Matemática - 4º ano. Representação e interpretação de dados

Tamanho: px
Começar a partir da página:

Download "Matemática - 4º ano. Representação e interpretação de dados"

Transcrição

1 Representação e interpretação de dados Nome: Data: Tarefa - Nuno e o tiro ao arco Mexa-se-e-viva-bem é um clube desportivo com três secções muito ativas: a de futebol, a de atletismo e a de tiro ao arco. O Nuno compete nesta última modalidade. Por cada seta que atira pode obter uma pontuação de, no mínimo, 0 pontos e de, no máximo, 10. Numa competição, o Nuno atirou 5 setas. A média foi 8 pontos e a moda 10. Que pontuações pode ter obtido nos vários tiros? Explica a tua escolha e discute com os colegas as várias possibilidades. Tarefa - Brincando com a Média e a Moda O João tinha estado a aprender o que é a moda e a média de um conjunto de dados e lançou a si próprio o seguinte desafio: descobrir cinco números compreendidos entre 0 e 20 cuja média seja 10 e moda seja 15. Que números poderá ter encontrado o João? Explica como pensaste.

2 Operações com números naturais Nome: Data: Tarefa - Algoritmos Observa o algoritmo e o rectângulo da direita: O que significam as diversas zonas coloridas do retângulo? Explica o funcionamento do algoritmo da multiplicação.

3 Operações com números naturais Nome: Data: Tarefa - A calculadora Encontra uma forma de registar o número 54 no visor da calculadora sem utilizar as teclas 5 e 4. Regista os passos que seguiste. Encontra também uma forma de registar o número 167 sem apertar as teclas 1, 6 e 7. Regista mais uma vez os passos que seguiste. Tarefa - Ainda as tabuadas O João sabe a tabuada do 2. Descobriu que a partir desta era muito fácil construir as tabuadas do 4 e do 8. Consegues dizer o que fez o João? Mais tarde descobriu que se soubesse bem as tabuadas do 2, do 3 e do 5, conseguia construir todas as outras. Consegues explicar o que vai na cabeça do João?

4 Operações com números naturais Nome: Data: Tarefa - Descobrir os números A Inês chegou à sala muito contente, porque tinha feito uma descoberta: Conseguiu preencher os espaços em branco no seguinte quadro, que descobriu na secção de Quebra-cabeças do jornal do pai e apressou-se a explicar à sua amiga Joana Coloca os números que faltam no quadro e descreve como é que a Inês descobriu. A Joana e a Inês ficaram tão entusiasmadas que decidiram enfrentar um novo desafio. Ver se eram capazes de preencher os espaços em branco no quadro seguinte. Queres ajudar as duas amigas a preencher este novo quadro?

5 Figuras no Plano Nome: Data: Tarefa - Em busca da simetria. As figuras que se seguem representam desenhos de mosaicos romanos que se podem encontrar em vários lugares da Europa. Os romanos gostavam de usar figuras simétricas nas suas decorações. Deves analisar cada figura vendo qual ou quais os possíveis eixos de simetria que nela existem e assinalá-los a cor diferente.

6 Situações aleatórias Nome: Data: Tarefa - Branco e preto A Mariana estava em casa sem ter com que se entreter e resolveu fazer uma experiência com as bolas da piscina do seu irmão mais novo. Em 4 caixas iguais colocou o mesmo número de bolas apenas variando a quantidade em função da cor como mostra a figura que se segue. Chamou o irmão e disse-lhe para tirar uma bola ao acaso metendo a mão dentro de uma caixa sem olhar. Responde justificando sempre a tua escolha. Na caixa A era mais provável sair uma bola Na caixa B era mais provável sair uma bola Na caixa C Na caixa D Brinca agora tu e na caixa ao lado representa a seguinte situação: Número total de bolas na caixa: 6; Bolas de três cores: azuis, vermelhas e amarelas; Igualmente provável sair uma bola de qualquer das cores.

7 Figuras no plano Nome: Data: Tarefa - Calcorreando Viseu Observa a planta que representa uma zona da cidade de Viseu. Indica duas ruas que sejam paralelas. Dá exemplos de ruas que sejam perpendiculares. A Av. 25 de Abril e a Rua Alexandre Herculano são paralelas? Como o podes comprovar? A Rua do Olival, que não se vê na planta, é paralela à Av. 25 de Abril. Também será paralela à Rua Alexandre Herculano? Justifica. As Ruas do Ouro e da Estrela (não representadas na planta) são perpendiculares à Av. 25 de Abril. Qual será a posição entre elas? Justifica. Analisa o mapa e formula questões para colocares aos teus colegas.

8 Regularidades Tarefa O quadro da dezena de milhar Nome: Data: Conta de 100 em 100: a) Começa em qualquer número de uma casa das primeiras três filas. b) Conta casas para a frente e diz onde paraste. c) Começa em casas diferentes e conta 10 casas para a frente. d) Depois de teres feito a mesma coisa várias vezes, descreve uma regularidade que tenhas observado. e) Descobre uma forma rápida de contar mais mil. 2. Conta de 1000 em 1000 a) Explica como podes usar o quadro da dezena de milhar para adicionar a b) Explica como podes usar o quadro da dezena de milhar para adicionar a c) Explica como podes usar o quadro da dezena de milhar para adicionar a d) Imagina um percurso que começa no 2700 e termina no Como o descreverias?

9 Regularidades Nome: Data: Tarefa Regularidades, números pares e múltiplos de 5 e Observa com atenção a tabela e responde. O que podes afirmar sobre os números da tabela? Discute as tuas descobertas com os teus colegas de grupo. Descreve, numa folha de papel, as descobertas que fizeram e as regularidades que descobriram.

10 2-Usa lápis de cores diferentes e: Pinta da mesma cor todos os números que são múltiplos de 5, ou seja, começa no 5 e vai pintando todos os números de 5 em 5. Pinta de cor diferente da primeira, todos os números que são múltiplos de 10, ou seja, começa no 10 e vai pintando todos os números de 10 em 10. Há números que ficaram pintados com duas cores. Quais são? Consegues explicar porquê? O que descobriste sobre os múltiplos de 10 e de 5? 3- Usa uma cor diferente das anteriores. Pinta todos os números pares (múltiplos de 2) da tabela. O que descobriste? 4- Há números que ficaram pintados com três cores. Quais são? Consegues explicar porquê?

