TAREFA Padrões numéricos
|
|
|
- Adriana Luzia Cabral Canejo
- 8 Há anos
- Visualizações:
Transcrição
1 Nome: TAREFA Padrões numéricos Observa a seguinte grelha Cada casa da grelha representa um número; começa pelo 0 e continua até ao Responde às seguintes questões: 1. Qual o número que vem a seguir? 2. Onde pensas colocar o 40? 50? 63? 75? 3. Completa a grelha Quais os números que têm um algarismo que seja 6? 3.2. Para que números é 10 a soma dos dois algarismos? Pinta-os da mesma cor.
2 3.3. Quais os números que têm os dois algarismos iguais? Pinta-os da mesma cor Quais os números pares? E os números ímpares? 3.5. Que padrões observas na grelha?
3 Nome: Data: TAREFA: O calendário Observa o calendário do mês de Maio e descobre algumas regularidades. Mês de Maio de 2011 Domingo Segunda-feira Terça-feira Quarta-feira Quinta-feira Sexta-feira Sábado
4 TAREFA Regularidades no quadrado 10 por 10 Descobre as regularidades no quadrado 10 por 10 e regista as.
5 TAREFA Qual o termo seguinte? ,
6 TAREFA Séries de cubinhos Dispõe cubinhos de modo a continuar a série abaixo começada. Explica como vais formando as novas figuras. Consegues prever quantos cubinhos terão as sucessivas figuras? Faz o registo na tabela. A B C D Continua a série desenhando as figuras E e F. Preenche a tabela. FIGURAS N.º DE CUBINHOS A 1 B 4 C D E F A figura G teria quantos cubinhos?
7 TAREFA O friso Numa parede da sala de aula vai ser colocado um friso como o seguinte: Acrescenta no friso as 2 figuras seguintes. A primeira sequência de figuras que se vão repetindo ao longo do friso tem: Dividiram-se os alunos em grupos e cada grupo recortou um tipo de figuras. O grupo das luas já acabou: têm as suas 20 luas prontas. Quantas figuras deverá apresentar cada um dos restantes grupos?
8 TAREFA Moinhos de vento O senhor José tem uma colecção de moinhos de vento. Estava a organizá-los formando vários conjuntos. No 1.º conjunto pôs um moinho de vento. No 2.º conjunto colocou dois moinhos de vento. No 3.º conjunto colocou quatro moinhos de vento, e sete no quarto conjunto. Preparava-se para fazer o quinto conjunto quando o seu neto Luís lhe disse: "Já sei quantos moinhos de vento vais pôr nesse conjunto. Quantos moinhos foram colocados no quinto conjunto? Explica como pensou o Luís.
9 TAREFA Sequências de figuras Desenha a figura que se segue em cada sequência: Quantos vértices? a) Continua o padrão. b) Se juntarmos 10 quadrados, quantos vértices obtemos? (Nota: dois vértices passam a contar como um só.)
10 TAREFA As piscinas O João vai construir piscinas quadradas. Cada piscina tem um quadrado no centro que representa a área onde vai ficar a água. O João usa o azul para representar a água. À volta de cada piscina há uma borda de quadrículas brancas. A figura, abaixo, representa as três piscinas quadradas mais pequenas: Piscinas com bordas Piscina 1 Piscina 2 Piscina 3 Desenha a Piscina 4. Regista a informação acerca das quatro piscinas na tabela e responde às seguintes questões: Nº da figura Nº de quadrículas azuis Nº de quadrículas brancas Total de quadrículas a) Se há 36 quadrados azuis, quantos quadrados brancos haverá? Explica o teu raciocínio. b) Será possível construir um quadrado com 49 quadrados azuis? Justifica. c) Será possível construir um quadrado com 12 quadrados azuis? Justifica.
11 TAREFA Padrão em tabela 1. Observa o padrão apresentado. Podes descobrir qual a peça que fica na 10ª casa? E na 14ª? E na 21ª? 2. Completa o quadro usando o padrão proposto. 3. Constrói outro padrão. Compara-o com o colega do lado.
12 Tarefa: Árvores de Primavera Observa a seguinte sequência de árvores de Primavera. 1. Constrói a figura seguinte. 3. Quantas peças foram usadas para construir cada figura? Completa a tabela de modo a organizares os dados. Número da figura Número de peças
13 4. Quantas peças terá a 8ª Figura? E a 20ª? E a 100ª? Explica como pensaste.
