DIFRAÇÃO DE RAIOS X 1 INTRODUÇÃO

Tamanho: px
Começar a partir da página:

Download "DIFRAÇÃO DE RAIOS X 1 INTRODUÇÃO"

Transcrição

1 1 DIFRAÇÃO DE RAIOS X 1 INTRODUÇÃO A difratometria de raios X corresponde a uma das principais técnicas de caracterização microestrutural de materiais cristalinos, encontrando aplicações em diversos campos do conhecimento, mais particularmente na engenharia e ciências de materiais, engenharias metalúrgica, química e de minas, além de geociências, dentre outros. Os raios X ao atingirem um material podem ser espalhados elasticamente, sem perda de energia pelos elétrons de um átomo (dispersão ou espalhamento coerente). O fóton de raios X após a colisão com o elétron muda sua trajetória, mantendo, porém, a mesma fase e energia do fóton incidente. Sob o ponto de vista da física ondulatória, pode-se dizer que a onda eletromagnética é instantaneamente absorvida pelo elétron e reemitida; cada elétron atua, portanto, como centro de emissão de raios X. Se os átomos que geram este espalhamento estiverem arranjados de maneira sistemática, como em uma estrutura cristalina (Figura 1), apresentando entre eles distâncias próximas ao do comprimento de onda da radiação incidente, pode-se verificar que as relações de fase entre os espalhamentos tornam-se periódicas e que efeitos de difração dos raios X podem ser observados em vários ângulos. Figura 1 Estrutura cristalina do NaCl mostrando arranjo regular dos íons Na +1 e Cl -1. À direita cristais de NaCl, cuja morfologia externa está relacionada ao arranjo da estrutura cristalina

2 2 Considerando-se dois ou mais planos de uma estrutura cristalina, as condições para que ocorra a difração de raios X (interferência construtiva ou numa mesma fase) vão depender da diferença de caminho percorrida pelos raios X e o comprimento de onda da radiação incidente. Esta condição é expressa pela lei de Bragg, ou seja n λ = 2 d senθ (Figura 2), onde λ corresponde ao comprimento de onda da radiação incidente, n a um número inteiro (ordem de difração), d à distância interplanar para o conjunto de planos hkl (índice de Miller) da estrutura cristalina e θ ao ângulo de incidência dos raios X (medido entre o feixe incidente e os planos cristalinos). Equação da Lei de Bragg n λ = 2 d senθ (1) Figura 2 Difração de raios X e a equação de Bragg A intensidade difratada, dentre outros fatores, é dependente do número de elétrons no átomo; adicionalmente, os átomos são distribuídos no espaço, de tal forma que os vários planos de uma estrutura cristalina possuem diferentes densidades de átomos ou elétrons, fazendo com que as intensidades difratadas sejam, por conseqüência, distintas para os diversos planos cristalinos. 2 EQUIPAMENTOS DE DIFRAÇÃO DE RAIOS X Como a equação de Bragg refere-se à radiações monocromáticas, inicialmente serão abordadas as fontes de raios X empregadas e os dispositivos adotados para tornar esta radiação monocromática. Na seqüência, serão enfocados os métodos e aplicações da difração de raios voltados aos estudos de materiais policristalinos, também chamados de métodos de difração de pó (powder diffraction). Dispositivos dedicados a estudos de estrutura cristalinas a partir de monocristais não serão mencionados neste texto.

3 3 2.1 Fontes de raios X e filtros O esquema geral de um tudo de raios X é apresentado na Figura 3. Vários materiais distintos podem ser empregados como ânodo, sendo Cu, Cr, Fe e Mo os mais usuais (Tabela1); da mesma forma, distintas geometrias construtivas podem ser empregadas acarretando em feixes de raios X com diferentes formas e intensidades por unidade de área (Tabela 2). Figura 3 Tubo de raios X Tabela 1 Características dos ânodos mais comuns Ânodo Número Kα Energia crítica de Voltagem ótima atômico (angström) excitação (kev) (kv) Cr 24 2,291 5,99 40 Fe 26 1,937 7,11 40 Cu 29 1,542 8,98 45 Mo 42 0,710 20,00 80 Tabela 2 Características dos diferentes tubos de raios X Tipo de tubo Dimensões Área focal Dimensões virtuais (take off 6º) do foco (mm) (mm 2 ) Foco ponto (mm) Foco linha (mm) Foco fino longo 0,4 x 12 4,8 0,4 x 12 0,04 x 12 Foco fino 0,4 x 8 3,2 0,4 x 8 0,04 x 8 Foco normal 1,0 x 10 10,0 1,0 x 10 0,10 x 10 Foco largo 2,0 x12 24,0 2,0 x12 0,20 x12 A seleção do tipo de ânodo está relacionada principalmente com a natureza do material a ser analisado, buscando-se sempre a conjugação ânodo / amostra que apresente o menor coeficiente de absorção de massa, além da relação resolução X intensidade dos picos do difratograma. Já a seleção do tipo de tubo e do foco a ser empregado (linha ou ponto) está relacionado à aplicação a ser efetuada.

4 4 O espectro de radiação gerado a partir do tubo de raios X não é monocromático, apresentando tanto a radiação característica do material empregado como ânodo (Kα, Kβ, etc), como também do espectro contínuo (ver Figura 4). Figura 4 Espectros de raios X contínuo e característico para o molibdênio a 35kV. No quadro à direita é detalhado o espectro referente à linha Kα, mostrando as linhas Kα 1 e Kα 2 Visto a necessidade de se empregar uma radiação monocromática, há que se remover a radiação referente a linha Kβ e também parte do espectro contínuo emitido pelo tubo. Duas alternativas podem ser consideradas para tanto; a primeira considera a utilização de filtros, cujas bandas de absorção de radiação permitam a passagem da radiação referente a linha Kα e a remoção (absorção) da linha Kβ, como o exemplo de filtro de Ni sobre a emissão de ânodo de Cu, ilustrado na Figura 5. Uma segunda alternativa, a mais freqüentemente usada, consiste na utilização de um filtro monocromador, situado na passagem dos raios X entre a amostra e o dedector ou entre o tubo e amostra, o qual, através do principio da difração de Bragg, permite exclusivamente a passagem da radiação com o comprimento de onda de interesse (Kα). A utilização de filtro monocromador após a amostra apresenta ainda a vantagem adicional de remover radiações oriundas de espalhamentos não coerentes, resultantes da interação dos raios X com a amostra (raios X contínuo e característico dos elementos presentes na amostra, correspondentes a radiação de fundo, background, sem interesse analítico).

5 5 Figura 5 À esquerda, espectro de emissão de raios X do Cu mostrando as linhas Kα e Kβ e a banda de absorção do Ni (azul). A direita tem-se o espectro obtido com o emprego do filtro de Ni! remoção da linha Kβ. 2.2 Método do pó Câmara Debye-Scherrer A câmara de Debye-Scherrer, Figura 6, compreende um dispositivo cilíndrico no qual amostra em pó é acondicionada em um capilar posicionado bem no centro da câmara sobre o qual é focalizado um fino feixe de raios X. Cones de difração de raios X são então gerados a partir da amostra, sendo que parcela destes sensibiliza um filme fotográfico posicionado na parede interna da câmara, possibilitando a coleta de raios X desde praticamente 0º até 180º em termos de 2θ. Figura 6 Câmara de pó ou de Debye Scherrer

6 6 Esta técnica, introduzida na segunda metade da década de 1910, foi bastante empregada até os anos 80. Sua utilização hoje é bastante restrita, estando limitada a situações em que é critica a disponibilidade de amostra (<100mg) e estudos de amostras monocristalinas Difratômetro de Raios X Os difratômetros de raios X disponíveis no mercado são dominados pela geometria parafocal Bragg-Brentano; seu arranjo geométrico básico pode constituir-se de um goniômetro horizontal (θ-2θ) ou vertical (θ-2θ ou θ-θ). Outras configurações, mais sofisticadas e específicas para estudos na área de ciências de materiais e de monocristais, podem ser também encontradas. Para a geometria θ-2θ (Figura 7), o goniômetro, acoplado aos acessórios de recepção do feixe difratado, move-se (H) com velocidade angular (2θ/passo) sobre o eixo P e rotaciona a amostra (P) com metade desta velocidade angular (θ/passo). O raio do círculo do goniômetro é fixo, apresentando iguais distâncias do tubo gerador de raios X à amostra e da amostra à fenda de recepção D (LP = PD). O plano do círculo focal contém os raios incidente e difratado, isto é, a fonte, a amostra e a fenda de recepção. L fonte de raios X G - fendas soller B fenda divergente C - amostra D fenda receptora E fendas soller F fenda de espalhamento T detector de RX Figura 7 Geometria Bragg-Brentano de um difratômetro de raios X, mostrando as diferentes fendas utilizadas A partir da fonte, os raios X atravessam a fenda Soller ou colimadores paralelos (G), a fenda de divergência (B) e irradiam a superfície da amostra (C). Os raios difratados em determinado ângulo 2θ convergem para a fenda de recepção (D). Antes ou depois da fenda de recepção pode ser colocado um segundo conjunto de colimadores (E) e uma fenda de espalhamento (F). Um

7 7 monocromador do feixe difratado pode ser colocado após a fenda de recepção, na posição da fenda de espalhamento. Fotografia e o esquema do difratômetro Philips, modelo PW1880, são apresentados na Figura 8, a seguir, e um difratograma de amostra de talco na Figura 9. Figura 8 Difratômetro de pó, Philips, modelo PW1880 (instalado no LCT-EPUSP) Figura 9 - Difratograma de uma amostra de talco (em vermelho); picos difratados são assinalados em cor azul 3 APLICAÇÕES DA DIFRAÇÃO DE RAIOS X 3.1 Identificação de fases cristalinas A principal aplicação da difração de raios X refere-se à identificação de compostos cristalinos, sejam eles inorgânicos ou orgânicos.