11 Sólidos geométricos Nome: Data: Tarefa - Família de sólidos Em cima da mesa, há vários sólidos geométricos. 1. Separem-nos em grupos de tal modo que todos os sólidos do mesmo grupo tenham, pelo menos, uma característica em comum. Vamos designar cada um destes grupos por uma família de sólidos. Expliquem como pensaram. 2. Formem outras famílias de sólidos. Como pensaram?

12 Organização e tratamento de dados Nome: Data: Tarefa Os animais do jardim No jardim da escola, que tem um lago muito bonito, o professor decidiu ir com os alunos verificar que tipo de animais é que havia no jardim. Verificaram que havia animais de 4 tipos: cães, peixes, patos e tartarugas, de acordo com o seguinte pictograma. Quantos patos há no jardim? Quantos peixes há no jardim? Quantos animais vivem no jardim? Há alguns animais que existam na mesma quantidade? Se existirem, quais são? Quantos peixes há a mais do que patos? Ofereceram 2 tartarugas para o jardim da escola. Quantas tartarugas existem agora?

13 A partir do pictograma constrói a tabela de frequências absolutas e o gráfico de barras associado. Tipo de animal Frequência absoluta total Gráfico de barras Frequência absoluta 0 Tipo de animal

14 Números Naturais Nome: Data: Tarefa - Quatro números 1. Com os algarismos representados nos cartões, escreve 4 números diferentes, tendo em atenção as seguintes condições: Todos os números devem ter 4 algarismos; Não podes repetir algarismos no mesmo número; Todos os números devem começar pelo mesmo algarismo; Pelo menos três números têm de ser pares. 2. Ordena os números por ordem crescente. 3. Escolhe dois algarismos que usaste nos números anteriores e escreve qual é o valor que eles representam em cada um desses números.

15 4. Agora, escolhe apenas 4 algarismos dos representados nos cartões e escreve 4 números diferentes, tendo em atenção as condições descritas no exercício anterior. 3. Ordena os números por ordem decrescente. 4. Consegues descobrir qual o maior número possível que se pode escrever com todos os algarismos dos cartões? E o menor?

PROVA DE AFERIÇÃO DO ENSINO BÁSICO 2011 A PREENCHER PELO ALUNO

PROVA DE AFERIÇÃO DO ENSINO BÁSICO 2011 A PREENCHER PELO ALUNO PROVA DE AFERIÇÃO DO ENSINO BÁSICO 2011 A PREENCHER PELO ALUNO Rubrica do Professor Aplicador Nome A PREENCHER PELO AGRUPAMENTO Número convencional do Aluno Número convencional do Aluno A PREENCHER PELA

Leia mais

Prova de Aferição de Matemática

Prova de Aferição de Matemática PROVA DE AFERIÇÃO DO ENSINO BÁSICO 2009 A PREENCHER PELO ALUNO Rubrica do Professor Aplicador Nome A PREENCHER PELO AGRUPAMENTO Número convencional do Aluno Número convencional do Aluno A PREENCHER PELA

Leia mais

Prova de Aferição de Matemática

Prova de Aferição de Matemática PROVA DE AFERIÇÃO DO ENSINO BÁSICO A PREENCHER PELO ALUNO Rubrica do Professor Aplicador Nome A PREENCHER PELO AGRUPAMENTO Número convencional do Aluno Número convencional do Aluno A PREENCHER PELA U.A.

Leia mais

0. Objectivo. 1. Erros no remate. 1.1. Ângulo de erro

0. Objectivo. 1. Erros no remate. 1.1. Ângulo de erro 0. Objectivo Vamos ver como algumas situações nos jogos de futebol podem ser estudadas de um ponto de vista matemático. Para isso, vamos considerar um modelo muito simplificado do que acontece realmente

Leia mais

ESCOLA SECUNDÁRIA DE CASQUILHOS

ESCOLA SECUNDÁRIA DE CASQUILHOS ESCOLA SECUNDÁRIA DE CASQUILHOS 2º Ano Turma B - C.C.H. de Ciências e Tecnologias - Teste de Avaliação de Matemática A V Duração: 90 min 03 Fev. 200 Prof.: Na folha de respostas, indicar de forma legível

Leia mais

PROVA DE AFERIÇÃO DO ENSINO BÁSICO 2011 A PREENCHER PELO ALUNO

PROVA DE AFERIÇÃO DO ENSINO BÁSICO 2011 A PREENCHER PELO ALUNO PROVA DE AFERIÇÃO DO ENSINO BÁSICO 2011 A PREENCHER PELO ALUNO Rubrica do Professor Aplicador Nome A PREENCHER PELO AGRUPAMENTO Número convencional do Aluno Número convencional do Aluno A PREENCHER PELA

Leia mais

Os dados quantitativos também podem ser de natureza discreta ou contínua.

Os dados quantitativos também podem ser de natureza discreta ou contínua. Natureza dos Dados Às informações obtidas acerca das características de um conjunto dá-se o nome de dado estatístico. Os dados estatísticos podem ser de dois tipos: qualitativos ou quantitativos. Dado

Leia mais

Planificação Anual Departamento 1.º Ciclo

Planificação Anual Departamento 1.º Ciclo Modelo Dep-01 Agrupamento de Escolas do Castêlo da Maia Planificação Anual Departamento 1.º Ciclo Ano 3º Ano letivo 2013.2014 Disciplina: Matemática Turmas: 3º ano Professores: todos os docentes do 3º

Leia mais

EB1 de. MATEMÀTICA Nome Data / / Tarefa: Quadro da centena de milhar e quadro do milhão

EB1 de. MATEMÀTICA Nome Data / / Tarefa: Quadro da centena de milhar e quadro do milhão Tarefa: Quadro da centena de milhar e quadro do milhão Os alunos completam e exploram tabelas com números de 1000 em 1000 e de 10000 em 10000, como apoio na contagem de números até ao milhão. O quadro

Leia mais

Nome. Data. Tarefa C1. diferentes, folha de papel A3, fita-cola.