14 Tarefa: Construções com hexágonos Observa as três primeiras figuras de uma sequência com hexágonos. Fig. 1 Fig. 2 Fig Representa a próxima figura da sequência. 2. Quantos hexágonos compõem a figura que ocupa a posição 6 da sequência? Justifica a tua resposta. 3. Qual a posição ocupada pela figura composta por 14 hexágonos? Explica como chegaste a essa conclusão. 4. Descreve como podes construir a figura número 20?
15 Tarefa: Sequências Numéricas 1. Completa cada uma das seguintes sequências. Em cada caso, explica como pensaste , 6, 9, 12,,, 21,, 1.2.,,, 35, 45, 55,, , 4, 8, 16,,,, 1.4.,, 80, 40, 20,, ,,, 64, 128, 256,, 2. Inventa uma sequência numérica e representa os três primeiros termos da mesma Descreve como se pode obter o oitavo termo da tua sequência.
16 3. A Zé para criar a sua sequência estabeleceu como regra que o termo seguinte devia ser o anterior mais duas unidades. Sabendo que o primeiro termo da sequência é dois, continua-a até ao quinto termo Dá um exemplo de um número compreendido entre 20 e 30 que não pode estar na sequência da Zé. Explica como pensaste.
1. Qual o número que vem a seguir? 2. Onde pensas colocar o 40? 50? 63? 75? 3. (Apontando para uma casa vazia) Qual o número que pensas estar aqui?
Padrões numéricos Constrói-se uma grelha 10 10 suficientemente grande para que todos alunos a consigam ver. Em cada casa da grelha representamos um número; começamos pelo 0 e continuamos até ao 25, por
Caderno 1. Matemática. Teste Intermédio de Matemática. Caderno 1. Teste Intermédio. 2.º Ano de Escolaridade
Teste Intermédio de Matemática Caderno 1 Teste Intermédio Matemática 2.º Ano de Escolaridade Duração do Teste: 45 min (Caderno 1) + 30 min (pausa) + 45 min (Caderno 2) 08.06.2011 Nome do aluno: Assinatura
1 Neste quadro estão registados as toneladas de lixo recolhidos pela cidade de Faro ao longo de 4 meses. setembro outubro novembro dezembro
2º ANO CADERNO 1 45 MINUTOS NOME: DATA: 1 Neste quadro estão registados as toneladas de lixo recolhidos pela cidade de Faro ao longo de 4 meses. setembro outubro novembro dezembro 21 20 18 34 1.1 Completa
MATEMÁTICA - 3o ciclo Sequências e sucessões (7 o ano)
MATEMÁTICA - 3o ciclo Sequências e sucessões (7 o ano) Exercícios de provas nacionais e testes intermédios 1. Na figura ao lado, estão representados os quatro primeiros termos de uma sequência de conjuntos
MATEMÁTICA - 3o ciclo Sequências e sucessões (7 o ano)
MATEMÁTICA - 3o ciclo Sequências e sucessões (7 o ano) Exercícios de provas nacionais e testes intermédios 1. Representam-se a seguir os três primeiros termos de uma sucessão de figuras constituídas por
MATEMÁTICA - 3o ciclo Sequências e sucessões (7 o ano)
MATEMÁTICA - 3o ciclo Sequências e sucessões (7 o ano) Exercícios de provas nacionais e testes intermédios 1. Na figura seguinte, estão representados os quatro primeiros termos de uma sucessão de sólidos
UNIDADE 3 Ficha 1: Sequências e regularidades
UNIDADE 3 Ficha 1: Sequências e regularidades Nome: 7º ANO MATEMÁTICA Data: / / 1. Completa as seguintes sequências numéricas e supõe que se mantém a regularidade entre termos consecutivos. Sequência 1:
Instruções para a realização da Prova Leia com muita atenção
Nível 3 Instruções para a realização da Prova Leia com muita atenção Prova da segunda fase Caro Aluno, Parabéns pela sua participação na décima terceira edição da Olimpíada de Matemática de São José do
1.ª Parte. 2. Escreve três números diferentes com três algarismos, usando para cada um deles 4, 2 e 5.
3.º 1. Assinala com X o número trezentos e dois: 1.ª Parte 320 302 3002 32 2. Escreve três números diferentes com três algarismos, usando para cada um deles 4, 2 e 5. 2.1. Ordena os números que escreveste
Instruções Gerais sobre a Prova
Instruções Gerais sobre a Prova Nesta prova vais encontrar perguntas de Matemática. Precisas de: um lápis, uma borracha e uma régua graduada. As perguntas desta prova são de vários tipos. Perguntas para
Escola EB1 de. Ficha de Avaliação Final - Matemática - 3º Ano -
grupamento de Escolas da Lourinhã Escola EB1 de Ficha de valiação Final - Matemática - 3º no - Nome : Data: / / Lê com muita atenção, pensa bem e depois resolve. No final verifica tudo atentamente. 1 figura
ACTIVIDADES NO GEOPLANO. 4. Desenha 2 figuras equivalentes e isoperimétricas, mas que não sejam geometricamente iguais.