8 8 Os planos de difração e suas respectivas distâncias interplanares, bem como as densidades de átomos (elétrons) ao longo de cada plano cristalino, são características específicas e únicas de cada substância cristalina, da mesma forma que o padrão difratométrico por ela gerado (equivalente a uma impressão digital). Um banco de dados contendo informações cristalográficas básicas e algumas propriedades físicas de compostos cristalinos é mantido e continuamente atualizada pelo ICDD, International Center for Diffraction Data, com sede nos EUA. Atualmente são disponíveis informações referentes a mais de compostos cristalinos, sendo que as mais importantes, para fins de identificação de um composto cristalino, são as distâncias interplanares e as intensidades difratadas normalizadas (relativas a 100%) para os vários planos (hkl) que difratam construtivamente os raios X. Um exemplo de uma ficha do banco de dados do ICDD referente ao talco é apresentada na Figura 10. Figura 10 Ficha com dados de estrutura cristalina e picos difratados do talco, banco de dados do ICDD, International Center for Diffraction Data, PDF-2, file Várias estratégias de identificação podem ser empregadas, sendo que a dificuldade de identificação aumenta progressivamente com a elevação do número de fases cristalinas presentes na amostra. Os procedimentos ou estratégias de identificação manual mais comuns referem-se a busca por compostos presumivelmente presentes em uma amostra e o método de Hanawalt, este último aplicado para situações nas quais se desconhecem os compostos cristalinos presentes; para ambos os procedimentos devem ser consultados os livros Powder Diffraction File, Alphabetical Indexes ou Hanawalt Search Manual, ou ainda o banco de dados PDF-2 em CD- ROM (todos disponíveis para consulta na Biblioteca do PMI). Estas duas estratégias são apresentadas esquematicamente na Figura 11.

9 9 POR COMPOSTO INÍCIO MÉTODO HANAWALT INÍCIO Não VERIFICA PADRÃO DO COMPOSTO CONFERE? SELECIONE OUTRA LINHA DENTRE AS MAIS INTENSAS Não ORDENAR OS PICOS POR INTENSIDADE; SELECIONAR O PRIMEIRO Sim SUBTRAI O PADRÃO EXISTEM PICOS NÃO UTILIZADOS? Sim SELECIONE O PRÓXIMO PICO MAIS INTENSO NÃO UTILIZADO Sim PICOS RESTANTES? Não DEMAIS PICOS CONFEREM? Não RESULTADO FINAL Sim SUBTRAI O PADRÃO Figura 11 - Estratégias de identificação de fases por natureza de composto e pelo método de Hanawalt PICOS RESTANTES? Não RESULTADO FINAL A partir da década de 90, com auxílio de microcomputadores, sistemas automáticos de busca por métodos booleanos e lógica Fuzzy passaram a ser largamente empregados no auxílio à identificação de fases cristalinas por difração de raios X. Nestes procedimentos, os três a dez picos mais intensos de cada fase presente no banco de dados são comparados com o difratograma da amostra, atribuindo-se créditos e penalidades para cada pico difratado no que se refere a sua presença/ausência, intensidade difratada e deslocamento da distância interplanar. Ao final do processo de busca e comparação, os valores dos resultados são expressos em ordem decrescente de pontuação, seguindo-se a avaliação final por parte do usuário. 3.2 Quantificação de fases Como citado anteriormente, a intensidade da difração é dependente da densidade de elétrons em um dado plano cristalino. Além deste fator, outras variáveis devem também ser consideradas, conforme expresso na equação 2, a seguir.

10 10 I (hkl)j = K e p (hkl) (1/V J 2 ) F (hkl)j 2 LP (hkl) f J / µ (2) onde, I (hkl)j K e P (hkl) V J F (hkl)j LP (hkl) f J intensidade integrada; constante para um equipamento particular; fator de multiplicidade; volume da cela unitária; fator estrutura; fator Lorentz-polarização; fração volumétrica da fase J na amostra; µ coeficiente de absorção linear da amostra. O fator estrutura (F) considera a eficiência do espalhamento pelos elétrons de um átomo e os efeitos da temperatura sobre a posição dos átomos na estrutura cristalina. O fator de multiplicidade, P, refere-se à proporção relativa de planos que contribuem para um pico difratado. O fator Lorentz-Polarização, LP, refere-se a um fator geométrico que diminui as intensidades integradas dos picos difratados em ângulos intermediários (na faixa de 2θ entre 40 e 60 ), quando comparados com os valores de ângulos menores e maiores, uma vez que a quantidade de polarização depende do ângulo através do qual a radiação é espalhada. Já o fenômeno de absorção linear está relacionado à espessura da amostra, ao coeficiente de absorção de massa, aos elementos químicos presentes e ao comprimento de onda da radiação utilizada. A absorção, no entanto, limita a profundidade de penetração do feixe na amostra, variando de acordo com a natureza do material, o que afeta distintamente as intensidades difratadas de fases diferentes ver Figura 12 (misturas binárias de quartzo com polimorfo de SiO 2 e dois outros compostos com distintos coeficientes de absorção de massa). Figura 12 Efeitos de distintos coeficientes de absorção de massa sobre intensidades difratadas de quartzo em misturas binárias (quartzo e cristobalita têm a mesma composição, polimorfos de SiO 2 )

11 11 Os métodos de análise quantitativa por difração de raios X desenvolveram-se propriamente com a utilização do difratômetro com contador Geiger e da sistematização proposta por Alexander e Klug, em A relação dos principais métodos que consideram os efeitos da absorção sobre as intensidades e utilizam, em geral, as intensidades integradas de um pico difratado é apresentada a seguir. método do padrão interno (Alexander e Klug, 1948, apud Klug e Alexander, 1974); método da adição (Lennox, 1957, apud Snyder e Bish, 1989); método do padrão externo, com sobreposição de picos (Copeland e Bragg, 1958, apud Klug e Alexander, 1974); método de matrix-flushing (padrão interno - RIR) (Chung, 1974a, 1974b, 1975); método da adição-difração (Klug e Alexander, 1974; Smith et al., 1979b, apud Snyder e Bish, 1989); outros, como o método da diluição (Clark e Preston, 1974), método de cálculo direto (Hooton e Giorgetta, 1977), método de análise quantitativa sem padrão (Zevin, 1977, apud Pawloski, 1985), método da razão de intensidade e método do padrão externo (Goehner, 1982, apud Pawloski, 1985). A quase totalidade destes métodos utiliza comparações com amostras de referência. Por razões diversas, estes padrões não são disponíveis comercialmente, devendo ser preparados caso a caso. Adicionalmente, outros fatores, como orientação preferencial, microabsorção e granulação da amostra, dentre outros, propiciam substanciais dificuldades adicionais para se obter resultados quantitativos dentro de intervalos de precisão e exatidão aceitáveis, fazendo com que as técnicas de análises quantitativas por difração de raios X não sejam amplamente utilizadas. Exemplos referentes a quantificação de quartzo a partir do método de adição (amostra de talco) e do método do padrão interno (amostra de quartzo e fluorita) são apresentados nas Figuras 13 e 14, respectivamente.

