CAPÍTULO 5 Exercícios Resolvidos
|
|
|
- Suzana Camarinho Rico
- 9 Há anos
- Visualizações:
Transcrição
1 CAPÍTULO 5 Exercícios Resolvidos R5.) Casais com no máximo filhos Consideremos o conjunto dos casais que têm no máximo dois filhos. Admitamos que dentro desse contexto, cada uma das possibilidades em termos do número de filhos, a saber, 0 filhos, filho e filhos têm a mesma probabilidade, ou seja, /3 para cada uma delas. Admitamos também que as probabilidades de nascimento de homens e de mulheres são iguais. Assim sendo, entre os que têm apenas filho (o que ocorre com probabilidade /3), temos metade para cada sexo, isto é, /6 para filho homem e /6 para uma filha mulher. Analogamente, entre os que têm filhos (o que também ocorre com probabilidade /3), de novo cada uma das 4 possibilidades de combinações dos sexos tem a mesma chance: homens tem probabilidade /, mulheres tem probabilidade /, homem e mulher tem probabilidade /6. Sejam X e Y, respectivamente, o número de filhos homens e o número de filhas mulheres de um casal escolhido ao acaso. (a) Qual a distribuição de probabilidade de X? E de Y? (b) Calcule E(X), Var(X), E(Y) e Var(Y). (c) X e Y são variáveis aleatórias independentes? Por que? (d) Calcule E(X + Y) e Var(X + Y). (e) Calcule Cov(X,Y). (f) Verifique, neste caso, a validade das expressões E(X + Y) = E(X) + E(Y) e Var(X + Y) = Var(X) + Var(Y) + Cov(X,Y). Solução: (a) X e Y têm ambos a mesma distribuição de probabilidade. X (resp, Y) pode ser 0, ou, com probabilidades 7/, 4/ e /, respectivamente. Por que? (b) E(X) = E(Y) = 0x7/+x4/+x/ = / e Var(X) = Var(Y) = 0 x7/+ x4/+ x/ (/) = 5/. (c) X e Y não são mais variáveis aleatórias independentes. Por que? Por exemplo, porque P(X=0, Y=0) = /3 49/44 = (7/)x(7/) = P(X=0).P(Y=0). (d) X + Y é o número total de filhos (de ambos os sexos) de um casal selecionado ao acaso. Já vimos que, por construção, X + Y pode assumir cada um dos valores 0, ou com probabilidade /3. Então E(X + Y) = 0x/3+x/3+x/3 = e Var(X + Y) = 0 x/3+ x/3+ x/3 = /3. (e) A variável XY só pode assumir os valores 0 e, com probabilidades 5/6 e /6, respectivamente. (Por que?) Daí, E(XY) = 0x5/6+x/6 = /6. Pela propriedade (f), temos Cov(X,Y) = E(XY) E(X)E(Y) = /6 (/).(/) = /. Finalmente, (f) E(X) + E(Y) = ½ + ½ = = E(X+Y) Var(X) + Var(Y) + Cov(X,Y) = 5/ + 5/ + x (-/) = /3 = Var(X + Y) conforme prevê a propriedade (e).
2 R5.) Multiplicação de partículas Um certo tipo de partícula se divide em 0, ou novas partículas (que serão chamadas suas descendentes) com probabilidades 30%, 40% e 30%, respectivamente, e depois se desintegra. As partículas individuais agem independentemente entre si. Dada uma partícula, seja X o número dos seus descendentes e seja X o número de descendentes dos seus descendentes. Calcule: (a) P(X = 0) (b) P(X = X = ) Solução: Temos P(X = 0) = 0,3 P(X = ) = 0,4 P(X = ) = 0,3 (a) P(X = 0X = 0) = P(X = 0X = ) = 0,3 P(X = X = ) = 0,4 P(X = X = ) = 0,3 P(X = 0X = ) = 0,3 0,3 = 0,09 P(X = X = ) = 0,3 0,4 + 0,4 0,3 = 0,4 P(X = X = ) = 0,3 0,3 + 0,4 0,4 + 0,3 0,3 = 0,34 P(X = 3X = ) = 0,3 0,4 + 0,4 0,3 = 0,4 P(X = 4X = ) = 0,3 0,3 = 0,09 P(X 0) P(X 0 X 0) P(X 0) P(X 0 X ) P(X ) P(X 0 X ) P(X 0,3 0,3 0,4 0,090,3 0,447. ) (b) P(X X ) P(X X 0) P(X P(X 0) P(X X X ) P(X ) P(X ) ) P(X X ) P(X ) 0,3 0,4 0, 0, ,3 0,3 0,4 0,34 0,3 0, R5.3) Distribuição uniforme em uma região do plano Dizemos que uma v.a bidimensional (X,Y) tem distribuição uniforme em uma região R do plano real se sua função de densidade conjunta é f(x,y) =, (x,y) R = 0, caso contrário