1. Usa só dois elásticos e desenha: 1.1 três triângulos; ACTIVIDADES NO GEOPLANO 1.2 um pentágono e quatro triângulos. 1. um pentágono e cinco triângulos. 2. Desenha 2 figuras equivalentes.. Desenha 2
Matemática 6.º ano Sequências e regularidades
Matemática 6.º ano Sequências e regularidades Relembra Uma sequência numérica ou uma sequência de números é uma lista ordenada e finita de números. Cada número da lista é chamado termo da sequência. 1.
Investigar Padrões. Na primeira tabela que números têm as duas cores? Compara com a segunda tabela. O que concluis?
Investigar Padrões Múltiplos de 2, 3 e 6 Pinta os múltiplos de 2 e os de 3 com cores diferentes Pinta os múltiplos de 6 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12 2 4 6 8 10 12 14 16 18 20 22
Matemática - 4º ano. Números racionais não negativos. Tarefa : O passeio da turma da Rita
Números racionais não negativos Tarefa : O passeio da turma da Rita No final do ano, a turma da Rita foi passear à Serra da Arrábida. 1. A Rita e quatro dos seus amigos decidiram partilhar igualmente entre
MATEMÁTICA. prova de aferição de MATEMÁTICA. 4. ano de escolaridade. prova de aferição do 4. ano de escolaridade
prova de aferição do 4. ano de escolaridade prova de aferição do 4. ano de escolaridade MATEMÁTICA 2000 a preencher pelo aluno (não escrevas o teu nome): idade sexo F M escola a preencher pelos CAE: n.
Anexo I Guião da entrevista
ANEXOS Anexo I Guião da entrevista Anexo II Grelha de registo da observação de aulas Anexo III Guião de elaboração do Diário de bordo Anexo IV Guião da reflexão escrita do aluno Anexo V Tarefa 1: unindo
Ensino Fundamental Nível I Currículo Brasileiro
1) A sala de Cristiane jogou o Jogo dos círculos. Conte os pontos que ela fez em cada jogada e escreva-os com algarismos (11) e por extenso (onze). Veja o exemplo: 5 + 1 + 5 = 11 pontos ou onze pontos.
Na turma dialoga com os teus colegas sobre as seguintes questões e escreve o que pensas sobre cada uma delas.
E.B. de Nome: Data: TAREFA 1 Na turma dialoga com os teus colegas sobre as seguintes questões e escreve o que pensas sobre cada uma delas. 1 - Durante a semana passas mais tempo na escola ou em casa? E
Avaliação - Problemas Pré-Algoritmicos
Algoritmos e Estruturas de Dados 1 Professores: Marcos Castilho e Daniel Weingaertner Doutorando: Alexander Robert Kutzke Data: 06 de Março de 201. UNIVERSIDADE FEDERAL DO PARANÁ Setor de Ciências Exatas
MATEMÁTICA. 1 Escreve em algarismos.
Ler e escrever números 1 Escreve em algarismos. nove dezenas uma centena, três dezenas e cinco unidades vinte e oito dezenas duas centenas e seis unidades quinhentas e doze unidades Decompor números em
PROVA GPS. Matemática, 5.º Ano (Novo Programa) Duração da Prova: 90 minutos 27 de Abril de A preencher pelo Aluno
Matemática, 5.º Ano (Novo Programa) Duração da Prova: 90 minutos 27 de Abril de 2010 A preencher pelo Aluno Nome Completo: Bilhete de Identidade/Cartão de Cidadão N.º: Assinatura do Estudante: Prova de
Para indicar os dias, as semanas e os meses do ano, bem como as datas em que são comemorados os feriados, utilizamos o calendário.
PROFESSOR: EQUIPE DE MATEMÁTICA BANCO DE QUESTÕES - MATEMÁTICA - 4º ANO - ENSINO FUNDAMENTAL ================================================================= Para indicar os dias, as semanas e os meses
TEMPO DE CÁLCULO. 1º Ano. Mª Fernanda Matos. Escola EB1 António Nobre (Lisboa)
1º Ano Mª Fernanda Matos Escola EB1 António Nobre (Lisboa) Este ficheiro pode ser usado de 2 maneiras distintas: 1.Pode constituir uma rotina semanal. Neste caso, o trabalho de uma ficha é realizado por
ANALISANDO O EDITAL RELAÇÕES ARBITRARIAS SEQUENCIAS RACIOCINIO. MATEMATICA BASICA..