12 12 Figura 13 - Adições de quartzo para avaliação do conteúdo na amostra inicial pelo método de adição Figura 14 - Curva de calibração para análise de quartzo usando fluorita como padrão interno (Klug e Alexander, 1974) Mais recentemente, com a utilização de computadores mais potentes e a análise de todo o padrão do difratograma, utilizando as intensidades individuais de cada passo (step), foi desenvolvida uma metodologia que permite o refinamento de estruturas cristalinas complexas, o método de Rietveld (1967, 1969). Com base nesta metodologia, foi desenvolvido um procedimento de análise quantitativa, com reconhecida precisão, que considera todo o difratograma, gerando um difratograma calculado a partir das informações das estruturas cristalinas das fases presentes e as suas proporções relativas (ajuste entre os difratogramas real e o calculado com a minimização do resíduo através de mínimos quadrados), Figura 15. " difratograma coletado " difratograma calculado por Rietveld " resíduo do processamento corindon = 1,1 ± 0,9 cristobalita = 30,1 ± 9,5 fluorita = 28,1 ± 2,6 mulita = 40,8 ± 6,8 rutilo = 0,1 ± 0,1 Figura 15 Análise quantitativa pelo método de Rietveld. Difratogramas gerado pela amostra e o calculado; o resíduo é apresentado na porção inferior

13 Determinação de parâmetros de cela unitária Considerando-se que o padrão do difratograma de um material cristalino é função da sua estrutura cristalina, é possível se determinar os parâmetros do seu retículo (a, b, c e α, β e γ da cela unitária) desde que se disponha de informações referentes aos sistema cristalino, grupo espacial, índices de Miller (hkl) e respectivas distâncias interplanares dos picos difratados. Este procedimento pode ser efetuado tanto por métodos manuais para cristais de elevada simetria (sistemas cúbico, hexagonal e tetragonal), como mais facilmente a partir de diversos programas de computador, que permitem um rápido processamento para cristais de qualquer sistema cristalino, independentemente de sua complexidade. 3.4 Dispositivos com controle de temperatura Inúmeros processos de manufatura empregam temperaturas elevadas, nas quais os constituintes primários da amostra sofrem mudanças de fase em razão do aquecimento. Dentre estes destacam-se os processos metalúrgicos, cerâmicos e alguns de natureza química. Um acessório de alta temperatura para difratometria de raios X permite o aquecimento controlado da amostra e, eventualmente, o controle simultâneo da atmosfera a que ela esta submetida, paralelamente à coleta do difratograma. Vários difratogramas podem ser coletados a diferentes temperaturas e/ou condições de pressão parciais de gases, visando estudar o equilíbrio do sistema e as mudanças de fases envolvidas. A Figura 16 mostra um dispositivo de alta temperatura (de 20º a 1400ºC) acoplado a difratômetro Philips, X Pert MPD.

14 14 alta temperatura detetor tubo RX bomba de vácuo Figura 16 - Acessório para a difração de raios X em alta temperatura (ambiente a 1400ºC) À semelhança do dispositivo de alta temperatura, acessórios específicos para temperaturas negativas podem também ser empregados. 3.5 Orientação de cristalitos - Textura A orientação preferencial de cristalitos em materiais sólidos policristalinos é de vital importância para vários materiais industriais. Materiais extrudados e pós prensados, dentre outros, são materiais que tipicamente apresentam orientação preferencial; alguns materiais cerâmicos e semicondutores tem suas propriedades relacionadas a uma dada direção cristalográfica, sendo de extrema importância o controle da orientação preferencial nos processos de fabricação e controle de qualidade. Uma das formas mais comuns para se avaliar a orientação preferencial consiste na determinação da figura de polo referente a uma dada direção cristalográfica, ou seja, as medidas de intensidade de uma linha particular de difração plotadas em função da orientação tridimensional da amostra. Para esta determinação utiliza-se um acessório específico, Figura 17, que permite a rotação da amostra em todas as direções ( Phi - rotação e Psi - inclinação), paralelamente às medidas de intensidade difratada para uma condição fixa de θ e 2θ; os resultados são apresentados através de uma projeção estereográfica (2D), denominada figura de polo (Figura 17).

15 15 amostra Figura 17 - Acessório para determinação de orientação preferencial textura e figura de polo obtida para plano 311 (hkl) do cobre 3.6 Tamanho de cristalitos Partículas de dimensões inferiores a 1µm podem apresentar intensidades difratadas em valores de 2θ pouco superiores e inferiores ao valor do ângulo de Bragg devido ao efeito de alargamento de picos face ao tamanho de partículas. Tal fato deve-se ao menor número de planos que difratam os raios X, em função das pequenas dimensões dos cristalitos, permitindo a difração para valores de comprimento de onda um pouco superiores e inferiores ao valor de λ. O tamanho médio de cristalito, τ, é dado pela equação 3, a seguir, onde K, o fator de forma, é uma constante, usualmente com valor de 0,9, λ é o comprimento de onda, B a largura observada da linha difratada a meia altura do pico (FWHM) e b a largura do pico a meia altura para uma amostra padrão (sem alargamento de picos face às dimensões das partículas, dimensões acima de 1µm), sendo que B e b devem ser expressos em radianos. τ = K λ ( B - b ) cosθ (3) 3.7 Tensão Residual

16 16 Tensão em um material pode causar dois efeitos distintos sobre o difratograma. Se a tensão corresponder a um esforço uniforme, compressivo ou distensivo, também chamado de macrotensão (macrostress), as distâncias da cela unitária dos cristais vão, respectivamente, diminuir ou aumentar, ocasionando um deslocamento na posição dos picos difratados, conforme exposto na Figura 18. O desacoplamento da geometria θ-2θ passando para θ-θ, seguido da varredura para duas ou mais linhas de difração possibilita a determinação da macrotensão presente em uma amostra sólida. Esforços não uniformes estão relacionados a forças de distensão e compressão simultâneas, as quais resultam em alargamento dos picos difratados em sua posição original (sem deslocamento, ver Figura 18). Este fenômeno, chamado de microtensão em cristalitos (microstress), pode estar relacionado a diferentes causas: deslocamentos (o mais freqüente), vacâncias, defeitos, planos de cisalhamento, expansões e contrações térmicas, etc. O alargamento de picos relacionado a microtensão pode ser observado tanto para amostras sólidas como em pós pulverizados, sendo que nestes últimos este fenômeno é idêntico ao do alargamento de picos face à diminuição do tamanho de partículas (dimensões inferiores a 1µm), sendo praticamente impossível a distinção entre estes. sem esforço esforço compressivo uniforme MACROTENSÃO d d esforço distensivo uniforme MICROTENSÃO esforço não uniforme d d < d > Figura 18 - Efeitos de esforços uniformes (compressivo e distensivo) e não uniformes sobre a estrutura cristalina

17 17 REFERÊNCIAS BIBLIOGRÁFICAS Bish, D. L.; Reynolds, R. C. Sample preparation for X-ray diffraction. In: Modern Powder Diffaction. Mineralogical Society of America, Washington, D.C., 1989, Cap.4, p (Reviews in Mineralogy, V.20). Cullity, B. D. Elements of X-ray diffraction. 2.ed. Addison-Wesley Publishing Company, INC., p. Jenkins, R. JCPDS - International Centre for Diffraction Data - Sample Preparation Methods in X-Ray Powder Diffraction. Powder Diffraction, 1986, Vol.1, N o 2, p Klug, H. P. & Alexander, L.E. X-ray diffraction procedures for polycrystalline and amorphous materials. 2.ed. John Wiley & Sons, 1974, 996p. 1. Assinalar verdadeiro ou falso EXERCÍCIOS a) a difração de raios X está relacionada ao espalhamento elástico dos raios X incidentes sobre uma amostra, fenômeno pelo qual tem-se a mudança na direção dos raios X sem perda de energia ou mudança de fase b) para que ocorra a difração dos raios X o comprimento de onda da radiação incidente deve ser pelo menos 1000 vezes menor que o da distância entre os planos da estrutura cristalina considerada c) a lei de Bragg é representada pela equação ou seja n λ = 2 d senθ, onde λ corresponde ao comprimento de onda da radiação incidente, n a um número inteiro, d à distância interplanar e θ ao ângulo de incidência dos raios X d) a intensidade de difração de raios X é totalmente independente do número de elétrons dos átomos em um dado plano cristalino e) raios X policromáticos são mais indicados que os monocromáticos para estudos de materiais cristalinos por difração de raios X f) a seleção do ânodo do tubo de raios X é que condiciona o comprimento de onda da radiação X a ser utilizada g) a câmara Debye-Scherrer permite a coleta dos raios X difratados a partir de diminutas quantidades de amostras (<0,5g). h) os resultados de difração de raios X obtidos através da câmara Debye-Scherrer são diretamente expressos em papel, sendo apresentados através de um sistema XY i) a orientação de cristalitos em materiais policristalinos pode ser realizada através da rotação da amostras em todos as direções (Phi e Psi), mantendo-se fixos os valores de θ e 2θ