3 Seja R a região do plano limitada pela curva y = x, o eixo dos y e a reta y = (ver Figura a seguir). A região do plano onde (X,Y) está definido Se (X,Y) é uniforme em R, determine: (a) A densidade conjunta de (X,Y) (b) As densidades marginais de X e de Y (c) As densidades condicionais de X dado Y = y e de Y dado X = x (d) As esperanças condicionais de X dado Y = y e de Y dado X = x (e) As variâncias condicionais de X dado Y = y e de Y dado X = x Solução: (a) Área de R = = /3. Então a densidade conjunta de (X,Y) é f(x,y) = 3/, se 0 x = 0, caso contrario (b) Temos, portanto: f X (x) = =, 0 x f Y (y) = =, 0 y (c) f(x y) = =, 0 x f(y x) = =, 0 x ou 0 x y (d) E(X y) = =, 0 y E(Y x) = = (+x ), 0 x (e) Var(X y) = E(X y) {E(X y)}, onde E(X y) = =, se 0 y.
4 Portanto, Var(X y) = =, se 0 y Var(Y x) = E(Y x) {E(Y x)}, onde E(Y x) = = =, se 0 x Portanto, Var(Y x) = =, se 0 x R5.4) Tempo gasto no caixa de uma loja Para cada cliente que entra na fila do caixa de uma loja de roupas: O tempo de espera na fila segue uma distribuição de probabilidade exponencial com média de 5 minutos; O tempo de atendimento segue uma distribuição de probabilidade exponencial com média de 3 minutos; Esses dois tempos são v.a. s independentes. Para a variável tempo total do cliente no caixa incluindo a espera na fila e o atendimento, determine a FDA, a densidade, a esperança e o desvio padrão. Solução: Sejam X o tempo de espera na fila e Y o tempo de atendimento, ambos em minutos. Então suas densidades são respectivamente: f(x) =, para x > 0 e g(y) =, para y > 0. Como X e Y são v.a. s independentes, sua densidade conjunta é, para x > 0 e y > 0. Seja Z o tempo total do cliente em minutos. Sua FDA é então: H(z) = P[Z z] = P[X + Y z] =, para z > 0, sendo H(z) = 0, para z 0. A densidade de Z é então h(z) =, para z > 0, sendo h(z) = 0, para z 0. A esperança e o desvio padrão de Z podem ser ambos calculados diretamente via integração, a partir da sua densidade: E(Z) = Var(Z) = min. min.
5 DP(Z) = min. Observe que, para chegarmos à função Gama, foram feitas substituições de variáveis do tipo: z = 5t e z = 3t, nas integrais acima. Uma outra forma de se obter a esperança e a variância de Z seria através do uso das propriedades: E(Z) = E(X + Y) = E(X) + E(Y) = = 8 min. Var(Z) = Var(X + Y) = Var(X) + Var(Y) = = 34 min. (usando a independência) Então DP(Z) = minutos. R5.5) Vôos domésticos e vôos internacionais Seja X o número de aeronaves que chegam a um determinado aeroporto, no intervalo de 4 horas, provenientes de vôos domésticos. Seja Y o número de aeronaves que chegam a esse mesmo aeroporto, ao longo do mesmo intervalo de 4 horas, porém provenientes de vôos internacionais. Sabe-se que: A distribuição marginal de X+Y (n o total de chegadas em 4 horas) é Poisson λ j e λ com parâmetro λ, isto é, PX Y j, para todo j = 0,,,... j! A distribuição condicional de X dado que X+Y = j é Binomial(j;p), isto é, j PX k X Y j p k p j k, para todo k = 0,,,...,j. k Mostre que, nessas condições: (a) a distribuição marginal de X (chegadas de vôos domésticos em 4 horas) é λp e λp Poisson com parâmetro λp, isto é, PX k, para todo k = 0,,,... k! (b) a distribuição condicional de X+Y (total de chegadas em 4 horas), dado que X = k (chegam k vôos domésticos em 4 horas) é uma Poisson truncada, isto é, jk λ( p) e λ( p) P X Y jx k, para todo j = k, k+, k+,... j k! (c) Determine o número esperado total de chegadas (entre as provenientes de vôos domésticos e internacionais) ao longo de 4 horas, dado que durante esse período chegaram k vôos nacionais, ou seja, E[X+YX=k]. Solução: (a) k Fazendo i = j k, temos i = 0,,,... e j = i + k. Então, para todo k = 0,,,... Isso mostra que X, o número de chegadas de vôos domésticos em 4 horas, segue uma distribuição de Poisson com parâmetro λp.,