Nome. Data. Tarefa C1. diferentes, folha de papel A3, fita-cola. Tarefa C1 Material por grupo: palhinhas com diferentes padrões diferentes, folha de papel A3, fita-cola. e/ou cores, de três tamanhos Observa bem as palhinhas que estão em cima da mesa e pensa numa maneira

Leia mais

PLANIFICAÇÃO ANUAL 2015/2016 MATEMÁTICA- 3º ANO. Calendarização Domínio/ Subdomínio Objetivos gerais Descritores de desempenho Números e Operações

PLANIFICAÇÃO ANUAL 2015/2016 MATEMÁTICA- 3º ANO. Calendarização Domínio/ Subdomínio Objetivos gerais Descritores de desempenho Números e Operações PLANIFICAÇÃO ANUAL 2015/2016 MATEMÁTICA- 3º ANO Calendarização Domínio/ Subdomínio Objetivos gerais Descritores de desempenho Números e Operações Conhecer os números Números naturais ordinais 1.Utilizar

Leia mais

AMEI Escolar Matemática 9º Ano Probabilidades e Estatística

AMEI Escolar Matemática 9º Ano Probabilidades e Estatística AMEI Escolar Matemática 9º Ano Probabilidades e Estatística A linguagem das probabilidades As experiências podem ser consideradas: - aleatórias ou casuais: quando é impossível calcular o resultado à partida;

Leia mais

é um círculo A tampa A face é um retângulo

é um círculo A tampa A face é um retângulo No cotidiano, estamos cercados de objetos que têm diferentes formas. Por exemplo, uma caixa de papelão: suas faces são retângulos, e a caixa é um paralelepípedo. Outro exemplo: uma lata de óleo tem a forma

Leia mais

Alguns Apontamentos Sobre Cálculo Combinatório

Alguns Apontamentos Sobre Cálculo Combinatório Alguns Apontamentos Sobre Cálculo Combinatório 1 O objectivo do Cálculo Combinatório é resolver problemas do tipo: quantas matriculas de carro é possível fazer em Portugal ; quantos números de telefone

Leia mais

Matemática ANO. Prova-modelo de preparação para a Prova Final de Matemática. 1.º Ciclo do Ensino Básico. Henriqueta Gonçalves Ana Landeiro

Matemática ANO. Prova-modelo de preparação para a Prova Final de Matemática. 1.º Ciclo do Ensino Básico. Henriqueta Gonçalves Ana Landeiro Matemática ANO Henriqueta Gonçalves Ana Landeiro Prova-modelo de preparação para a Prova Final de Matemática 1.º Ciclo do Ensino Básico PROVA-MODELO MATEMÁTICA Nome Data - - CADERNO 1 50 MINUTOS: tolerância

Leia mais

PREFEITURA MUNICIPAL DO SALVADOR. Secretaria Municipal d e Educação e Cultura SMEC Coordenadoria de Ensino e Apoio Pedagógico CENAP SALVADOR / BAHIA

PREFEITURA MUNICIPAL DO SALVADOR. Secretaria Municipal d e Educação e Cultura SMEC Coordenadoria de Ensino e Apoio Pedagógico CENAP SALVADOR / BAHIA PREFEITURA MUNICIPAL DO SALVADOR Secretaria Municipal d e Educação e Cultura SMEC Coordenadoria de Ensino e Apoio Pedagógico CENAP Avaliação Diagnóstica para Classes do Ciclo de Aprendizagem I: Matemática

Leia mais

Seleção de módulos do Sistema de Ensino Ser 2014

Seleção de módulos do Sistema de Ensino Ser 2014 ABEU COLÉGIOS Disciplina: Matemática Série: 1 ano / Fundamental I (Bimestres) 1 Caderno 1 Seleção de módulos do Sistema de Ensino Ser 2014 Módulos Primeiras Noções - Comparação de tamanhos - Noções de

Leia mais

SOLUÇÕES N2 2015. item a) O maior dos quatro retângulos tem lados de medida 30 4 = 26 cm e 20 7 = 13 cm. Logo, sua área é 26 x 13= 338 cm 2.

SOLUÇÕES N2 2015. item a) O maior dos quatro retângulos tem lados de medida 30 4 = 26 cm e 20 7 = 13 cm. Logo, sua área é 26 x 13= 338 cm 2. Solução da prova da 1 a fase OBMEP 2015 Nível 1 1 SOLUÇÕES N2 2015 N2Q1 Solução O maior dos quatro retângulos tem lados de medida 30 4 = 26 cm e 20 7 = 13 cm. Logo, sua área é 26 x 13= 338 cm 2. Com um

Leia mais

Novo Programa de Matemática do Ensino Básico 3º ANO

Novo Programa de Matemática do Ensino Básico 3º ANO Novo Programa de Matemática do Ensino Básico 3º ANO Tema: Geometria Tópico: Orientação Espacial Posição e localização Mapas, plantas e maquetas Propósito principal de ensino: Desenvolver nos alunos o sentido

Leia mais

Ficheiro de Matemática

Ficheiro de Matemática Prismas e Pirâmides Observa as seguintes tabelas, copia-as para o teu caderno (não precisas de desenhar os sólidos) e completa-as. O Sólido Certo Copia as seguintes frases para o teu caderno e tenta descobrir

Leia mais

Percursos temáticos de aprendizagem

Percursos temáticos de aprendizagem Novo Programa de Matemática - 1.º, 2.º e 3.º Ciclos Percursos temáticos de aprendizagem Os percursos temáticos de aprendizagem que se apresentam constituem possíveis sequências para o desenvolvimento do

Leia mais

Percursos temáticos de aprendizagem

Percursos temáticos de aprendizagem Novo Programa de Matemática - 1.º, 2.º e 3.º Ciclos Percursos temáticos de aprendizagem Os percursos temáticos de aprendizagem que se apresentam constituem possíveis sequências para o desenvolvimento do

Leia mais

Instruções Gerais sobre a Prova

Instruções Gerais sobre a Prova PA-M 3 Instruções Gerais sobre a Prova A prova deve ser realizada a tinta azul ou preta, com excepção dos desenhos, que devem ser feitos a lápis. Podes ainda usar borracha, apara-lápis, régua graduada

Leia mais

Matemática Ficha de Apoio Modelos de Probabilidade - Introdução

Matemática Ficha de Apoio Modelos de Probabilidade - Introdução Matemática Ficha de Apoio Modelos de Probabilidade - Introdução 12ºano Introdução às probabilidades No final desta unidade, cada aluno deverá ser capaz de: - Identificar acontecimentos com conjuntos e

Leia mais

Canguru de Matemática Brasil 2016 Nível PE Respostas

Canguru de Matemática Brasil 2016 Nível PE Respostas Canguru de Matemática Brasil 2016 Nível PE Respostas Problemas de 3 pontos 1. Qual letra do quadro ao lado não está na palavra LAGOA? (A) B (B) L (C) G (D) N (E) O 1. Alternativa D A letra N não aparece

Leia mais

Escola Secundária com 3º ciclo de Lousada. Ficha de Trabalho de Matemática do 7º ano - nº 2 Data / 10 / 2008. Nome nº