18 18 j) difratômetros de raios X são dominados pela geometria parafocal Bragg-Brentano com goniômetro horizontal (θ-2θ) ou vertical (θ-2θ ou θ-θ) k) planos de difração e suas respectivas distâncias interplanares e densidades de átomos (elétrons) são características específicas e únicas de cada substância cristalina, equivalentes a uma impressão digital l) a dificuldade na interpretação de um difratograma (identificação das fases) independe do número de fases presentes na amostra m) o método de Rietveld considera a intensidade de um único pico difratado para a análise quantitativa por difração de raios X n) o coeficiente de absorção de massa, também chamado de efeito matriz, é negligenciável para fins de quantificação de fases por difração de raios X o) o tamanho de cristalitos pode ser medido para cristais com dimensões entre 2 e 20µm p) a determinação de tamanho de cristalitos refere-se a uma medida direta, ou seja, sem a necessidade de comparação com padrão ou calibração instrumental q) o método de Rietveld ser empregado tanto para o refinamento de estruturas cristalinas como para se efetuar análises quantitativas por difração de raios X r) a medida de tamanho de cristalitos só é possível devido a existência de um alargamento de pico difratado quando se tem uma pequena quantidade de planos cristalinos difratando os raios X s) esforços uniformes sobe a estrutura cristalina ocasionam deslocamento das distâncias interplanares o qual é evidenciado pelo alargamento dos picos no difratograma t) microtensão ou esforços não uniformes estão relacionados a deslocamentos, vacâncias, defeitos cristalinos, planos de cisalhamento e contrações e expansões térmicas. u) para a determinação de tensão residual faz-se necessário o desacoplamento da geometria θ-2θ 2. Correlacionar: (1) identificação de fases (4) tamanho de cristalitos (2) análises quantitativas (5) macrotensão (3) resolução ou refinamento de estrutura (6) microtensão cristalina (7) alta temperatura ( ) método de Rietveld ( ) banco de dados ICDD ( ) auxílio no estudo de diagramas de fases ( ) deslocamento de picos difratados ( ) método de Hanawalt ( ) figura de polo ( ) alargamento de picos difratados ( ) projeção estereográfica ( ) ajuste entre difratograma coletado e difratograma calculado ( ) deslocamentos, vacâncias, defeitos na estrutura cristalina

Difração. Espectrometria por Raios X 28/10/2009. Walmor Cardoso Godoi, M.Sc. http://ww.walmorgodoi.com

Difração. Espectrometria por Raios X 28/10/2009. Walmor Cardoso Godoi, M.Sc. http://ww.walmorgodoi.com Difração Espectrometria por Raios X Fenômeno encontrado enquanto ondas (sísmicas, acústicas, ondas de água, ondas eletromagnéticos, luz visível, ondas de rádio, raios X) encontram um obstáculo teia de

Leia mais

DIFRAÇÃO DE RAIOS X DRX

DIFRAÇÃO DE RAIOS X DRX DIFRAÇÃO DE RAIOS X DRX O espectro eletromagnético luz visível raios-x microondas raios gama UV infravermelho ondas de rádio Comprimento de onda (nm) Raios Absorção, um fóton de energia é absorvido promovendo

Leia mais

DIFRAÇÃO DE RAIO X. Daiane Bueno Martins

DIFRAÇÃO DE RAIO X. Daiane Bueno Martins DIFRAÇÃO DE RAIO X Daiane Bueno Martins Descoberta e Produção de Raios-X Em 1895 Wilhen Konrad von Röntgen (pronúncia: rêntguen) investigando a produção de ultravioleta descobriu uma radiação nova. Descobriu

Leia mais

DRIFRAÇÃO DE RAIOS-X

DRIFRAÇÃO DE RAIOS-X DRIFRAÇÃO DE RAIOS-X Prof. Márcio Antônio Fiori Prof. Jacir Dal Magro O espectro eletromagnético luz visível raios-x microondas raios gama UV infravermelho ondas de rádio Comprimento de onda (nm) Absorção,

Leia mais

Aula Prática 1. Análise de Difração de Raios X (DRX) Centro de Engenharia Modelagem e Ciências Sociais Aplicadas

Aula Prática 1. Análise de Difração de Raios X (DRX) Centro de Engenharia Modelagem e Ciências Sociais Aplicadas Aula Prática 1 Análise de Difração de Raios X (DRX) Centro de Engenharia Modelagem e Ciências Sociais Aplicadas Raios-X Raios-X são uma forma de radiação eletromagnética com alta energia e pequeno comprimento

Leia mais

UNIVERSIDADE DO ESTADO DE SANTA CATARINA CENTRO DE CIÊNCIAS TECNOLÓGICAS DEPARTAMENTO DE ENGENHARIA MECÂNICA TÉCNICAS DE ANÁLISE

UNIVERSIDADE DO ESTADO DE SANTA CATARINA CENTRO DE CIÊNCIAS TECNOLÓGICAS DEPARTAMENTO DE ENGENHARIA MECÂNICA TÉCNICAS DE ANÁLISE UNIVERSIDADE DO ESTADO DE SANTA CATARINA CENTRO DE CIÊNCIAS TECNOLÓGICAS DEPARTAMENTO DE ENGENHARIA MECÂNICA TÉCNICAS DE ANÁLISE CMA CIÊNCIA DOS MATERIAIS 2º Semestre de 2014 Prof. Júlio César Giubilei

Leia mais

Prof. João Maria Soares UERN/DF/Mossoró E-mail: joaomsoares@gmail.com

Prof. João Maria Soares UERN/DF/Mossoró E-mail: joaomsoares@gmail.com Prof. João Maria Soares UERN/DF/Mossoró E-mail: joaomsoares@gmail.com 1. Estrutura cristalina redes de Bravais 2. Principais estruturas cristalinas 3. Sistemas cristalinos 4. Simetria e grupos de simetria

Leia mais

Espectometriade Fluorescência de Raios-X

Espectometriade Fluorescência de Raios-X FRX Espectometriade Fluorescência de Raios-X Prof. Márcio Antônio Fiori Prof. Jacir Dal Magro FEG Conceito A espectrometria de fluorescência de raios-x é uma técnica não destrutiva que permite identificar

Leia mais

Agência Nacional de Vigilância Sanitária. www.anvisa.gov.br. Consulta Pública n 60, de 06 de agosto de 2015 D.O.U de 07/08/2015

Agência Nacional de Vigilância Sanitária. www.anvisa.gov.br. Consulta Pública n 60, de 06 de agosto de 2015 D.O.U de 07/08/2015 Agência Nacional de Vigilância Sanitária www.anvisa.gov.br Consulta Pública n 60, de 06 de agosto de 2015 D.O.U de 07/08/2015 A Diretoria Colegiada da Agência Nacional de Vigilância Sanitária, no uso das

Leia mais

Formas regulares e simétricas assim como a ordenação das partículas que os formam. Cristalografia e Difração em Raio X - Michele Oliveira

Formas regulares e simétricas assim como a ordenação das partículas que os formam. Cristalografia e Difração em Raio X - Michele Oliveira Formas regulares e simétricas assim como a ordenação das partículas que os formam. Cristalografia e Difração em Raio X - Michele Oliveira 2 Cristais são arranjos atômicos ou moleculares cuja estrutura

Leia mais

2015 Dr. Walter F. de Azevedo Jr. Lei de Bragg e Espaço Recíproco

2015 Dr. Walter F. de Azevedo Jr. Lei de Bragg e Espaço Recíproco 2015 Dr. Walter F. de Azevedo Jr. 000000000000000000000000000000000000000 000000000000000000000000000000000000000 000000000000111111111110001100000000000 000000000001111111111111111111000000001 000000000111111111111111111111111000000

Leia mais

LEI DE OHM. Professor João Luiz Cesarino Ferreira. Conceitos fundamentais

LEI DE OHM. Professor João Luiz Cesarino Ferreira. Conceitos fundamentais LEI DE OHM Conceitos fundamentais Ao adquirir energia cinética suficiente, um elétron se transforma em um elétron livre e se desloca até colidir com um átomo. Com a colisão, ele perde parte ou toda energia

Leia mais

UNIDADE 4 - ESTRUTURA CRISTALINA

UNIDADE 4 - ESTRUTURA CRISTALINA UNIDADE 4 - ESTRUTURA CRISTALINA 4.1. INTRODUÇÃO Em geral, todos os metais, grande parte dos cerâmicos e certos polímeros cristalizam-se quando se solidificam. Os átomos se arranjam em uma estrutura tridimensional

Leia mais

1. 0 - AULA TEÓRICA DE DIFRAÇÃO DE RAIOS X

1. 0 - AULA TEÓRICA DE DIFRAÇÃO DE RAIOS X 1. 0 - AULA TEÓRICA DE DIFRAÇÃO DE RAIOS X 1. 1 - Introdução É fundamental para o engenheiro de materiais conhecer a estrutura cristalina e a microestrutura de um material para poder entender suas propriedades.

