJAMENTO 3º BIMESTRE º B - 11 Anos

MATEMÁTICA PLANEJAMENTO 3º BIMESTRE º B - 11 Anos PREFEITURA MUNICIPAL DE IPATINGA ESTADO DE MINAS GERAIS SECRETARIA MUNICIPAL DE EDUCAÇÃO DEPARTAMENTO PEDAGÓGICO/ SEÇÃO DE ENSINO FORMAL Centro de Formação Pedagógica CENFOP MATEMÁTICA PLANEJAMENTO 3º

Leia mais

Uma Introdução ao estudo dos Números Complexos

Uma Introdução ao estudo dos Números Complexos Uma Introdução ao estudo dos Números Complexos Renate Watanabe M. Sc. Illinois Univ. Prof. Unive. Mackenzie Prof. no E.E.S.G. Virgília Rodrigues Alves Carvalho Pinto Ao iniciar o estudo dos números complexos

Leia mais

Instituto Municipal de Ensino Superior de Catanduva SP Al Khwarizmi al-jabr

Instituto Municipal de Ensino Superior de Catanduva SP Al Khwarizmi al-jabr Instituto Municipal de Ensino Superior de Catanduva SP Curso de Licenciatura em Matemática 3º ano Prática de Ensino da Matemática III Prof. M.Sc. Fabricio Eduardo Ferreira fabricio@fafica.br Estudo da

Leia mais

MATRIZ PROVA EXTRAORDINÁRIA DE AVALIAÇÃO MATEMÁTICA Maio de º Ano 3.º Ciclo do Ensino Básico

MATRIZ PROVA EXTRAORDINÁRIA DE AVALIAÇÃO MATEMÁTICA Maio de º Ano 3.º Ciclo do Ensino Básico MATRIZ PROVA EXTRAORDINÁRIA DE AVALIAÇÃO MATEMÁTICA Maio de 2018 Prova de 2018 7.º Ano 3.º Ciclo do Ensino Básico 1. Introdução O presente documento visa divulgar as caraterísticas da prova extraordinária

Leia mais

Planificação anual de Matemática - 7ºANO

Planificação anual de Matemática - 7ºANO Planificação anual de Matemática - 7ºANO Ano letivo 2018 / 2019 Professores: Ana Figueira, Elsa Ferreira e Raquel Barreto 1 - Estrutura e Finalidades da disciplina A disciplina de Matemática constitui-se

Leia mais

Operações Fundamentais com Números

Operações Fundamentais com Números Capítulo 1 Operações Fundamentais com Números 1.1 QUATRO OPERAÇÕES Assim como na aritmética, quatro operações são fundamentais em álgebra: adição, subtração, multiplicação e divisão. Quando dois números

Leia mais

AULA 02 CONJUNTOS NUMÉRICOS. Figura 1 Conjuntos numéricos

AULA 02 CONJUNTOS NUMÉRICOS. Figura 1 Conjuntos numéricos AULA 02 CONJUNTOS NUMÉRICOS Figura 1 Conjuntos numéricos AULA 01 CONJUNTOS NUMÉRICOS Para trabalharmos com números, devemos primeiramente ter um conhecimento básico de quais são os conjuntos ("tipos")

Leia mais

1º Período Total tempos previstos: 49

1º Período Total tempos previstos: 49 AGRUPAMENTO DE ESCOLAS DE MARTIM DE FREITAS Ano letivo 2018/2019 PLANIFICAÇÃO DA DISCIPLINA DE MATEMÁTICA 7ºANO 1º Período Total tempos previstos: 49 TEMAS CONTEÚDOS APRENDIZAGENS ESSENCIAIS TEMPOS (Previstos)

Leia mais

Agrupamento de Escolas General Humberto Delgado Sede na Escola Secundária/3 José Cardoso Pires Santo António dos Cavaleiros

Agrupamento de Escolas General Humberto Delgado Sede na Escola Secundária/3 José Cardoso Pires Santo António dos Cavaleiros Agrupamento de Escolas General Humberto Delgado Sede na Escola Secundária/3 José Cardoso Pires Santo António dos Cavaleiros 3º Ciclo - 7º Ano Planificação Anual 2015-2016 Matemática METAS CURRICULARES