Escola Secundária com 3º ciclo de Lousada. Ficha de Trabalho de Matemática do 7º ano - nº 2 Data / 10 / 2008. Nome nº Escola Secundária com º ciclo de Lousada PM Ficha de Trabalho de Matemática do 7º ano - nº Data / 0 / 008 Actividade: Preparação para o º teste de avaliação Lições nº e Nome nº. Os números na caracterização

Leia mais

OS SERES VIVOS DO AMBIENTE PRÓXIMO

OS SERES VIVOS DO AMBIENTE PRÓXIMO OS SERES VIVOS DO AMBIENTE PRÓXIMO Comparo e classifico as plantas segundo alguns critérios. Desde sempre o homem tomou consciência da variedade de plantas que o rodeavam e sentiu necessidade de as reunir

Leia mais

Catálogo com truques e jogos de cartas

Catálogo com truques e jogos de cartas Catálogo com truques e jogos de cartas Toque Rápido1 São colocadas cinco cartas sobre a mesa pelo Ajudante do Mágico. Um Voluntário escolhe uma, e comunica a sua escolha ao Ajudante. O Mágico entra em

Leia mais

História das Frações

História das Frações 5ª LISTA DE EXERCÍCIOS COMPLEMENTARES DE MATEMÁTICA Ensino Fundamental 6 Ano Olá pessoal, nesta lista de exercícios vamos verificar quais são os conhecimentos que vocês possuem sobre frações. Lembrem-se

Leia mais

COLÉGIO NOSSA SENHORA DA ASSUNÇÃO

COLÉGIO NOSSA SENHORA DA ASSUNÇÃO COLÉGIO NOSSA SENHORA DA ASSUNÇÃO FAMALICÃO ANADIA FICHA DE TRABALHO DE MATEMÁTICA ANO LECTIVO 2006/2007 9º ANO DE ESCOLARIDADE PROBABILIDADES E ESTATÍSTICA. Considere a experiência de lançar uma vez o

Leia mais

Programa de Matemática 2º ano

Programa de Matemática 2º ano Programa de Matemática 2º ano Introdução: A Matemática é uma das ciências mais antigas e é igualmente das mais antigas disciplinas escolares, tendo sempre ocupado, ao longo dos tempos, um lugar de relevo

Leia mais

Escola Secundária de Lousada

Escola Secundária de Lousada Escola Secundária de Lousada Ficha de Trabalho de Matemática 9º ano FT. Data: / / 0 Assunto: Probabilidades Lições nº,. A seguir estão apresentados alguns dados relativos aos alunos da turma do Roberto...

Leia mais

DISTRIBUIÇÃO DE FREQUÊNCIA DE VARIÁVEIS QUALITATIVAS E QUANTITATIVAS DISCRETAS (TABELAS E GRÁFICOS)

DISTRIBUIÇÃO DE FREQUÊNCIA DE VARIÁVEIS QUALITATIVAS E QUANTITATIVAS DISCRETAS (TABELAS E GRÁFICOS) DISTRIBUIÇÃO DE FREQUÊNCIA DE VARIÁVEIS QUALITATIVAS E QUANTITATIVAS DISCRETAS (TABELAS E GRÁFICOS) O QUE É ESTATÍSTICA Estatística é a ciência de obter conclusões a partir de dados. Envolve métodos para

Leia mais

Sumário. Volta às aulas. Vamos recordar?... 7. Grandezas e medidas: tempo e dinheiro... 64. Sistemas de numeração... 10

Sumário. Volta às aulas. Vamos recordar?... 7. Grandezas e medidas: tempo e dinheiro... 64. Sistemas de numeração... 10 Sumário Volta às aulas. Vamos recordar?... 7 1 Sistemas de numeração... 1 Sistema de numeração romano... 11 Sistema de numeração decimal... 14 Números e possibilidades... 1 Outras informações com números...

Leia mais

1. Qual o número que vem a seguir? 2. Onde pensas colocar o 40? 50? 63? 75? 3. (Apontando para uma casa vazia) Qual o número que pensas estar aqui?

1. Qual o número que vem a seguir? 2. Onde pensas colocar o 40? 50? 63? 75? 3. (Apontando para uma casa vazia) Qual o número que pensas estar aqui? Padrões numéricos Constrói-se uma grelha 10 10 suficientemente grande para que todos alunos a consigam ver. Em cada casa da grelha representamos um número; começamos pelo 0 e continuamos até ao 25, por

Leia mais

Boas situações de Aprendizagens. Atividades. Livro Didático. Currículo oficial de São Paulo

Boas situações de Aprendizagens. Atividades. Livro Didático. Currículo oficial de São Paulo Atividades Boas situações de Aprendizagens Livro Didático Currículo oficial de São Paulo LÓGICA NUMA CONCEPÇÃO QUE SE APOIA EXCLUSIVAMENTE EM CONTEÚDOS E ATIVIDADES Enfoque fragmentado, centrado na transmissão

Leia mais

Prova de Aferição de Matemática

Prova de Aferição de Matemática PROVA DE AFERIÇÃO DO ENSINO BÁSICO A PREENCHER PELO ALUNO Nome A PREENCHER PELO AGRUPAMENTO Número convencional do Aluno Número convencional do Aluno A PREENCHER PELA U.A. Número convencional do Agrupamento

Leia mais

DIVISÃO: IDEIAS E ALGORITMOS 25/09/2014 FORMAÇÃO DE PROFESSORES 4º ANO MATEMÁTICA

DIVISÃO: IDEIAS E ALGORITMOS 25/09/2014 FORMAÇÃO DE PROFESSORES 4º ANO MATEMÁTICA FORMAÇÃO DE PROFESSORES 4º ANO MATEMÁTICA DIVISÃO: IDEIAS E ALGORITMOS 25/09/2014 Adriana da Silva Santi Coord. Pedagógica de Matemática SMED/Piraquara É comum associar o aprender Matemática a fazer contas

Leia mais

_Ficha de Trabalho nº 11.3_

_Ficha de Trabalho nº 11.3_ _Ficha de Trabalho nº 11.3_ Nº: Nome do aluno: Compilação de Exercícios MATEMÁTICA 9º Ano Data / / 1. A Rita e o Paulo têm à sua frente, sobre uma mesa, 30 autocolantes, todos com a mesma forma e com o

Leia mais

Meditação Caminhando com Jesus NOME: DATA: 24/02/2013 PROFESSORA: A CRIAÇÃO DO MUNDO. Versículos para decorar:

Meditação Caminhando com Jesus NOME: DATA: 24/02/2013 PROFESSORA: A CRIAÇÃO DO MUNDO. Versículos para decorar: Meditação Caminhando com Jesus NOME: DATA: 24/02/2013 PROFESSORA: 1- Deus criou os céus e a terra. Gênesis 1:1 A CRIAÇÃO DO MUNDO Versículos para decorar: 2 Pois, por meio dele, Deus criou tudo, no céu

Leia mais

Caderno 1. Teste Intermédio Matemática. 2.º Ano de Escolaridade. Duração do Teste: 45 min (Caderno 1) + 30 min (pausa) + 45 min (Caderno 2) 30.05.