Leia mais

Estrutura de Sólidos Cristalinos. Profa. Dra Daniela Becker

Estrutura de Sólidos Cristalinos. Profa. Dra Daniela Becker Estrutura de Sólidos Cristalinos Profa. Dra Daniela Becker Bibliografia Callister Jr., W. D. Ciência e engenharia de materiais: Uma introdução. LTC, 5ed., cap 3, 2002. Shackelford, J.F. Ciências dos Materiais,

Leia mais

DIFRAÇÃO DE RAIOS-X. Prof. Dr. Estéfano A. Vieira

DIFRAÇÃO DE RAIOS-X. Prof. Dr. Estéfano A. Vieira DIFRAÇÃO DE RAIOS-X Prof. Dr. Estéfano A. Vieira A descoberta dos raios-x em 1895 Prof. Dr. Estéfano A. Vieira Raios-x i) Identificação de descontinuidades de corpos (não será abordado neste curso em detalhes)

Leia mais

ÓPTICA GEOMÉTRICA PREGOLINI

ÓPTICA GEOMÉTRICA PREGOLINI ÓPTICA GEOMÉTRICA PREGOLINI ÓPTICA GEOMÉTRICA É a parte da Física que estuda os fenômenos relacionados com a luz e sua interação com meios materiais quando as dimensões destes meios é muito maior que o

Leia mais

Arranjos Atômicos 26/3/2006 CM I 1

Arranjos Atômicos 26/3/2006 CM I 1 Arranjos Atômicos 26/3/2006 CM I 1 26/3/2006 CM I 2 Arranjo Periódico de Átomos Sólido: constituído por átomos (ou grupo de átomos) que se distribuem de acordo com um ordenamento bem definido; Esta regularidade:»

Leia mais

Absorção de Raios-X. Roteiro elaborado com base na documentação que acompanha o conjunto por: Máximo F. da Silveira UFRJ

Absorção de Raios-X. Roteiro elaborado com base na documentação que acompanha o conjunto por: Máximo F. da Silveira UFRJ Roteiro elaborado com base na documentação que acompanha o conjunto por: Máximo F. da Silveira UFRJ Tópicos relacionados Bremsstrahlung, radiação característica, espalhamento de Bragg, lei de absorção,

Leia mais

Física IV. Difração. Sears capítulo 36. Prof. Nelson Luiz Reyes Marques. Capítulo 36 Difração

Física IV. Difração. Sears capítulo 36. Prof. Nelson Luiz Reyes Marques. Capítulo 36 Difração Física IV Difração Sears capítulo 36 Prof. Nelson Luiz Reyes Marques Difração e a Teoria Ondulatória da Luz Difração e a Teoria Ondulatória da Luz A difração é um fenômeno essencialmente ondulatório, ou

Leia mais

Aula 8 Fótons e ondas de matéria II. Física Geral F-428

Aula 8 Fótons e ondas de matéria II. Física Geral F-428 Aula 8 Fótons e ondas de matéria II Física Geral F-428 1 Resumo da aula anterior: Planck e o espectro da radiação de um corpo negro: introdução do conceito de estados quantizados de energia para os osciladores

Leia mais

ANÁLISE QUÍMICA INSTRUMENTAL

ANÁLISE QUÍMICA INSTRUMENTAL ANÁLISE QUÍMICA INSTRUMENTAL ESPECTROFOTÔMETRO - EQUIPAMENTO 6 Ed. Cap. 13 Pg.351-380 6 Ed. Cap. 1 Pg.1-28 6 Ed. Cap. 25 Pg.703-725 09/04/2015 2 1 Componentes dos instrumentos (1) uma fonte estável de

Leia mais

Cotagens especiais. Você já aprendeu a interpretar cotas básicas

Cotagens especiais. Você já aprendeu a interpretar cotas básicas A UU L AL A Cotagens especiais Você já aprendeu a interpretar cotas básicas e cotas de alguns tipos de elementos em desenhos técnicos de modelos variados. Mas, há alguns casos especiais de cotagem que

Leia mais

O Polarímetro na determinação de concentrações de soluções

O Polarímetro na determinação de concentrações de soluções O Polarímetro na determinação de concentrações de soluções 1. O polarímetro Polarímetros são aparelhos que medem directamente a rotação de polarização, através da medição do ângulo de rotação de um analisador.

Leia mais

Universidade Federal do Paraná Departamento de Física Laboratório de Física Moderna

Universidade Federal do Paraná Departamento de Física Laboratório de Física Moderna Universidade Federal do Paraná Departamento de Física Laboratório de Física Moderna Bloco 01: DIFRAÇÃO DE RAIOS-X Introdução Entende-se por raios-x, a região do espectro eletromagnético com comprimentos

Leia mais

5ª Experiência : Dilatação Térmica

5ª Experiência : Dilatação Térmica 5ª Experiência : Dilatação Térmica Objetivo Determinar o coeficiente de dilatação linear para três materiais: cobre, latão e alumínio. Introdução As conseqüências habituais de variações na temperatura

Leia mais

ARRANJOS ATÔMICOS. Química Aplicada

ARRANJOS ATÔMICOS. Química Aplicada ARRANJOS ATÔMICOS Química Aplicada Sólidos Sólidos 1. Arranjo Periódico de Átomos SÓLIDO: Constituído por átomos (ou grupo de átomos) que se distribuem de acordo com um ordenamento bem definido; Esta regularidade:

Leia mais

Questão 1. Questão 2. Resposta. Resposta

Questão 1. Questão 2. Resposta. Resposta Questão 1 Na natureza, muitos animais conseguem guiar-se e até mesmo caçar com eficiência, devido à grande sensibilidade que apresentam para a detecção de ondas, tanto eletromagnéticas quanto mecânicas.

Leia mais

Nosso objetivo será mostrar como obter informações qualitativas sobre a refração da luz em um sistema óptico cilíndrico.

Nosso objetivo será mostrar como obter informações qualitativas sobre a refração da luz em um sistema óptico cilíndrico. Introdução Nosso objetivo será mostrar como obter informações qualitativas sobre a refração da luz em um sistema óptico cilíndrico. A confecção do experimento permitirá também a observação da dispersão

Leia mais

1 Fibra Óptica e Sistemas de transmissão ópticos

1 Fibra Óptica e Sistemas de transmissão ópticos 1 Fibra Óptica e Sistemas de transmissão ópticos 1.1 Introdução Consiste em um guia de onda cilíndrico, conforme ilustra a Figura 1, formado por núcleo de material dielétrico (em geral vidro de alta pureza),

Leia mais

Física. Resolução. Q uestão 01 - A

Física. Resolução. Q uestão 01 - A Q uestão 01 - A Uma forma de observarmos a velocidade de um móvel em um gráfico d t é analisarmos a inclinação da curva como no exemplo abaixo: A inclinação do gráfico do móvel A é maior do que a inclinação

Leia mais

OBJETIVO Verificar as leis da Reflexão Verificar qualitativamente e quantitativamente a lei de Snell. Observar a dispersão da luz em um prisma.

OBJETIVO Verificar as leis da Reflexão Verificar qualitativamente e quantitativamente a lei de Snell. Observar a dispersão da luz em um prisma. UNIVERSIDADE CATÓLICA DE BRASÍLIA CURSO DE FÍSICA LABORATÓRIO ÓPTICA REFLEXÃO E REFRAÇÃO OBJETIVO Verificar as leis da Reflexão Verificar qualitativamente e quantitativamente a lei de Snell. Observar a

Leia mais

ESTA PROVA É FORMADA POR 20 QUESTÕES EM 10 PÁGINAS. CONFIRA ANTES DE COMEÇAR E AVISE AO FISCAL SE NOTAR ALGUM ERRO.

ESTA PROVA É FORMADA POR 20 QUESTÕES EM 10 PÁGINAS. CONFIRA ANTES DE COMEÇAR E AVISE AO FISCAL SE NOTAR ALGUM ERRO. Nome: Assinatura: P2 de CTM 2012.2 Matrícula: Turma: ESTA PROVA É FORMADA POR 20 QUESTÕES EM 10 PÁGINAS. CONFIRA ANTES DE COMEÇAR E AVISE AO FISCAL SE NOTAR ALGUM ERRO. NÃO SERÃO ACEITAS RECLAMAÇÕES POSTERIORES..