ANALISANDO O EDITAL RELAÇÕES ARBITRARIAS SEQUENCIAS RACIOCINIO. MATEMATICA BASICA.. ASSOCIAÇÕES LOGICAS 1) Três Agentes Administrativos - Almir, Noronha e Creuza - trabalham no Departamento Nacional de
Prova da segunda fase - Nível 3
Caro Aluno, Parabéns pela sua participação na nona edição da Olimpíada de Matemática de São José do Rio Preto! Lembre-se de que uma Olimpíada é diferente de uma prova escolar. Muitas vezes, as questões
PLANIFICAÇÃO ANUAL DA DISCIPLINA DE MATEMÁTICA - 2.º ano. Proposta Hypatiamat. Ano letivo 2017/2018
PLANIFICAÇÃO ANUAL DA DISCIPLINA DE MATEMÁTICA - 2.º ano Proposta Hypatiamat Ano letivo 2017/2018 PLANIFICAÇÃO ANUAL DA DISCIPLINA DE MATEMÁTICA - 2.º ano Ano letivo 2017/2018 Números e Operações Geometria
NÍVEL 1 M DESAFIOS SEMANA 24
NÍVEL 1 M Lucinha tem duas folhas retangulares, uma azul e outra rosa, ambas com 8 cm de largura e 12 cm de comprimento. Ela cortou as duas folhas ao meio, conforme indicado na figura ao lado. a) Lucinha
Prova da segunda fase - Nível 2
Caro Aluno, Parabéns pela sua participação na nona edição da Olimpíada de Matemática de São José do Rio Preto! Lembre-se de que uma Olimpíada é diferente de uma prova escolar. Muitas vezes, as questões
fios ( ) 8 = 2704 m
Resposta da questão 1: [C] A quantidade de fios necessária será igual ao perímetro da chácara multiplicado por 8, o seja: fios (52 + 52 + 117 + 117) 8 = 2704 m Se as estacas estão igualmente espaçadas,
Colégio Santa Dorotéia
Colégio Santa Dorotéia Disciplina: Matemática / ORIENTAÇÃO DE ESTUDOS - RECUPERAÇÃO Ano: 2º - Ensino Fundamental - Data: 8 / 5 / 2018 CONTEÚDO DE ESTUDO: Leitura e escrita de números. Calendário Sequência
Matemática. Prova a de Aferição de. 2.º Ciclo do Ensino Básico. A preencher pelo aluno (não escrevas o teu nome): idade sexo: F M.
A preencher pelo aluno (não escrevas o teu nome): idade sexo: F M A preencher pelo GAVE: n.º convencional da escola 2003 Prova a de Aferição de Matemática 2.º Ciclo do Ensino Básico A B C D E F Observações
MATEMÁTICA. 2 Com os algarismos escreve todos os números possíveis com os algarismos todos diferentes.
1 Decompõe: 200 = 2 x 300 = 3 x 400 = 4 x 200 = + 300 = + 400 = + 289 = + + 327 = + + 418 = + + 2 Com os algarismos 2 3 4 escreve todos os números possíveis com os algarismos todos diferentes. 3 Escreve
PROBLEMATECA GEOMÉTRICOS NUMERAÇÃO
COLEÇÃO MATHEMOTECA ORGANIZADORAS Kátia Katia Stocco Smole Maria Ignez Diniz Anos iniciais do ensino fundamental Resolução Materiais manipulativos de problemas nas para aulas o ensino de matemática de
Classificação: Professor: Enc. Educ.: Esta ficha é constituída por duas partes, a 1ª parte é de escolha múltipla e a 2ª parte é de desenvolvimento.