6 (b) para j = k, k+, k+,... Isso mostra que a distribuição condicional de X + Y, dado que X = k, é uma Poisson truncada com parâmetro λ( p). (c) Decorre do item (b) que a v.a. X + Y k é uma Poisson com parâmetro λ( p). Logo, dado que em 4 horas houve k chegadas de vôos domésticos, o número esperado de chegadas nesse mesmo intervalo de tempo, sejam elas provenientes de vôos domésticos ou internacionais, é E(X+Y X=k) = E(k + (X+Y k)) = k + λ( p). R5.6) Mais uma vez o recadastramento Consideremos, mais uma vez, a situação do Exemplo 5.9. Isto é, o processo de recadastramento vai evoluindo progressiva e uniformemente ao longo do ano, de modo que, se x é a proporção de indivíduos já recadastrados, então x = 0 no início do ano e x = no fim do ano. Porém, agora: X é o tempo (em fração de ano) a contar do início do ano até o momento em que se realiza um experimento no qual são sorteados sucessivamente tantos membros da população quantos forem necessários até que apareça o primeiro já recadastrado; Y é o número de sorteios realizados até aparecer o primeiro recadastrado. Determine: (a) A distribuição condicional de Y dado que X = x. (b) A esperança condicional de Y dado que X = x. (c) A distribuição marginal de Y. (d) O valor esperado de Y. (e) A distribuição condicional de X dado Y. (f) A esperança condicional de X dado Y. Solução: (a) Aqui se trata de uma distribuição geométrica com parâmetro x, isto é, (b) Por isso, E(Y X=x) = /x. Então, se, por exemplo, esse experimento for realizado no final de fevereiro, ou seja, depois de passados meses o que corresponde a x = / = /6 do ano espera-se que sejam necessários /x = 6 sorteios para que apareça o primeiro indivíduo já recadastrado. (c) P(Y=y) =. (d) E(Y) =.
7 Isso significa que se esses sorteios forem realizados em um momento escolhido aleatoriamente ao longo do ano, espera-se que seja necessário um número infinito de sorteios para que apareça o primeiro indivíduo já recadastrado. (e) f(x Y=y) =, 0 < x < Esta é a distribuição Beta(a,b), com a = e b = y. (f) Por isso, E(X Y=y) =. Logo, se em um determinado momento ao longo do ano realizou-se o experimento e, por exemplo, foram necessários 4 sorteios para que aparecesse o primeiro indivíduo já recadastrado, isso deve ter ocorrido em torno do final de abril, isto é, depois de passados y = 4 meses, ou /(+4) = /3 do ano. R5.7) Carteira de aplicações financeiras Uma pessoa investe um total de C = 0000 reais em duas aplicações cujas taxas de retorno são variáveis aleatórias independentes X e X, com médias 5% e 4% e desvios padrão % e 8%, respectivamente. O desvio padrão (R) do seu retorno total R C X C X será usado aqui como uma medida do risco envolvido em selecionar essa dada carteira de aplicações. (a) Caso se deseje manter o risco no mínimo possível, que quantias C e C devem ser investidas nas respectivas aplicações? Quais são a média do retorno e o risco correspondentes a essa carteira? (b) Qual é o tamanho do risco a ser corrido para se atingir uma carteira cujo retorno médio seja de 770 reais? (c) Através da Desigualdade de Chebyshev, obtenha um intervalo simétrico em torno de 770 reais que, com probabilidade superior a 80%, conterá o retorno R da carteira obtida no item (b). Obs.: A Desigualdade de Chebyshev afirma que se Y é uma variável aleatória com esperança e variância finitas e é uma constante positiva, então Var(Y) P Y E(Y) ε. ε Solução: R C X CX CX (C C)X E(R) CE(X ) (C C)E(X ) Var(R) C Var(X ) (C C) Var(X ), devido à independência entre X e X. (a) Minimizar o desvio padrão é o mesmo que minimizar a variância. Então, para minimizar o risco (desvio padrão de R), devemos igualar a zero a derivada de Var(R) com relação a C. dvar(r) CVar(X ) (C C)Var(X ) dc