Leia mais

Coerência temporal: Uma característica importante

Coerência temporal: Uma característica importante Coerência temporal: Uma característica importante A coerência temporal de uma fonte de luz é determinada pela sua largura de banda espectral e descreve a forma como os trens de ondas emitidas interfererem

Leia mais

Tutorial de Eletrônica Aplicações com 555 v2010.05

Tutorial de Eletrônica Aplicações com 555 v2010.05 Tutorial de Eletrônica Aplicações com 555 v2010.05 Linha de Equipamentos MEC Desenvolvidos por: Maxwell Bohr Instrumentação Eletrônica Ltda. Rua Porto Alegre, 212 Londrina PR Brasil http://www.maxwellbohr.com.br

Leia mais

ESTRUTURAS CRISTALINAS - TEORIA

ESTRUTURAS CRISTALINAS - TEORIA ESTRUTURAS CRISTALINAS - TEORIA Introdução Sólidos são compostos que apresentam uma alta regularidade estrutural. Com exceção dos sólidos amorfos, nos quais essa regularidade só existe em um curto espaço,

Leia mais

Óptica Geométrica Ocular Séries de Exercícios 2009/2010

Óptica Geométrica Ocular Séries de Exercícios 2009/2010 Óptica Geométrica Ocular Séries de Exercícios 2009/2010 2 de Junho de 2010 Série n.1 Propagação da luz 1. A velocidade da luz amarela de sódio num determinado líquido é 1, 92 10 8 m/s. Qual o índice de

Leia mais

5 Caracterização por microscopia eletrônica de transmissão

5 Caracterização por microscopia eletrônica de transmissão 5 Caracterização por microscopia eletrônica de transmissão Considerando o tamanho nanométrico dos produtos de síntese e que a caracterização por DRX e MEV não permitiram uma identificação da alumina dispersa

Leia mais

Formação de imagens por superfícies esféricas

Formação de imagens por superfícies esféricas UNIVESIDADE FEDEAL DO AMAZONAS INSTITUTO DE CIÊNCIAS EXATAS DEPATAMENTO DE FÍSICA Laboratório de Física Geral IV Formação de imagens por superfícies esféricas.. Objetivos:. Primeira parte: Espelho Côncavo

Leia mais

Departamento de Zoologia da Universidade de Coimbra

Departamento de Zoologia da Universidade de Coimbra Departamento de Zoologia da Universidade de Coimbra Armando Cristóvão Adaptado de "The Tools of Biochemistry" de Terrance G. Cooper Como funciona um espectrofotómetro O espectrofotómetro é um aparelho

Leia mais

TIPOS DE REFLEXÃO Regular Difusa

TIPOS DE REFLEXÃO Regular Difusa Reflexão da luz TIPOS DE REFLEXÃO Regular Difusa LEIS DA REFLEXÃO RI = raio de luz incidente i normal r RR = raio de luz refletido i = ângulo de incidência (é formado entre RI e N) r = ângulo de reflexão

Leia mais

Resistividade de Materiais Condutores

Resistividade de Materiais Condutores Roteiro Experimental n 2 da disciplina de Materiais Elétricos vidade de Materiais Condutores COMPONENTES DA EQUIPE: NOTA: Data: / / 1. OBJETIVOS: Estimar a resistividade do material a partir das suas dimensões;

Leia mais

Roteiro 23 Difração e Interferência de ondas bidimensionais num meio líquido

Roteiro 23 Difração e Interferência de ondas bidimensionais num meio líquido Roteiro 23 Difração e Interferência de ondas bidimensionais num meio líquido 1 INTRODUÇÃO As ondas podem sofrer o efeito de diversos fenômenos, dentre eles estão a difração e a interferência. A difração

Leia mais

Como escrever um bom RELATÓRIO

Como escrever um bom RELATÓRIO Como escrever um bom RELATÓRIO Mas o que é uma EXPERIÊNCIA? e um RELATÓRIO? Profa. Ewa W. Cybulska Profa. Márcia R. D. Rodrigues Experiência Relatório Pergunta à Natureza e a procura da Resposta Divulgação

Leia mais

MÓDULO DE RECUPERAÇÃO

MÓDULO DE RECUPERAÇÃO DISCIPLINA Física II 2º ANO ENSINO MÉDIO MÓDULO DE RECUPERAÇÃO ALUNO(A) Nº TURMA TURNO Manhã 1º SEMESTRE DATA / / 01- A figura representa um feixe de raios paralelos incidentes numa superfície S e os correspondentes

Leia mais

Física FUVEST ETAPA. ε = 26 cm, e são de um mesmo material, Resposta QUESTÃO 1 QUESTÃO 2. c) Da definição de potência, vem:

Física FUVEST ETAPA. ε = 26 cm, e são de um mesmo material, Resposta QUESTÃO 1 QUESTÃO 2. c) Da definição de potência, vem: Física QUESTÃO 1 Um contêiner com equipamentos científicos é mantido em uma estação de pesquisa na Antártida. Ele é feito com material de boa isolação térmica e é possível, com um pequeno aquecedor elétrico,

Leia mais

ESTRUTURA CRISTALINA E IMPERFEIÇÕES NOS SÓLIDOS ESTRUTURA CRISTALINA E IMPERFEIÇÕES NOS SÓLIDOS

ESTRUTURA CRISTALINA E IMPERFEIÇÕES NOS SÓLIDOS ESTRUTURA CRISTALINA E IMPERFEIÇÕES NOS SÓLIDOS ESTRUTURA CRISTALINA E IMPERFEIÇÕES NOS SÓLIDOS 1 CONCEITOS FUNDAMENTAIS Materiais sólidos podem ser classificados de acordo com a regularidade com que os seus átomos ou íons estão arranjados um em relação

Leia mais

1- Fonte Primária 2- Fonte Secundária. 3- Fonte Puntiforme 4- Fonte Extensa

1- Fonte Primária 2- Fonte Secundária. 3- Fonte Puntiforme 4- Fonte Extensa Setor 3210 ÓPTICA GEOMÉTRICA Prof. Calil A Óptica estuda a energia denominada luz. 1- Quando nos preocupamos em estudar os defeitos da visão e como curá-los, estamos estudando a Óptica Fisiológica. Estudar

Leia mais

O tornado de projeto é admitido, para fins quantitativos, com as seguintes características [15]:

O tornado de projeto é admitido, para fins quantitativos, com as seguintes características [15]: 4 Tornado de Projeto O tornado de projeto é admitido, para fins quantitativos, com as seguintes características [15]: Tornado do tipo F3-médio; Velocidade máxima de 233km/h = 64,72m/s; Velocidade translacional

Leia mais

Método de Laue. Um monocristal é irradiado por um feixe de raio-x. A figuras de difração resultante é registrada em um filme para raio-x e analisada.

Método de Laue. Um monocristal é irradiado por um feixe de raio-x. A figuras de difração resultante é registrada em um filme para raio-x e analisada. 1318 Experimentos com Raios X 1 Identificação de Estruturas por Raios-X Roteiro elaborado com base na documentação que acompanha o conjunto por: Ricardo Barthem - Instituto de Física - UFRJ Método de Laue

Leia mais

NOTAS DE AULAS DE FÍSICA MODERNA

NOTAS DE AULAS DE FÍSICA MODERNA NOTAS DE AULAS DE FÍSICA MODERNA Prof. Carlos R. A. Lima CAPÍTULO 5 PROPRIEDADES ONDULATÓRIAS DA MATÉRIA Primeira Edição junho de 2005 CAPÍTULO 5 PROPRIEDADES ONDULATÓRIAS DA MATÉRIA ÍNDICE 5.1- Postulados

Leia mais

Seção de choque diferencial

Seção de choque diferencial Seção de choque diferencial Em uma postagem anterior, Seções de choque, apresentei o conceito de seção de choque como sendo uma medida da probabilidade de colisão entre uma partícula incidente e uma partícula

Leia mais

Física IV. Interferência

Física IV. Interferência Física IV Interferência Sears capítulo 35 Prof. Nelson Luiz Reyes Marques Interferência Arco-íris = Bolha de sabão refração interferência Princípio da superposição Quando duas ou mais ondas se superpõem,

Leia mais

Lingotes. Estrutura de solidificação dos lingotes

Lingotes. Estrutura de solidificação dos lingotes Lingotes Estrutura de solidificação dos lingotes Genericamente é possível identificar três regiões diferentes em um lingote após solidificação de uma liga metálica: - a região mais externa denominada zona

Leia mais

OBJETIVOS: CARGA HORÁRIA MÍNIMA CRONOGRAMA:

OBJETIVOS: CARGA HORÁRIA MÍNIMA CRONOGRAMA: ESTUDO DIRIGIDO COMPONENTE CURRICULAR: Controle de Processos e Instrumentação PROFESSOR: Dorival Rosa Brito ESTUDO DIRIGIDO: Métodos de Determinação de Parâmetros de Processos APRESENTAÇÃO: O rápido desenvolvimento

Leia mais

ONDAS MECÂNICAS, ONDA ELETROMAGNETICA E ÓPTICA FÍSICA

ONDAS MECÂNICAS, ONDA ELETROMAGNETICA E ÓPTICA FÍSICA FUNDAÇÃO UNIVERSIDADE FEDERAL DE RONDÔNIA, CAMPUS DE JI-PARANÁ, DEPARTAMENTO DE ENGENHARIA AMBIENTAL DE JI-PARANÁ DEFIJI 1 SEMESTRE 2013-2 ONDAS MECÂNICAS, ONDA ELETROMAGNETICA E ÓPTICA FÍSICA Prof. Robinson

Leia mais

30 cm, determine o raio da esfera.

30 cm, determine o raio da esfera. 1. (Ufes 015) Enche-se uma fina esfera, feita de vidro transparente, com um líquido, até completar-se exatamente a metade de seu volume. O resto do volume da esfera contém ar (índice de refração n 1).