FICHA DE AV ALI AÇ ÃO DE M ATEM ÁTIC A 3º Ciclo 7º ano Março de 2010 Duração da prova: 90 minutos A Nome: Nº: Turma: Classificação: Professor: Enc. Educ.: Esta ficha é constituída por duas partes, a 1ª
EB1 de. MATEMÀTICA Nome Data / / Tarefa: Quadro da centena de milhar e quadro do milhão
Tarefa: Quadro da centena de milhar e quadro do milhão Os alunos completam e exploram tabelas com números de 1000 em 1000 e de 10000 em 10000, como apoio na contagem de números até ao milhão. O quadro
Prova da primeira fase - Nível 1
Prova da primeira fase - Nível Instruções: O tempo de duração da prova é de uma hora e trinta minutos. Este é um teste de múltipla escolha. Cada questão é seguida por cinco opções (a, b, c, d, e). Somente
EXTERNATO JOÃO ALBERTO FARIA ARRUDA DOS VINHOS maio 2014
EXTERNATO JOÃO ALBERTO FARIA ARRUDA DOS VINHOS maio 2014 Matemática 6.º Ano O Professor, (Luís Melícias) Nome do(a) aluno(a) N.º Turma 6.º. Classificação % por cento. Observações: O Enc. de Educação Deve
Solução da prova da 1.ª Fase. b) Queremos os números interessantes do tipo ABC6. Isso implica que A x B x C = 6. Temos dois casos a considerar:
Solução da prova da 1.ª Fase Nível 3 Ensino Médio 1. a Fase 15 de setembro de 018 QUESTÃO 1 a) Para que o número 14A8 seja interessante devemos ter: 1 x 4 x A = 8; logo, A =. b) Queremos os números interessantes
Caderno de Acompanhamento Progressão Aritmética e Função Afim Escola Estadual Judith Vianna. Estudante: Turma:
Estudante: Turma: Sequências A natureza apresenta padrões e regularidades. Dessa forma, muitas teorias matemáticas são desenvolvidas a partir do estudo desses padrões e regularidades. Por exemplo, o estudo
DIVISÃO EUCLIDIANA. (a) Quais são os postos de partida e chegada de uma corrida de 14 quilômetros?
DIVISÃO EUCLIDIANA LISTA 04 DIVISÃO EUCLIDIANA E PROBLEMAS PERIÓDICOS Prof: Wagner Monte Raso Braga Aluno(a): 12/07/2016 01) Em cada caso calcule o quociente q e o resto r da divisão de a por b. Em seguida
a) b) c) d) e) f)
Departamento de Matemática da Universidade de Coimbra Actividades Matemáticas Primazia dos números Primos Actividade 1 Verifica quais dos seguintes números são primos. a) 47792469123 b) 328279 c) 56897643
Prova de Aferição de Matemática e Estudo do Meio Prova 26 2.º Ano de Escolaridade 2016
Rubricas dos Professores Vigilantes A PREENCHER PELO ALUNO Nome completo Documento de identificação CC n.º ou BI n.º Emitido em (Localidade) Assinatura do Aluno Prova de Aferição de Matemática e Estudo
Prova Final de Matemática
PROVA FINAL DO 2.º CICLO DO ENSINO BÁSICO Matemática/Prova 62/1.ª Chamada/2013 Decreto-Lei n.º 139/2012, de 5 de julho A PREENCHER PELO ESTUDANTE Nome completo Documento de identificação CC n.º ou BI n.º
Trabalho de investigação. Matemática. Padrão dos Nomes
< Nome: Trabalho de investigação Matemática Data: Padrão dos Nomes 1. Escreve o teu nome na seguinte grelha, usando um quadrado para cada letra e repete-o até a preencheres totalmente, sem deixares quadrados
A Geometria nas Provas de Aferição
Escola E.B. 2 e 3 de Sande Ficha de Trabalho de Matemática 6.º Ano A Geometria nas Provas de Aferição Nome: N.º Turma: 1. Assinala com um x a figura em que os triângulos representados são simétricos em
2006 Prova a de Aferição de
Prova de Aferição de Matemática 2.º Ciclo do Ensino Básico A preencher pelo Aluno 2006 Nome: A preencher pela U.E. N.º convencional do aluno: N.º convencional da escola: N.º convencional do aluno: N.º
Módulo Números Inteiros e Números Racionais. Exercícios sobre Operações com Números Inteiros. 7 ano E.F. Professores Cleber Assis e Tiago Miranda
Módulo Números Inteiros e Números Racionais Exercícios sobre Operações com Números Inteiros 7 ano E.F. Professores Cleber Assis e Tiago Miranda Números Inteiros e Números Racionais Exercícios sobre Operações
Regras de Divisibilidade. 6 ano E.F. Professores Cleber Assis e Tiago Miranda
Módulo Resolução de Exercícios Regras de Divisibilidade 6 ano E.F. Professores Cleber Assis e Tiago Miranda Resolução de Exercícios Regras de Divisibilidade 1 Exercícios Introdutórios Exercício 1. de:
Escola E.B. 2,3 General Serpa Pinto Cinfães Proposta de resolução da ficha formativa nº /2013
Escola E.B. 2,3 General Serpa Pinto Cinfães Proposta de resolução da ficha formativa nº 2-2012/2013 1. A figura ao lado representa o polígono da base de uma pirâmide. Indica, justificando: 1.1. o nome
ANÁLISE COMBINATÓRIA
ANÁLISE COMBINATÓRIA 1) (PUC) A soma das raízes da equação (x + 1)! = x 2 + x é (a) 0 (b) 1 (c) 2 (d) 3 (e) 4 2) (UFRGS) Um painel é formado por dois conjuntos de sete lâmpadas cada um, dispostos como
RACIOCÍNIO LÓGICO - MATEMÁTICA
RACIOCÍNIO LÓGICO MATEMÁTICO WWW.CONCURSOVIRTUAL.COM.BR 1 QUESTÕES - RACIOCINIO LÓGICO 12. Uma sequência de números segue a seguinte lei de formação: se um número N dessa sequência é par, adicione a ele
Escola Básica e Secundária de Vila Cova
Nome: N. Turma: Data: / / Classificação: %( ) Reduzido Não Satisfaz Satisfaz Satisfaz Bastante Excelente Data de Entrega: / / Professora: Enc. Educação: 3º CICLO DO ENSINO BÁSICO 7º ANO DE ESCOLARIDADE
TAREFA 1 - VAMOS CONHECER A TURMA!...