Caderno 1. Teste Intermédio Matemática. 2.º Ano de Escolaridade. Duração do Teste: 45 min (Caderno 1) + 30 min (pausa) + 45 min (Caderno 2) 30.05. Teste Intermédio Matemática 2.º Ano de Escolaridade Duração do Teste: 45 min (Caderno 1) + 30 min (pausa) + 45 min (Caderno 2) 30.05.2014 Nome do aluno: Assinatura do professor: Assinatura do encarregado

Leia mais

TAREFA Padrões numéricos

TAREFA Padrões numéricos Nome: TAREFA Padrões numéricos Observa a seguinte grelha 10 10. Cada casa da grelha representa um número; começa pelo 0 e continua até ao 25. 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Leia mais

Matemática Básica Intervalos

Matemática Básica Intervalos Matemática Básica Intervalos 03 1. Intervalos Intervalos são conjuntos infinitos de números reais. Geometricamente correspondem a segmentos de reta sobre um eixo coordenado. Por exemplo, dados dois números

Leia mais

PROVA RESOLVIDA DA PETROBRAS 2011 ADMINISTRADOR JUNIOR. Professor Joselias http://professorjoselias.blogspot.com

PROVA RESOLVIDA DA PETROBRAS 2011 ADMINISTRADOR JUNIOR. Professor Joselias http://professorjoselias.blogspot.com PROVA RESOLVIDA DA PETROBRAS 2011 ADMINISTRADOR JUNIOR 1) (Concurso Petrobras 2011 Administrador Junior) Considere uma sequência infinita de retângulos, cada um deles com base medindo 1cm e tais que o

Leia mais

Polígonos e mosaicos

Polígonos e mosaicos A UUL AL A Polígonos e mosaicos A regularidade de formas encontradas na natureza tem chamado a atenção do ser humano há muitos séculos. Ao observar e estudar essas formas, o homem tem aprendido muitas

Leia mais

Disciplina: Matemática Período: 1º. Equipe - 3 ano - turmas: 31, 32 e 33.

Disciplina: Matemática Período: 1º. Equipe - 3 ano - turmas: 31, 32 e 33. Número natural; Números e medidas; Contando de 10 em 10; Cem unidades ou uma centena; Centenas, dezenas e unidades; Antecessor e sucessor de um número natural; Comparando números naturais; Identificar

Leia mais

Aulas Previstas. Objectivos Conteúdos Estratégias/Actividades Recursos Avaliação. Avaliação diagnóstica. Observação e registo das atitudes dos alunos

Aulas Previstas. Objectivos Conteúdos Estratégias/Actividades Recursos Avaliação. Avaliação diagnóstica. Observação e registo das atitudes dos alunos Escola E.B. 2.3 Pedro Santarém Objectivos Conteúdos Estratégias/Actividas Recursos Avaliação Preparar e organizar o trabalho a realizar com os alunos Distinguir número inteiro número fraccionário. Reconhecer

Leia mais

Lista de Exercícios Critérios de Divisibilidade

Lista de Exercícios Critérios de Divisibilidade Nota: Os exercícios desta aula são referentes ao seguinte vídeo Matemática Zero 2.0 - Aula 10 - Critérios de - (parte 1 de 2) Endereço: https://www.youtube.com/watch?v=1f1qlke27me Gabaritos nas últimas

Leia mais

Tarefas sobre Números 1º Ciclo

Tarefas sobre Números 1º Ciclo Tarefas sobre Números 1º Ciclo Joana Brocardo Escola Superior de Educação de Setúbal Lurdes Serrazina Escola Superior de Educação de Lisboa Exemplo de notas para o professor Comprando gasolina: notas para

Leia mais

Canguru Matemático sem Fronteiras 2014

Canguru Matemático sem Fronteiras 2014 http://www.mat.uc.pt/canguru/ Destinatários: alunos do 12. ano de escolaridade Nome: Turma: Duração: 1h 30min Não podes usar calculadora. Em cada questão deves assinalar a resposta correta. As questões

Leia mais

38 a OLIMPÍADA BRASILEIRA DE MATEMÁ TICA

38 a OLIMPÍADA BRASILEIRA DE MATEMÁ TICA 38 a OLIMPÍADA BRASILEIRA DE MATEMÁ TICA Primeira Fase Nível 2 (8 o ou 9 o ano) Sexta-feira, 17 de junho de 2016. Caro(a) aluno(a): A duração da prova é de 3 horas. Você poderá, se necessário, solicitar

Leia mais

Somando os termos de uma progressão aritmética

Somando os termos de uma progressão aritmética A UA UL LA Somando os termos de uma progressão aritmética Introdução Um pouco de História Na aula passada, mostramos como calcular qualquer termo de uma progressão aritmética se conhecemos um de seus termos

Leia mais

Resolução da Prova de Raciocínio Lógico do STJ de 2015, aplicada em 27/09/2015.

Resolução da Prova de Raciocínio Lógico do STJ de 2015, aplicada em 27/09/2015. de Raciocínio Lógico do STJ de 20, aplicada em 27/09/20. Raciocínio Lógico p/ STJ Mariana é uma estudante que tem grande apreço pela matemática, apesar de achar essa uma área muito difícil. Sempre que

Leia mais

2) Escreva um algoritmo que leia um conjunto de 10 notas, armazene-as em uma variável composta chamada NOTA e calcule e imprima a sua média.

2) Escreva um algoritmo que leia um conjunto de 10 notas, armazene-as em uma variável composta chamada NOTA e calcule e imprima a sua média. 1) Inicializar um vetor de inteiros com números de 0 a 99 2) Escreva um algoritmo que leia um conjunto de 10 notas, armazene-as em uma variável composta chamada NOTA e calcule e imprima a sua média 3)

Leia mais

Distribuição Binomial e Normal

Distribuição Binomial e Normal Distribuição Binomial e Normal O que se pretende, neste módulo, é apresentar dois modelos teóricos de distribuição de probabilidade, aos quais um experimento aleatório estudado possa ser adaptado, o que

Leia mais

Ficheiro de Matemática

Ficheiro de Matemática Adivinha quem somos nós! A partir das pistas, descobre qual o nome de cada um dos sólidos. Regista no teu caderno as conclusões a que chegaste. Planificações Suspeitas Descobri estas planificações suspeitas!