Leia mais

CAP. 2 CONSIDERAÇÕES SOBRE OS CRITÉRIOS DE DECISÃO

CAP. 2 CONSIDERAÇÕES SOBRE OS CRITÉRIOS DE DECISÃO CAP. 2 CONSIDERAÇÕES SOBRE OS CRITÉRIOS DE DECISÃO 1. OS CRITÉRIOS DE DECISÃO Dentre os métodos para avaliar investimentos, que variam desde o bom senso até os mais sofisticados modelos matemáticos, três

Leia mais

Prof. Rogério Eletrônica Geral 1

Prof. Rogério Eletrônica Geral 1 Prof. Rogério Eletrônica Geral 1 Apostila 2 Diodos 2 COMPONENTES SEMICONDUTORES 1-Diodos Um diodo semicondutor é uma estrutura P-N que, dentro de seus limites de tensão e de corrente, permite a passagem

Leia mais

FUNCIONAMENTO DE UM MONITOR CONTÍNUO DE OZÔNIO

FUNCIONAMENTO DE UM MONITOR CONTÍNUO DE OZÔNIO FUNCIONAMENTO DE UM MONITOR CONTÍNUO DE OZÔNIO 1. Introdução A melhor tecnologia para o monitoramento de baixas concentrações de ozônio (O 3 ) no ar ambiente é a da absorção de luz na faixa do Ultra Violeta

Leia mais

Detectores de Partículas. Thiago Tomei IFT-UNESP Março 2009

Detectores de Partículas. Thiago Tomei IFT-UNESP Março 2009 Detectores de Partículas Thiago Tomei IFT-UNESP Março 2009 Sumário Modelo geral de um detector. Medidas destrutivas e não-destrutivas. Exemplos de detectores. Tempo de vôo. Detectores a gás. Câmara de

Leia mais

História dos Raios X. 08 de novembro de 1895: Descoberta dos Raios X Pelo Professor de física teórica Wilhelm Conrad Röntgen.

História dos Raios X. 08 de novembro de 1895: Descoberta dos Raios X Pelo Professor de física teórica Wilhelm Conrad Röntgen. História dos Raios X 08 de novembro de 1895: Descoberta dos Raios X Pelo Professor de física teórica Wilhelm Conrad Röntgen. História dos Raios X 22 de dezembro de 1895, Röntgen fez a primeira radiografia

Leia mais

ME-25 MÉTODOS DE ENSAIO ENSAIO DE PENETRAÇÃO DE MATERIAIS BETUMINOSOS

ME-25 MÉTODOS DE ENSAIO ENSAIO DE PENETRAÇÃO DE MATERIAIS BETUMINOSOS ME-25 MÉTODOS DE ENSAIO ENSAIO DE PENETRAÇÃO DE MATERIAIS BETUMINOSOS DOCUMENTO DE CIRCULAÇÃO EXTERNA 1 ÍNDICE PÁG. 1. INTRODUÇÃO... 3 2. OBJETIVO... 3 3. E NORMAS COMPLEMENTARES... 3 4. DEFINIÇÃO... 3

Leia mais

Antena Escrito por André

Antena Escrito por André Antena Escrito por André Antenas A antena é um dispositivo passivo que emite ou recebe energia eletromagnéticas irradiada. Em comunicações radioelétricas é um dispositivo fundamental. Alcance de uma Antena

Leia mais

Aula do Curso Noic de Física, feito pela parceria do Noic com o Além do Horizonte

Aula do Curso Noic de Física, feito pela parceria do Noic com o Além do Horizonte Espelhos esféricos são superfícies refletoras muito comuns e interessantes de se estudar. Eles são capazes de formar imagens maiores ou menores, inversas ou direitas, dependendo do tipo de espelho, suas

Leia mais

CALDsoft7 - Software de planificação em caldeiraria

CALDsoft7 - Software de planificação em caldeiraria CALDsoft7 - Software de planificação em caldeiraria Calculando uma peça com o CALDsoft7 É muito simples calcular uma peça com o CALDsoft7, basta seguir os passos apresentados abaixo: - Escolher a peça

Leia mais

APLICAÇÕES DA DERIVADA

APLICAÇÕES DA DERIVADA Notas de Aula: Aplicações das Derivadas APLICAÇÕES DA DERIVADA Vimos, na seção anterior, que a derivada de uma função pode ser interpretada como o coeficiente angular da reta tangente ao seu gráfico. Nesta,

Leia mais

Realizando o ensaio de ultra-som

Realizando o ensaio de ultra-som Realizando o ensaio de ultra-som A UU L AL A Na aula anterior, você ficou sabendo que o ultra-som é uma onda mecânica que se propaga de uma fonte emissora até uma fonte receptora, através de um meio físico.

Leia mais

Mandrilamento. determinado pela operação a ser realizada. A figura a seguir mostra um exemplo de barra de mandrilar, também chamada de mandril.

Mandrilamento. determinado pela operação a ser realizada. A figura a seguir mostra um exemplo de barra de mandrilar, também chamada de mandril. A UU L AL A Mandrilamento Nesta aula, você vai tomar contato com o processo de mandrilamento. Conhecerá os tipos de mandrilamento, as ferramentas de mandrilar e as características e funções das mandriladoras.

Leia mais

5 Equipamentos e materiais utilizados

5 Equipamentos e materiais utilizados Equipamentos e materiais utilizados 5 Equipamentos e materiais utilizados O presente capítulo descreve objetivamente os principais equipamentos e materiais utilizados bem como as suas características técnicas

Leia mais

Efeito estufa: como acontece, por que acontece e como influencia o clima do nosso planeta

Efeito estufa: como acontece, por que acontece e como influencia o clima do nosso planeta XXII Encontro Sergipano de Física Efeito estufa: como acontece, por que acontece e como influencia o clima do nosso planeta Prof. Dr. Milan Lalic Departamento de Física Universidade Federal de Sergipe

Leia mais

3 Espectroscopia no Infravermelho 3.1. Princípios Básicos

3 Espectroscopia no Infravermelho 3.1. Princípios Básicos 3 Espectroscopia no Infravermelho 3.1. Princípios Básicos A espectroscopia estuda a interação da radiação eletromagnética com a matéria, sendo um dos seus principais objetivos o estudo dos níveis de energia

Leia mais

Detectores de Radiação Ionizante

Detectores de Radiação Ionizante Detectores de Radiação Ionizante As radiações ionizantes por si só não podem ser medida diretamente, a detecção é realizada pelo resultado produzido da interação da radiação com um meio sensível (detector).

Leia mais

Revisão de Estatística Básica:

Revisão de Estatística Básica: Revisão de Estatística Básica: Estatística: Um número é denominado uma estatística (singular). Ex.: As vendas de uma empresa no mês constituem uma estatística. Estatísticas: Uma coleção de números ou fatos

Leia mais

SECRETARIA DE ESTADO DA EDUCAÇÃO SUPERINTENDÊNCIA DE EDUCAÇÃO DIRETORIA DE TECNOLOGIA EDUCACIONAL PORTAL DIA A DIA EDUCAÇÃO Natel Marcos Ferreira

SECRETARIA DE ESTADO DA EDUCAÇÃO SUPERINTENDÊNCIA DE EDUCAÇÃO DIRETORIA DE TECNOLOGIA EDUCACIONAL PORTAL DIA A DIA EDUCAÇÃO Natel Marcos Ferreira SECRETARIA DE ESTADO DA EDUCAÇÃO SUPERINTENDÊNCIA DE EDUCAÇÃO DIRETORIA DE TECNOLOGIA EDUCACIONAL PORTAL DIA A DIA EDUCAÇÃO Natel Marcos Ferreira Movimento 1. Nível de ensino: Ensino Médio 2. Conteúdo

Leia mais

EXPERIMENTO N o 6 LENTES CONVERGENTES INTRODUÇÃO

EXPERIMENTO N o 6 LENTES CONVERGENTES INTRODUÇÃO EXPERIMENTO N o 6 LENTES CONVERGENTES INTRODUÇÃO Ao incidir em uma lente convergente, um feixe paralelo de luz, depois de passar pela lente, é concentrado em um ponto denominado foco (representado por

Leia mais

DETERMINAÇÃO DA ESTRUTURA TRIDIMENSIONAL DE PROTEÍNAS POR DIFRAÇÃO DE RAIOS-X

DETERMINAÇÃO DA ESTRUTURA TRIDIMENSIONAL DE PROTEÍNAS POR DIFRAÇÃO DE RAIOS-X DETERMINAÇÃO DA ESTRUTURA TRIDIMENSIONAL DE PROTEÍNAS POR DIFRAÇÃO DE RAIOS-X Disciplina: Engenharia de Proteínas Ma. Flávia Campos Freitas Vieira NÍVEIS ESTRUTURAIS DAS PROTEÍNAS Fonte: Lehninger, 2010.