Leia mais

III Encontro de Educação, Ciência e Tecnologia

III Encontro de Educação, Ciência e Tecnologia Área de Publicação: Matemática IRRACIONALIDADE DE e RESUMO O número e é chamado de número de Euler em homenagem a Leonhard Euler e é a base dos logaritmos naturais Esse número também é conhecido como número

Leia mais

MATRIZ DE REFERÊNCIA-Ensino Médio Componente Curricular: Matemática

MATRIZ DE REFERÊNCIA-Ensino Médio Componente Curricular: Matemática MATRIZ DE REFERÊNCIA-Ensino Médio Componente Curricular: Matemática Conteúdos I - Conjuntos:. Representação e relação de pertinência;. Tipos de conjuntos;. Subconjuntos;. Inclusão;. Operações com conjuntos;.

Leia mais

Provas Seletivas 2018

Provas Seletivas  2018 Provas Seletivas 2018 Fundamental I Fundamental I 1 ano Escrita de numerais e quantificação; Ideia aditiva e subtrativa; Sequência Numérica. Escrita de palavra e frases a partir da visualização de imagem;

Leia mais

1.1. Conhecer e aplicar propriedades dos números primos.

1.1. Conhecer e aplicar propriedades dos números primos. Agrupamento de Escolas General Humberto Delgado Sede na Escola Secundária/3 José Cardoso Pires Santo António dos Cavaleiros 3º Ciclo - 7º Ano Planificação Anual 2014-2015 Matemática METAS CURRICULARES

Leia mais

P L A N I F I C A Ç Ã 0 3 º C I C L O

P L A N I F I C A Ç Ã 0 3 º C I C L O P L A N I F I C A Ç Ã 0 3 º C I C L O 2015-2016 DISCIPLINA / ANO: Matemática / 8º Ano MANUAL ADOTADO: MATEMÁTICA EM AÇÃO 8 (E.B. 2,3) / MATEMÁTICA DINÂMICA 8 (SEDE) GESTÃO DO TEMPO 1º PERÍODO Nº de tempos

Leia mais

Profa. Andréa Cardoso UNIFAL-MG MATEMÁTICA-LICENCIATURA 2015/1

Profa. Andréa Cardoso UNIFAL-MG MATEMÁTICA-LICENCIATURA 2015/1 Profa. Andréa Cardoso UNIFAL-MG MATEMÁTICA-LICENCIATURA 2015/1 Ementa História dos números e numerais. História da Geometria. História da Álgebra. História da Matemática como um recurso motivador em aulas

Leia mais

Linguagens matemáticas: sistemas de numeração

Linguagens matemáticas: sistemas de numeração UNIVERSIDADE FEDERAL FLUMINENSE INSTITUTO DE EDUCAÇÃO DE ANGRA DOS REIS DISCIPLINA: LINGUAGEM MATEMÁTICA 2019.2 Linguagens matemáticas: sistemas de numeração Prof. Adriano Vargas Freitas A origem dos números...

Leia mais

Matriz de Referência da área de Matemática Ensino Fundamental

Matriz de Referência da área de Matemática Ensino Fundamental Matemática EF Matriz de Referência da área de Matemática Ensino Fundamental C1 Utilizar o conhecimento numérico para operar e construir argumentos ao interpretar situações que envolvam informações quantitativas.

Leia mais

História e Filosofia da Matemática e da Educação Matemática. Lívia Lopes Azevedo

História e Filosofia da Matemática e da Educação Matemática. Lívia Lopes Azevedo História e Filosofia da Matemática e da Educação Matemática Lívia Lopes Azevedo O que é matemática? Segundo Boyer, (...) uma atividade intelectual altamente sofisticada, que não é fácil de definir, mas

Leia mais

Bem-vindos (as), estudantes! Vamos recordar... e conhecer um novo conjunto numérico... Prof. Mara

Bem-vindos (as), estudantes! Vamos recordar... e conhecer um novo conjunto numérico... Prof. Mara Bem-vindos (as), estudantes! Vamos recordar... e conhecer um novo conjunto numérico... Prof. Mara Recordando... Números Naturais Você já ouviu falar dos Números Naturais? Eles são utilizados a todo o momento