Leia mais

MATEMÁTICA. prova de aferição de MATEMÁTICA. 4. ano de escolaridade. prova de aferição do 4. ano de escolaridade

MATEMÁTICA. prova de aferição de MATEMÁTICA. 4. ano de escolaridade. prova de aferição do 4. ano de escolaridade prova de aferição do 4. ano de escolaridade prova de aferição do 4. ano de escolaridade MATEMÁTICA 2000 a preencher pelo aluno (não escrevas o teu nome): idade sexo F M escola a preencher pelos CAE: n.

Leia mais

Solução da prova da 2a fase OBMEP 2014 Nível 2. Questão 1. item a)

Solução da prova da 2a fase OBMEP 2014 Nível 2. Questão 1. item a) Questão 1 Cada nova pilha tem dois cubinhos a mais em sua base. Assim, como a terceira pilha tem 5 cubinhos em sua base, a quarta pilha tem 5 + 2 = 7 cubinhos e a quinta pilha tem 7 + 2 = 9 cubinhos em

Leia mais

MATEMÁTICA D U Quarenta = 40. Cinquenta = Completa a recta graduada com os números que faltam.

MATEMÁTICA D U Quarenta = 40. Cinquenta = Completa a recta graduada com os números que faltam. D U 4 0 Quarenta 30 + 0 = 40 D U 5 0 Cinquenta 40 + 0 = 50 Completa a recta graduada com os números que faltam. 39 45 50 55 59 2 Completa de modo a obteres as quantidades indicadas. 40 30 + 0 + 20 50 40

Leia mais

Desenvolvimento do Sistema de Numeração. 6 ano/e.f.

Desenvolvimento do Sistema de Numeração. 6 ano/e.f. Módulo Operações Básicas Desenvolvimento do Sistema de Numeração. 6 ano/e.f. Operações Básicas. Desenvolvimento do Sistema de Numeração. 1 Exercícios Introdutórios b) Exercício 1. Observe a tabela abaixo

Leia mais

Medidas de Localização

Medidas de Localização MATEMÁTICA APLICADA ÀS CIÊNCIAS SOCIAIS RESUMO Estatística 2 Medidas de Localização e Dispersão 10º ano Cláudia Henriques Medidas de Localização Estatísticas Medidas que se calculam a partir dos dados

Leia mais

QUESTÃO 18. Cada um dos cartões abaixo tem de um lado um número e do outro uma letra.

QUESTÃO 18. Cada um dos cartões abaixo tem de um lado um número e do outro uma letra. Nome: N.º: endereço: data: Telefone: E-mail: Colégio PARA QUEM CURSA A ạ SÉRIE DO ENSINO MÉDIO EM 04 Disciplina: MaTeMÁTiCa Prova: desafio nota: QUESTÃO 6 3 8 + 30 = a) 8 b) 9 c) 8 d) 9 e) 58 5 5 3 3 8

Leia mais

CENTRO EDUCACIONAL NOVO MUNDO Matemática

CENTRO EDUCACIONAL NOVO MUNDO  Matemática Desafio de Matemática 3 ano EF 2D 2014 1/ 6 CENTRO EDUCACIONAL NOVO MUNDO www.cenm.com.br 2 o DESAFIO CENM - 2014 Matemática Direção: Ano: 3 Ef 1. Em uma sala de aula, a professora realizou uma pesquisa

Leia mais

números decimais Inicialmente, as frações são apresentadas como partes de um todo. Por exemplo, teremos 2 de um bolo se dividirmos esse bolo

números decimais Inicialmente, as frações são apresentadas como partes de um todo. Por exemplo, teremos 2 de um bolo se dividirmos esse bolo A UA UL LA Frações e números decimais Introdução Inicialmente, as frações são apresentadas como partes de um todo. Por exemplo, teremos de um bolo se dividirmos esse bolo em cinco partes iguais e tomarmos

Leia mais

Variáveis Frequências Gráficos Medidas de Posição Medidas de Dispersão Medidas Complementares Inferência

Variáveis Frequências Gráficos Medidas de Posição Medidas de Dispersão Medidas Complementares Inferência Tipos de Variáveis Problema Motivador: Um pesquisador está interessado em fazer um levantamento sobre aspectos sócio-econômicos dos empregados da seção de orçamentos de uma companhia (vide tabela). Algumas

Leia mais

XXXII Olimpíada Brasileira de Matemática. GABARITO Segunda Fase

XXXII Olimpíada Brasileira de Matemática. GABARITO Segunda Fase XXXII Olimpíada Brasileira de Matemática GABARITO Segunda Fase Soluções Nível 1 Segunda Fase Parte A CRITÉRIO DE CORREÇÃO: PARTE A Na parte A serão atribuídos 5 pontos para cada resposta correta e a pontuação

Leia mais

Instruções Gerais sobre a Prova

Instruções Gerais sobre a Prova Instruções Gerais sobre a Prova Nesta prova vais encontrar perguntas de Matemática. Precisas de: um lápis, uma borracha e uma régua graduada. As perguntas desta prova são de vários tipos. Perguntas para

Leia mais

6 - PROVAS CESGRANRIO(CONCURSOS BANCO CENTRAL E OUROS)

6 - PROVAS CESGRANRIO(CONCURSOS BANCO CENTRAL E OUROS) 1 6 - PROVAS CESGRANRIO(CONCURSOS BANCO CENTRAL E OUROS) 01 - Em uma rua há 10 casas do lado direito e outras 10 do lado esquerdo. Todas as casas são numeradas de tal forma que, de um lado da rua, ficam

Leia mais

números decimais Inicialmente, as frações são apresentadas como partes de um todo. Por exemplo, teremos 2 de um bolo se dividirmos esse bolo

números decimais Inicialmente, as frações são apresentadas como partes de um todo. Por exemplo, teremos 2 de um bolo se dividirmos esse bolo A UA UL LA Frações e números decimais Introdução Inicialmente, as frações são apresentadas como partes de um todo. Por exemplo, teremos de um bolo se dividirmos esse bolo em cinco partes iguais e tomarmos

Leia mais

Canguru Matemático sem Fronteiras 2015

Canguru Matemático sem Fronteiras 2015 anguru Matemático sem Fronteiras 2015 http://www.mat.uc.pt/canguru/ ategoria: Mini-Escolar - nível III Destinatários: alunos do 4. o ano de escolaridade ome: Turma: Duração: 1h 30min anguru Matemático.