Leia mais

Lista de Óptica ESPELHOS ESFÉRICOS. João Paulo I

Lista de Óptica ESPELHOS ESFÉRICOS. João Paulo I Lista de Óptica ESPELHOS ESFÉRICOS 1) Assinale a alternativa que preenche corretamente as lacunas do enunciado abaixo, na ordem em que aparecem. Para que os seguranças possam controlar o movimento dos

Leia mais

CURSO PROFISSIONAL TÉCNICO DE ANÁLISE LABORATORIAL

CURSO PROFISSIONAL TÉCNICO DE ANÁLISE LABORATORIAL DIREÇÃO GERAL DOS ESTABELECIMENTOS ESCOLARES DIREÇÃO DE SERVIÇOS DA REGIÃO CENTRO ANO LECTIVO 2015 2016 CURSO PROFISSIONAL TÉCNICO DE ANÁLISE LABORATORIAL MÉTODOS OPTICOS ESPECTROFOTOMETRIA MOLECULAR (UV

Leia mais

Radiação Espalhada no Paciente

Radiação Espalhada no Paciente Interação dos Raios X com a Matéria Os Raios-X podem ser: Transmitidos, Absorvidos, Espalhados. A probabilidade da interação depende da energia do fóton incidente, da densidade do meio, da espessura do

Leia mais

~1900 Max Planck e Albert Einstein E fóton = hυ h = constante de Planck = 6,63 x 10-34 Js. Comprimento de Onda (nm)

~1900 Max Planck e Albert Einstein E fóton = hυ h = constante de Planck = 6,63 x 10-34 Js. Comprimento de Onda (nm) Ultravioleta e Visível ~1900 Max Planck e Albert Einstein E fóton = hυ h = constante de Planck = 6,63 x 10-34 Js Se, c = λ υ, então: E fóton = h c λ Espectro Contínuo microwave Luz Visível Comprimento

Leia mais

TÓPICOS EM CARACTERIZAÇÃO DE MATERIAIS DIFRAÇÃO DE RAIOS X

TÓPICOS EM CARACTERIZAÇÃO DE MATERIAIS DIFRAÇÃO DE RAIOS X TÓPICOS EM CARACTERIZAÇÃO DE MATERIAIS DIFRAÇÃO DE RAIOS X Histórico Raios X: São emissões eletromagnéticas; Busca (desde 1887): Heinrich Rudolf Hertz : ele produziu as primeiras ondas eletromagnéticas

Leia mais

MÓDULO 9. A luz branca, que é a luz emitida pelo Sol, pode ser decomposta em sete cores principais:

MÓDULO 9. A luz branca, que é a luz emitida pelo Sol, pode ser decomposta em sete cores principais: A COR DE UM CORPO MÓDULO 9 A luz branca, que é a luz emitida pelo Sol, pode ser decomposta em sete cores principais: luz branca vermelho alaranjado amarelo verde azul anil violeta A cor que um corpo iluminado

Leia mais

CIÊNCIA DE MATERIAIS I

CIÊNCIA DE MATERIAIS I CIÊNCIA DE MATERIAIS I ENUNCIADOS DE PROBLEMAS PARA AS LICENCIATURAS EM ENGENHARIA MECÂNICA ENGENHARIA DE PRODUÇÃO INDUSTRIAL ENGENHARIA QUÍMICA Compilação efectuada por Alexandre Velhinho, Lucelinda Cunha,

Leia mais

Tópico 8. Aula Prática: Movimento retilíneo uniforme e uniformemente variado (Trilho de ar)

Tópico 8. Aula Prática: Movimento retilíneo uniforme e uniformemente variado (Trilho de ar) Tópico 8. Aula Prática: Movimento retilíneo uniforme e uniformemente variado (Trilho de ar) 1. OBJETIVOS DA EXPERIÊNCIA 1) Esta aula experimental tem como objetivo o estudo do movimento retilíneo uniforme

Leia mais

1 Introdução simulação numérica termoacumulação

1 Introdução simulação numérica termoacumulação 22 1 Introdução Atualmente o custo da energia é um dos fatores mais importantes no projeto, administração e manutenção de sistemas energéticos. Sendo assim, a economia de energia está recebendo maior atenção

Leia mais

Universidade Federal da Paraíba Centro de Ciências Exatas e da Natureza Departamento de Informática

Universidade Federal da Paraíba Centro de Ciências Exatas e da Natureza Departamento de Informática Universidade Federal da Paraíba Centro de Ciências Exatas e da Natureza Departamento de Informática Francisco Erberto de Sousa 11111971 Saulo Bezerra Alves - 11111958 Relatório: Capacitor, Resistor, Diodo

Leia mais

Aparelhos de Laboratório de Electrónica

Aparelhos de Laboratório de Electrónica Aparelhos de Laboratório de Electrónica Este texto pretende fazer uma introdução sucinta às características fundamentais dos aparelhos utilizados no laboratório. As funcionalidades descritas são as existentes

Leia mais

Seleção de comprimento de onda com espectrômetro de rede

Seleção de comprimento de onda com espectrômetro de rede Seleção de comprimento de onda com espectrômetro de rede Fig. 1: Arranjo do experimento P2510502 O que você vai necessitar: Fotocélula sem caixa 06779.00 1 Rede de difração, 600 linhas/mm 08546.00 1 Filtro

Leia mais

RECEPTOR AM DSB. Transmissor. Circuito Receptor AM DSB - Profº Vitorino 1

RECEPTOR AM DSB. Transmissor. Circuito Receptor AM DSB - Profº Vitorino 1 RECEPTOR AM DSB Transmissor Circuito Receptor AM DSB - Profº Vitorino 1 O receptor super-heteródino O circuito demodulador que vimos anteriormente é apenas parte de um circuito mais sofisticado capaz de

Leia mais

DIODOS. Professor João Luiz Cesarino Ferreira

DIODOS. Professor João Luiz Cesarino Ferreira DIODOS A união de um cristal tipo p e um cristal tipo n, obtém-se uma junção pn, que é um dispositivo de estado sólido simples: o diodo semicondutor de junção. Figura 1 Devido a repulsão mútua os elétrons

Leia mais

Figura 1 - Utilização conjugada de Câmera IR, com sniffer - Fonte: FLIR Systems

Figura 1 - Utilização conjugada de Câmera IR, com sniffer - Fonte: FLIR Systems Câmera GasFindIR da FLIR Systems Por Aline Voigt Nadolni - Petrobras Sobre o GasFindIR Informações gerais - segundo o fabricante FLIR Systems, Inc. O GasFindIR é, segundo a FLIR Systems, uma câmera portátil,

Leia mais

Como o material responde quando exposto à radiação eletromagnética, e em particular, a luz visível.

Como o material responde quando exposto à radiação eletromagnética, e em particular, a luz visível. Como o material responde quando exposto à radiação eletromagnética, e em particular, a luz visível. Radiação eletromagnética componentes de campo elétrico e de campo magnético, os quais são perpendiculares

Leia mais

LISTA DE EXERCÍCIOS COMPLEMENTARES 2ª SÉRIE

LISTA DE EXERCÍCIOS COMPLEMENTARES 2ª SÉRIE LISTA DE EXERCÍCIOS COMPLEMENTARES FÍSICA - A - 2012 ALUNO: TURMA: CARTEIRA: MATRÍCULA: DATA: / / Unidade 01 - Introdução à Óptica Geométrica Unidade 02 - Reflexão da Luz REFAZER OS EXERCÍCIOS DO LIVRO:

Leia mais

MICROSCOPIA ELETRÔNICA DE VARREDURA

MICROSCOPIA ELETRÔNICA DE VARREDURA 1 MICROSCOPIA ELETRÔNICA DE VARREDURA 1 INTRODUÇÃO A microscopia eletrônica de varredura é a técnica de caracterização microestrutural mais versátil hoje disponível, encontrando aplicações em diversos

Leia mais

Astor João Schönell Júnior

Astor João Schönell Júnior Astor João Schönell Júnior As galáxias são classificadas morfologicamente (Hubble Sequence): -Espirais -Elípticas -Irregulares - Galáxias SO As galáxias espirais consistem em um disco com braços espirais

Leia mais

ESPECTROMETRIA ATÔMICA. Prof. Marcelo da Rosa Alexandre

ESPECTROMETRIA ATÔMICA. Prof. Marcelo da Rosa Alexandre ESPECTROMETRIA ATÔMICA Prof. Marcelo da Rosa Alexandre Métodos para atomização de amostras para análises espectroscópicas Origen dos Espectros Óticos Para os átomos e íons na fase gasosa somente as transições

Leia mais

grandeza do número de elétrons de condução que atravessam uma seção transversal do fio em segundos na forma, qual o valor de?

grandeza do número de elétrons de condução que atravessam uma seção transversal do fio em segundos na forma, qual o valor de? Física 01. Um fio metálico e cilíndrico é percorrido por uma corrente elétrica constante de. Considere o módulo da carga do elétron igual a. Expressando a ordem de grandeza do número de elétrons de condução

Leia mais

4 Orbitais do Átomo de Hidrogênio

4 Orbitais do Átomo de Hidrogênio 4 Orbitais do Átomo de Hidrogênio A aplicação mais intuitiva e que foi a motivação inicial para desenvolver essa técnica é a representação dos orbitais do átomo de hidrogênio que, desde então, tem servido

Leia mais