Leia mais

MATEMÁTICA PLANEJAMENTO 2º BIMESTRE º B - 11 Anos

MATEMÁTICA PLANEJAMENTO 2º BIMESTRE º B - 11 Anos PREFEITURA MUNICIPAL DE IPATINGA ESTADO DE MINAS GERAIS SECRETARIA MUNICIPAL DE EDUCAÇÃO DEPARTAMENTO PEDAGÓGICO/ SEÇÃO DE ENSINO FORMAL Centro de Formação Pedagógica CENFOP MATEMÁTICA PLANEJAMENTO 2º

Leia mais

Calendarização da Componente Letiva Ano Letivo 2016/2017

Calendarização da Componente Letiva Ano Letivo 2016/2017 AGRUPAMENTO DE ESCOLAS ANDRÉ SOARES (150952) Calendarização da Componente Letiva Ano Letivo 2016/2017 8º Ano Matemática Períodos 1º Período 2º Período 3º Período Número de aulas previstas (45 minutos)

Leia mais

TURMA:12.ºA/12.ºB. O que é o i? Resposta: A raiz imaginária da unidade negativa. (Leibniz)

TURMA:12.ºA/12.ºB. O que é o i? Resposta: A raiz imaginária da unidade negativa. (Leibniz) GUIA DE ESTUDO NÚMEROS COMPLEXOS TURMA:12.ºA/12.ºB 2017/2018 (ABRIL/MAIO) Números Complexos O que é o i? Resposta: A raiz imaginária da unidade negativa. (Leibniz) A famosa igualdade de Euler i e 10 A

Leia mais

Planificação Anual de Matemática 7º Ano

Planificação Anual de Matemática 7º Ano Temas transversais: Planificação Anual de Matemática 7º Ano Resolução de Problemas Resolver problemas usando números racionais, utilizando equações e funções em contextos matemáticos e não matemáticos,

Leia mais

2. Números Inteiros. A representação gráfica dos números Inteiros Os números podem ser representados numa reta horizontal, a reta numérica:

2. Números Inteiros. A representação gráfica dos números Inteiros Os números podem ser representados numa reta horizontal, a reta numérica: . Números Inteiros Sempre que estamos no inverno as temperaturas caem. Algumas cidades do Sul do Brasil chegam até mesmo a nevar. Quando isso acontece, a temperatura está menor do que zero. Em Urupema,

Leia mais

A reta numérica. Praciano-Pereira, T

A reta numérica. Praciano-Pereira, T A reta numérica Praciano-Pereira, T Sobral Matemática 3 de fevereiro de 205 Textos da Sobral Matemática Editor Tarcisio Praciano-Pereira, tarcisio@member.ams.org - reta numérica Se diz duma reta na qual

Leia mais

PLANO DE ESTUDOS DE MATEMÁTICA - 7.º ANO

PLANO DE ESTUDOS DE MATEMÁTICA - 7.º ANO DE MATEMÁTICA - 7.º ANO Ano Letivo 2014 2015 PERFIL DO ALUNO No domínio dos Números e Operações, o aluno deve ser capaz de multiplicar e dividir números racionais relativos. No domínio da Geometria e Medida,

Leia mais

MATEMÁTICA - 8.º Ano. Ana Soares ) Catarina Coimbra

MATEMÁTICA - 8.º Ano. Ana Soares ) Catarina Coimbra Salesianos de Mogofores - 2016/2017 MATEMÁTICA - 8.º Ano Ana Soares (ana.soares@mogofores.salesianos.pt ) Catarina Coimbra (catarina.coimbra@mogofores.salesianos.pt ) Rota de aprendizage m por Projetos

Leia mais

PLANO DE ESTUDOS DE MATEMÁTICA 7.º ANO

PLANO DE ESTUDOS DE MATEMÁTICA 7.º ANO DE MATEMÁTICA 7.º ANO Ano Letivo 2015 2016 PERFIL DO ALUNO No domínio dos Números e Operações, o aluno deve ser capaz de multiplicar e dividir números racionais relativos. No domínio da Geometria e Medida,

Leia mais

6º ano 1 o TRIMESTRE

6º ano 1 o TRIMESTRE ESCOLA ESTADUAL DE BOA VISTA E.F. Disciplina: Matemática Curso: Ensino Fundamental Anos: 6º, 7º, 8º e 9º anos Professores: Eliane R. Vicente Ano Letivo: 2012 II JUSTIFICATIVA PLANO DE TRABALHO DOCENTE

Leia mais

Teorema de Pitágoras. Nilson Catão Pablo de Sá

Teorema de Pitágoras. Nilson Catão Pablo de Sá Teorema de Pitágoras Nilson Catão Pablo de Sá Introdução Atividade prática; Síntese do artigo análise histórica; Análise crítica sobre o Teorema de Pitágoras; Análise de livros didáticos e outros materiais.