Leia mais

Gabarito - Colégio Naval 2016/2017 Matemática Prova Amarela

Gabarito - Colégio Naval 2016/2017 Matemática Prova Amarela Gabarito - Colégio Naval 016/017 PROFESSORES: Carlos Eduardo (Cadu) André Felipe Bruno Pedra Jean Pierre QUESTÃO 1 Considere uma circunferência de centro O e raio r. Prolonga-se o diâmetro AB de um comprimento

Leia mais

Versão 1. Identifica, claramente, na folha de respostas, a versão do teste (1 ou 2) a que respondes.

Versão 1. Identifica, claramente, na folha de respostas, a versão do teste (1 ou 2) a que respondes. Teste Intermédio de Matemática Versão 1 Teste Intermédio Matemática Versão 1 Duração do Teste: 90 minutos 27.04.2010 3.º Ciclo do Ensino Básico 8.º Ano de Escolaridade Decreto-Lei n.º 6/2001, de 18 de

Leia mais

PRINCÍPIOS DA MULTIPLICAÇÃO, DA ADIÇÃO E DA INCLUSÃO-

PRINCÍPIOS DA MULTIPLICAÇÃO, DA ADIÇÃO E DA INCLUSÃO- Matemática Discreta 2009.10 Exercícios CAP2 pg 1 PRINCÍPIOS DA MULTIPLICAÇÃO, DA ADIÇÃO E DA INCLUSÃO- EXCLUSÃO 1. Quantas sequências com 5 letras podem ser escritas usando as letras A,B,C? 2. Quantos

Leia mais

Planificação Anual de Matemática 5º Ano

Planificação Anual de Matemática 5º Ano Planificação Anual de Matemática 5º Ano DOMÍNI OS CONTEÚDOS METAS AULA S Números naturais Compreender as propriedades e regras das operações e usá-las no cálculo. Propriedades das operações e regras operatórias:

Leia mais

Novembro. Áreas Curriculares. Propostas de Operacionalização

Novembro. Áreas Curriculares. Propostas de Operacionalização Áreas Curriculares Conteúdos Novembro Propostas de Operacionalização Língua Portuguesa Compreensão Oral Expressão Oral Leitura Escrita Conhecimento Explícito da língua Ler textos de diferentes tipos; Responder

Leia mais

AV2 - MA 12-2011 UMA SOLUÇÃO

AV2 - MA 12-2011 UMA SOLUÇÃO Questão 1. Considere os caminhos no plano iniciados no ponto (0, 0) com deslocamentos paralelos aos eixos coordenados, sempre de uma unidade e no sentido positivo dos eixos x e y (não se descarta a possibilidade

Leia mais

MATEMÁTICA ENSINO FUNDAMENTAL

MATEMÁTICA ENSINO FUNDAMENTAL CEEJA MAX DADÁ GALLIZZI PRAIA GRANDE - SP PARABÉNS!!! VOCÊ JÁ É UM VENCEDOR! Voltar a estudar é uma vitória que poucos podem dizer que conseguiram. É para você, caro aluno, que desenvolvemos esse material.

Leia mais

Probabilidade é o quociente entre o número de casos favoráveis e o número de casos possíveis em um dado experimento.

Probabilidade é o quociente entre o número de casos favoráveis e o número de casos possíveis em um dado experimento. Probabilidade é o quociente entre o número de casos favoráveis e o número de casos possíveis em um dado experimento. número de casos favoráveis probabilidade número de casos possíveis Nessa definição convém

Leia mais

Apontamentos de matemática 5.º ano - Múltiplos e divisores

Apontamentos de matemática 5.º ano - Múltiplos e divisores Múltiplos e divisores (revisão do 1.º ciclo) Os múltiplos de um número inteiro obtêm-se multiplicando esse número pela sequência dos números inteiros. Exemplos: Alguns múltiplos de 6 são: 0, 6, 12, 18,

Leia mais

ANÁLISE EXPLORATÓRIA DE DADOS

ANÁLISE EXPLORATÓRIA DE DADOS ANÁLISE EXPLORATÓRIA DE DADOS 1.0 Conceitos A estatística descritiva tem o objetivo de organizar, resumir e apresentar de forma adequada os dados, para que estes se tornem informativos. A análise exploratória

Leia mais

11. Resolve as seguintes expressões numéricas: 1 2 1

11. Resolve as seguintes expressões numéricas: 1 2 1 Escola Secundária de Lousada Ficha de Trabalho de Matemática do7º nº Data /0 / 0 Assunto: Preparação para a Prova I Lições nº, Data da Realização : / 0 / 0 Duração: 90 minutos Conteúdos Números inteiros:

Leia mais

ESCOLA MUNICIPAL ANÁPOLIS, PROFESSORA: ALUNO (A): ANO: MÊS: DOMINGO SEGUNDA TERÇA QUARTA QUINTA SEXTA SÁBADO

ESCOLA MUNICIPAL ANÁPOLIS, PROFESSORA: ALUNO (A): ANO: MÊS: DOMINGO SEGUNDA TERÇA QUARTA QUINTA SEXTA SÁBADO PREENCHA O CALENDÁRIO ABAIXO: MÊS: DOMINGO SEGUNDA TERÇA QUARTA QUINTA SEXTA SÁBADO AGORA, RESPONDA: A) QUANTOS DIAS TÊM NO MÊS? B) QUE DIA DA SEMANA COMEÇOU O MÊS? C) QUE DIA DA SEMANA TERMINOU O MÊS?