TAREFA 1 - VAMOS CONHECER A TURMA!... Conhecermo-nos uns aos outros faz parte do nosso dia a dia em sociedade. Fazer ressaltar as semelhanças e diferenças do grupo de alunos da turma é uma boa forma de
Sugestões de atividades para o estudo em casa. 1º ano
1- Escrever os números de 0 a 20 na ordem crescente. 2- Escrever, por extenso, os números abaixo (observar o traçado): 12-10- 15-16- 14-9- 20-11- 13-2- 18-19- 3- Colocar os números abaixo em ordem decrescente:
Escola Secundária com 3ºCEB de Lousada
Escola Secundária com ºCEB de Lousada Ficha de Trabalho de Matemática do7º ano - nº Data / / 00 Assunto: Correcção da ficha de Preparação para o teste Lições nº,, e. A Dona Francisca resolveu plantar batatas,
Instruções para a realização da Prova Leia com muita atenção!
Nível 2 Instruções para a realização da Prova Leia com muita atenção! Prova da segunda fase Caro Aluno, Parabéns pela sua participação na décima segunda edição da Olimpíada de Matemática de São José do
MATEMÁTICA. 1 Observa a figura e completa. A sala de espectáculos tem filas. Cada fila tem cadeiras: 2 Coloca uma X na resposta correcta.
1 Observa a figura e completa. A sala de espectáculos tem filas. Cada fila tem cadeiras: cadeiras do lado esquerdo e cadeiras do lado direito. 2 Coloca uma X na resposta correcta. A sala: está completa.
SUPER 30 PROFESSOR HAMILTON VINÍCIUS. Competência de área 1 Construir significados para os números naturais, inteiros, racionais e reais.
Competência de área 1 Construir significados para os números naturais, inteiros, racionais e reais. 1 H3 - Resolver situação-problema envolvendo conhecimentos numéricos. Quais principais conteúdos abordados
II Olimpíada Brasileira de Raciocínio Lógico Nível II Fase I 2015
1 2 Questão 1 Artur é muito bom em problemas matemáticos e sempre propõe desafios aos seus colegas. Desta vez, Artur criou uma sequência infinita de letras, juntando as palavras que formavam o nome de
Caderno 1. Teste Intermédio Matemática. 2.º Ano de Escolaridade. Duração do Teste: 45 min (Caderno 1) + 30 min (pausa) + 45 min (Caderno 2)
Teste Intermédio Matemática 2.º Ano de Escolaridade Duração do Teste: 45 min (Caderno 1) + 30 min (pausa) + 45 min (Caderno 2) 03.06.2015 Nome do aluno: Assinatura do professor: Assinatura do encarregado
Avaliação E. Educação Professor
Teste de Avaliação Nome N. o Turma Data /jan./2019 Avaliação E. Educação Professor MATEMÁTICA 7. o ANO Duração: 90 minutos Não é permitido o uso de calculadora. Na resposta aos itens de escolha múltipla,
Para indicar os dias, as semanas e os meses do ano, bem como as datas em que são comemorados os feriados, utilizamos o CALENDÁRIO.