Leia mais

Curso de Educação e Formação Empregado de Restaurante/Bar 1º Ano. Planificação Anual de Matemática

Curso de Educação e Formação Empregado de Restaurante/Bar 1º Ano. Planificação Anual de Matemática Curso de Educação e Formação Empregado de Restaurante/Bar 1º Ano Planificação Anual de Matemática Tema Conteúdos Competências Específicas Nº aulas de 45 Adição, subtração, multiplicação e divisão de números

Leia mais

DEPARTAMENTO DE MATEMÁTICA E CIÊNCIAS DA NATUREZA CRITÉRIOS ESPECÍFICOS DE AVALIAÇÃO

DEPARTAMENTO DE MATEMÁTICA E CIÊNCIAS DA NATUREZA CRITÉRIOS ESPECÍFICOS DE AVALIAÇÃO DEPARTAMENTO DE MATEMÁTICA E CIÊNCIAS DA NATUREZA CRITÉRIOS ESPECÍFICOS DE AVALIAÇÃO (Aprovados em Conselho Pedagógico de 27 de outubro de 2015) AGRUPAMENTO DE CLARA DE RESENDE CÓD. 152 870 No caso específico

Leia mais

Construção da Matemática e formalização do número natural

Construção da Matemática e formalização do número natural Construção da Matemática e formalização do número natural 1. O número Os números são um dos dois objetos principais de que se ocupa a Matemática. O outro é o espaço, junto com as figuras geométricas nele

Leia mais

Planificação de Matemática 9º ano. Ano letivo: 2014/15

Planificação de Matemática 9º ano. Ano letivo: 2014/15 Planificação de 9º ano Ano letivo: 01/15 Unidades Tema Total de previstas Unidade 8 (8ºano) Sólidos Geométricos 1ºP Unidade 1 Probabilidades 65 Unidade Funções Unidade 3 Equações ºP Unidade Circunferência

Leia mais

8.º Ano. Planificação Matemática 16/17. Escola Básica Integrada de Fragoso 8.º Ano

8.º Ano. Planificação Matemática 16/17. Escola Básica Integrada de Fragoso 8.º Ano 8.º Ano Planificação Matemática 16/17 Escola Básica Integrada de Fragoso 8.º Ano Geometria e medida Números e Operações Domínio Subdomínio Conteúdos Objetivos gerais / Metas Dízimas finitas e infinitas

Leia mais

FLEXIBILIZAÇÃO CURRICULAR. Planificação Anual 7ºano Disciplina/Área disciplinar: MATEMÁTICA

FLEXIBILIZAÇÃO CURRICULAR. Planificação Anual 7ºano Disciplina/Área disciplinar: MATEMÁTICA FLEXIBILIZAÇÃO CURRICULAR Ano letivo 2018/2019 Planificação Anual 7ºano Disciplina/Área disciplinar: MATEMÁTICA Objetivos essenciais de aprendizagem, conhecimentos, capacidades e atitudes transversais

Leia mais

Ano Letivo 2018/2019 TEMAS/DOMÍNIOS CONTEÚDOS APRENDIZAGENS ESSENCIAIS Nº DE AULAS AVALIAÇÃO

Ano Letivo 2018/2019 TEMAS/DOMÍNIOS CONTEÚDOS APRENDIZAGENS ESSENCIAIS Nº DE AULAS AVALIAÇÃO Matemática / 7º ano Página 1 de 5 Documentos Orientadores: PLANIFICAÇÃO ANUAL Programa, Metas de Aprendizagem, apoiado pelas novas Orientações de Gestão para o Ensino Básico S- DGE/2016/3351 DSDC e Aprendizagens

Leia mais