Leia mais

Escola Secundária com 3º CEB de Lousada PM

Escola Secundária com 3º CEB de Lousada PM Escola Secundária com 3º CEB de Lousada PM Assunto: Mega-ficha de Preparação para o Exame Nacional Data / / 2009 e / / 2009 IV Problemas do Projecto 1000 Itens 1. Ângulo externo O ângulo CVD é um ângulo

Leia mais

Ensino Fundamental II

Ensino Fundamental II Ensino Fundamental II Valor: 2,0 Nota: Data: / /2016 Professora: Angela Disciplina: Geografia Nome: n o : Ano: 6º 1º bimestre Trabalho de Recuperação de Geografia Orientações: - Leia atentamente as questões

Leia mais

O meu horário de estudo

O meu horário de estudo www.livrosdefisica-jc.com.br O meu horário de estudo Preenche este horário segundo a distribuição de tempo que tencionas fazer: Pinta de vermelho o tempo ocupado em aulas; Pinta de cor de laranja o tempo

Leia mais

COMO JOGAR TRUCO GAUDÉRIO

COMO JOGAR TRUCO GAUDÉRIO COMO JOGAR TRUCO GAUDÉRIO Link:http://www.jogatina.com/regras-como-jogar-truco-gauderio.html Como começo a jogar? Para começar a jogar truco gaudério clique em "JOGAR AGORA!" na página do seu perfil no

Leia mais

FUNÇÕES MATEMÁTICAS NÚMERO : PI() SENO E COSSENO: SEN() E COS()

FUNÇÕES MATEMÁTICAS NÚMERO : PI() SENO E COSSENO: SEN() E COS() FUNÇÕES MATEMÁTICAS FUNÇÕES MATEMÁTICAS O Excel possui uma série de funções matemáticas em sua biblioteca. Para utilizar uma função, sempre devem ser utilizados os parêntesis, mesmo que estes fiquem vazios.

Leia mais

PUC-Rio Desafio em Matemática 21 de outubro de 2012

PUC-Rio Desafio em Matemática 21 de outubro de 2012 PUC-Rio Desafio em Matemática 21 de outubro de 2012 Nome: GABARITO Assinatura: Inscrição: Identidade: Questão Valor Nota Revisão 1 1,0 2 1,0 3 1,5 4 1,5 5 1,5 6 1,5 7 2,0 Nota final 10,0 Instruções Mantenha

Leia mais

A IMPORTÂNCIA DO JOGO NO PROCESSO DE ENSINO APRENDIZAGEM ¹

A IMPORTÂNCIA DO JOGO NO PROCESSO DE ENSINO APRENDIZAGEM ¹ Universidade Federal de Pernambuco Centro de Educação A IMPORTÂNCIA DO JOGO NO PROCESSO DE ENSINO APRENDIZAGEM ¹ Muitos autores têm falado sobre o jogo como recurso de ensino e de aprendizagem. Neste texto

Leia mais

1º período. Conhecer os algarismos que compõem o SND (0, 1, 2, 3, 4, 5, 6, 7, 8, 9). Diferenciar algarismos e números. e vice-versa.

1º período. Conhecer os algarismos que compõem o SND (0, 1, 2, 3, 4, 5, 6, 7, 8, 9). Diferenciar algarismos e números. e vice-versa. 1º período Os números naturais: Sistema de Numeração Decimal. (SND) Um pouco de história: sistema de numeração dos romanos. Os números naturais Sistema de Numeração Decimal (SND). Unidades e dezenas. Unidades,

Leia mais

Atividade experimental - Tema: Luz

Atividade experimental - Tema: Luz 1 Problema: As plantas precisam de luz? 1. Nesta experiência desafiamos-te a observar uma planta aquática a produzir bolhinhas de oxigénio graças à luz que nelas incide. Observa a instalação e regista

Leia mais

Ficha Prática 5: Cap 3.Princípios Elementares de Contagem

Ficha Prática 5: Cap 3.Princípios Elementares de Contagem Matemática Discreta - 2010/11 Cursos: Engenharia Informática, Informática de Gestão DEPARTAMENTO de MATEMÁTICA ESCOLA SUPERIOR de TECNOLOGIA e de GESTÃO - INSTITUTO POLITÉCNICO de BRAGANÇA Ficha Prática

Leia mais

Números inteiros Z ± 7º Ano / 2013

Números inteiros Z ± 7º Ano / 2013 Números inteiros Z ± 7º Ano / 2013 Sobre a origem dos sinais A idéia sobre os sinais vem dos comerciantes da época. Os matemáticos encontraram a melhor notação para expressar esse novo tipo de número.

Leia mais

1. Resolve as expressões seguintes aplicando, sempre que possível, as regras operatórias das potências.

1. Resolve as expressões seguintes aplicando, sempre que possível, as regras operatórias das potências. Escola Secundária de Lousada Ficha de Trabalho nº Data / / 0 Assunto: Preparação para o teste Lições nº,, e Data da Realização : / 0 / 0 Duração: 90 minutos Números inteiros: - Números primos e números

Leia mais

Prática Pedagógica Matemática

Prática Pedagógica Matemática Prática Pedagógica Matemática Recomendada para o Ensino Fundamental Ciclo II (7 a e 8 a séries) Tempo previsto: 4 aulas Elaboração: Equipe Técnica da CENP Apresentamos, a seguir, sugestões de situações

Leia mais

MATEMÁTICA. Prova bimestral. Aluno: nº Turma: 3º ano 1º bimestre. 1. Mariana mora em São Paulo. Nas férias, ela vai de carro com seu pai visitar a avó

MATEMÁTICA. Prova bimestral. Aluno: nº Turma: 3º ano 1º bimestre. 1. Mariana mora em São Paulo. Nas férias, ela vai de carro com seu pai visitar a avó MATEMÁTICA NOTA Profª Prova bimestral Aluno: nº Data: Turma: 3º ano 1º bimestre 1. Mariana mora em São Paulo. Nas férias, ela vai de carro com seu pai visitar a avó Olga que mora no Rio de Janeiro. a)

Leia mais

Cinema na escola: Rio 2. Propostas de atividades para o Ensino Fundamental Anos Iniciais e Anos Finais Tema: Desmatamento na Amazônia

Cinema na escola: Rio 2. Propostas de atividades para o Ensino Fundamental Anos Iniciais e Anos Finais Tema: Desmatamento na Amazônia Cinema na escola: Rio 2 Propostas de atividades para o Ensino Fundamental Anos Iniciais e Anos Finais Tema: Desmatamento na Amazônia Filme: Rio 2 Lançamento: 27 de março de 2014 (1h42min) Dirigido por:

Leia mais

ROTEIRO DE RECUPERAÇÃO FINAL MATEMÁTICA

ROTEIRO DE RECUPERAÇÃO FINAL MATEMÁTICA ROTEIRO DE RECUPERAÇÃO FINAL MATEMÁTICA Nome: Nº 6ºAno Data: / / Professores: Leandro e Renan Nota: (Valor 2,0) 1. Apresentação: Prezado aluno, A estrutura da recuperação bimestral paralela do Colégio

Leia mais

Calculando o comprimento de peças dobradas ou curvadas

Calculando o comprimento de peças dobradas ou curvadas Calculando o comprimento de peças dobradas ou curvadas A UU L AL A Vamos supor que você seja dono de uma pequena empresa mecânica e alguém lhe encomende 10.000 peças de fixação, que deverão ser fabricadas

Leia mais