PROFESSOR: EQUIPE DE MATEMÁTICA BANCO DE QUESTÕES - MATEMÁTICA - 4º ANO - ENSINO FUNDAMENTAL ====================================================================== Para indicar os dias, as semanas e os
Canguru Matemático sem Fronteiras 2011
http://www.mat.uc.pt/canguru/ Destinatários: alunos dos 0. e. anos de escolaridade Nome: Turma: Duração: h30min Não podes usar calculadora. Há apenas uma resposta correcta em cada questão. As questões
MATEMÁTICA - 3o ciclo Sequências e sucessões (7 o ano) Propostas de resolução
MATEMÁTICA - 3o ciclo Sequências e sucessões (7 o ano) Propostas de resolução Exercícios de provas nacionais e testes intermédios 1. Verificando que em cada termo: o número de cubos cinzentos é igual à
Nível 4.º e 5.º anos do Ensino Fundamental
Nível 4.º e 5.º anos do Ensino Fundamental A QUESTÃO 1 ALTERNATIVA C Basta fazer a conta: 2018 8012 + 10030 QUESTÃO 2 O número de pessoas que chegaram ao ponto final é igual ao resultado da operação 25
Prova Escrita de Matemática
ESCOLA SECUNDÁRIA DE LOUSADA Prova Escrita de Matemática.º Ciclo do ensino Básico ; 7ºAno de escolaridade Duração da Prova: 90 minutos Versão 01 A PREENCHER PELO ALUNO Nome completo do aluno Nª Turma:
Letramento Matemático na Educação Infantil
Etapa 6: Propostas didáticas com sistema de numeração decimal Objetivo da etapa: Relacionar as reflexões sobre registro numérico com propostas didáticas pensadas para fortalecer ou instigar processos investigativos
Plano Curricular de Matemática 2.º Ano - Ano Letivo 2017/2018
Plano Curricular de Matemática 2.º Ano - Ano Letivo 2017/2018 1.º Período Números e Operações Conteúdos Programados Aulas Previstas Aulas Dadas Números naturais Conhecer os numerais ordinais Utilizar corretamente
2014 Caderno 1: 45 minutos.
Rubricas dos Professores Vigilantes Provas a Nível de Escola PROVA FINAL DO 1º CICLO DO ENSINO BÁSICO Matemática/Prova 32/1ª Fase/2014 Decreto-Lei nº 139/2012, de 5 de julho A PREENCHER PELO ESTUDANTE
Canguru Matemático sem Fronteiras 2018
Destinatários: alunos dos 5. o e 6. o anos de escolaridade Nome: Turma: Duração: 1h 30min Não podes usar calculadora. Em cada questão deves assinalar a resposta correta. As questões estão agrupadas em
CADERNO 1 (É permitido o uso de calculadora gráfica)
1 CADERNO 1 (É permitido o uso de calculadora gráfica) 11 De 1 a 50 há dez números que são múltiplos de 5: 5,10,15,20,25,30,35,40,45,50 O número total de sequências de 5 elementos sem qualquer restrição
Aapple v a l mappleæê ß Papple fæe s Eapple
Aapple v a l i@a@ç@ã@o @d@o mappleæê ß @dæe@ Napple@o mæe@: Dapple@a t@a@: Papple r@o fæe s s@o r@(@a@): Eapple n@c@. @dæe@ Eapple@d@u@c@.: Napple@o mæe@: Dapple@a t@a@: Eapple s t@u@d@o @d@o Mappleæe
AULA 8. Conteúdo: Equivalência de Frações. Objetivo: Compreender o significado e o processo de obtenção de frações equivalentes.
AULA 8 Conteúdo: Equivalência de Frações. Objetivo: Compreender o significado e o processo de obtenção de frações equivalentes. 8.1 Tarefa 1: Problema Gerador Na terça-feira, a turma dividiu um bolo pequeno
OPEMAT. Olimpíada Pernambucana de Matemática
OPEMAT Olimpíada Pernambucana de Matemática - 206 Nível. O ano de 206 está acabando, vamos ver se você conhece bem esse número. Para isso, julgue os itens a seguir: (V) (F) A maior potência de 2 que divide
1. Pega na tua folha rectangular, dobra-a e corta-a de modo a obteres metade desse rectângulo.
FRACÇÕES E DECIMAIS I 1. Pega na tua folha rectangular, dobra-a e corta-a de modo a obteres metade desse rectângulo. (a) Regista o que obtiveste. (b) Constrói de novo o rectângulo inicial. (c) Pega noutra
SIMULADO DE GEOMETRIA OBMEP ª FASE. NÍVEL 1 6 e 7 anos do Ensino Fundamental. Nome completo do aluno:
LEMIN - Laboratório de Educação Matemática Isaac Newton Professor Coordenador: Cristiano Rodolfo Tironi Rua da Integração, 386 - Centro - Massaranduba (SC) www.leminsc.com.br email: [email protected]
Unidade 2 Espaço e Forma
CONTEÚDO DA UNIDADE 3 3 4 6 7 9 10 11 12 13 14 15 Unidade 2 Espaço e Forma Números Naturais de 40 a 49 Números Naturais de 50 a 59 Adição Ideia de Juntar Números Naturais de 60 a 69 Números Naturais de
Este conjunto de testes formativos para a cadeira de Matemática Discreta baseia-se na matéria do manual indicado.
INTRODUÇÃO Este conjunto de testes formativos para a cadeira de Matemática Discreta baseia-se na matéria do manual indicado. Com este conjunto de testes formativos visa-se atingir três objectivos: Fornecer
Prova Final de Matemática. Caderno 1: 50 minutos. Tolerância: 20 minutos. 1.º Ciclo do Ensino Básico. Prova 42/2.ª Fase.
PROVA FINAL DO 1.º CICLO DO ENSINO BÁSICO Matemática/Prova 42/2.ª Fase/2013 Decreto-Lei n.º 139/2012, de 5 de julho A PREENCHER PELO ESTUDANTE Nome completo Documento de identificação CC n.º ou BI n.º
Solução da prova da 2.ª Fase
Solução da prova da.ª Fase Nível 8.º e 9.º anos do Ensino Fundamental. a Fase de setembro de 08 QUESTÃO a) As páginas pares do álbum têm os números,,,..., 0 num total de 0 = 0 páginas e as páginas ímpares
AGRUPAMENTO de ESCOLAS de PEDRÓGÃO GRANDE CONSELHO de DOCENTES Planificação Trimestral - 1.º Ano /2016 Matemática 2.º Período 52 dias letivos
janeiro Números naturais Correspondências um a um e comparação do número de elementos de dois conjuntos; Contagens de até doze objetos; O conjunto vazio e o número zero; Números naturais até 12; contagens
1. Considera o seguinte número e responde, assinalando com X o que te é pedido.
Ficha de avaliação diagnóstica Matemática 5.º ano Parte 1 1. Considera o seguinte número e responde, assinalando com X o que te é pedido. 543 076 1.1 O número destacado pode ler-se: Cinco centenas de milhar,
MOMENTOS DE MATEMÁTICA
MOMENTOS DE MATEMÁTICA... 5º Ano............ Ficha Global n.º 1 1. Calcula o valor de a de cada uma das igualdades: a) 4,5 + a = 15,8 b) 11,2 - a = 5,4 c) 4,5 : a = 0,9 d) 4,5 : a = 0,9 e) 1,24 x a = 3,1
1 a Olimpíada Paranaense de Matemática Terceira Fase Nível 1 12/11/16 Duração: 5 Horas
1. Sofia colou, em cada face de um cubo com 5cm de lado, um cubo de lado 3cm. Em cada face livre dos cubos de lado 3cm colou um cubo com 1cm de lado. Depois pintou o sólido resultante como se indica na
Matemática Guarda Municipal de Curitiba. Prof.: Braian Azael da Silva
Matemática Guarda Municipal de Curitiba Prof.: Braian Azael da Silva CONJUNTOS NUMÉRICOS Exercício A sequência abaixo foi criada repetindo-se as letras da palavra JANEIRO na mesma ordem: J A N E I R O
Números naturais. Conjunto de tarefas para o 5.º ano - 2.º ciclo. Autores: Professores das turmas piloto do 5. º ano de escolaridade
Números naturais Conjunto de tarefas para o 5.º ano - 2.º ciclo Autores: Professores das turmas piloto do 5. º ano de escolaridade Ano Lectivo 2008 / 09 Setembro de 2009 Vamos arrumar caramelos Esta tarefa
MATEMÁTICA. 1 Havia 140 cerejas numa travessa. A Eva comeu 6 dezenas. Quantas cerejas ficaram na travessa?
Resolução de problemas 1 Havia 140 cerejas numa travessa. A Eva comeu 6 dezenas. Quantas cerejas ficaram na travessa? R.: Relação de ordem (>, < e =) 2 Coloca o sinal correto (>, < e =) 60 80 20 + 10 30
Nome: N.º: endereço: data: Telefone: PARA QUEM CURSA O 7 Ọ ANO DO ENSINO FUNDAMENTAL EM 2015 Disciplina: MaTeMÁTiCa
Nome: N.º: endereço: data: Telefone: E-mail: Colégio PARA QUEM CURSA O 7 Ọ ANO DO ENSINO FUNDAMENTAL EM 2015 Disciplina: MaTeMÁTiCa Prova: desafio nota: QUESTÃO 16 (FATEC-2015) Um grupo de alunos da Fatec
Canguru Matemático sem Fronteiras 2012
anguru Matemático sem Fronteiras 0 http://www.mat.uc.pt/canguru/ ategoria: Escolar estinatários: alunos dos 5. o e 6. o anos de escolaridade Nome: Turma: uração: h 0min Não podes usar calculadora. Em cada