8 dvar(r) Então, 0 implica que dc var(x ) 0,08 C ,5 reais var(x ) var(x ) 0,0 0,08 C C C C 53,85 reais E(R) 9846,50,05 53,85 0,4 53,85 reais Var(R) 9846,5 0,0 53,85 Então, (R) = 9846,5 99,3 reais 0, ,5 reais (b) E(R) = 770 implica que (R) =? E(R) CE(X ) (C C)E(X ) 770. C E(X ) ,4 770 Então C E(X ) E(X ) 0,4 0,08 e C reais reais (R) , ,08 50 reais (c) Aplicando a Desigualdade de Chebyshev à variável aleatória R, temos Var(R) PR E(R) ε ε Então Var(R) PR E(R) ε PE(R) ε R E(R) ε ε Por outro lado, do item (b) sabemos que se E(R) = 770 então (R) = 50. Então, para que o intervalo centrado em E(R) = 770 tenha probabilidade > 0,80, Var(R) devemos igualar a 0,80. ε Var(R) 50 0,80 implica que ε 559,0 reais. ε 0,0 O intervalo desejado é então ,0; ,0, ou seja, (0,98 ; 39,0) em reais. R5.8) Mais sobre o Movimento Browniano Sob as mesmas condições do Exercício R3.6, mostre que se X =, onde: S é Normal( x 0 ; Dt); T é Normal(x 0 ; Dt); W é Bernoulli com p = ½; As variáveis aleatórias W, S e T são independentes entre si; então X tem densidade f.
9 Solução: Sejam S N( x 0 ; Dt), T N(x 0 ; Dt) e W Bernoulli(p) com p = ½, onde as variáveis W, S e T são independentes entre si. Suponhamos agora que X =. Desejamos mostrar que a densidade f(.) da v.a. X assim obtida é dada pela expressão A FDA de X é, por definição, = = Já que: Φ( a) = Φ(a) implica em Φ(a) Φ( a) = Φ(a), para todo a real; e e ; concluímos que: F(x) =. Conseqüentemente,, se x Se x < 0, é claro que f(x) = 0, já que X = e o módulo é obrigatoriamente não-negativo. R5.9) Tempo de deslocamento da residência até o local de trabalho Considere uma pessoa que, toda manhã, faz uma viagem de carro desde sua residência no subúrbio até a estação ferroviária e, dali, toma um trem rumo ao seu local de trabalho no centro da cidade. Ela costuma sair de casa entre 7:00 e 7:30. O percurso de carro até a estação ferroviária leva entre 0 e 0 minutos. Admita que tanto o instante de partida quanto a duração do percurso de carro são variáveis aleatórias independentes, cada uma delas com distribuição uniforme no seu respectivo intervalo. Há três trens que ela pode tomar, sendo que todos eles são absolutamente pontuais em seus horários de partida e de chegada. O primeiro trem parte às 7:30 e chega às 8:0. O segundo trem parte às 7:45 e chega às 8:5. O terceiro trem parte às 8:00 e chega às 8:45. (a) Considerando que o tempo é contado em minutos a partir de 7:00, mostre que a função de distribuição acumulada da variável aleatória Y, instante de chegada dessa pessoa à estação ferroviária, é dada por:
10 0, se y 0 (y 0), se 0 y F (y 5), se 0 y 40 Y (y) (50 y), se 40 y , se y 50 e que a sua correspondente função de densidade é (y 0), se 0 y 0 300, se 0 y 40 f Y (y) y, se 40 y , nos demais casos (b) Determine a média e o desvio padrão do horário de chegada dessa pessoa ao centro da cidade. Solução: (a) Podemos escrever que Y = X + X, sendo X e X v.a. s independentes e tais que X é U[0; 30] e X é U[0;0]. F Y (y) = P(Y y) = P(X + X y). Para calcular essa probabilidade temos que considerar as 3 retas r, r e r3 da figura a seguir: Todas as 3 retas têm como equação x + x = y, porém: No caso da reta r, temos 0 y 0, e y 0 Area do triângulo AEB F Y (y) = Area do retangulo ADJG 0 30 y 0 600
11 No caso da reta r, temos 0 y 40, e F Y (y) = Area do retângulo AKHG Area do triângulo KCH Area do retangulo ADJG 0( y 0) ( y 5) 30 No caso da reta r3, temos 40 y 50, e Area do retângulo ADJG - Area do triângulo IJF F Y (y) = Area do retangulo ADJG y 50 y O gráfico da FDA F Y (.) é então o seguinte: Calculando a derivada, obtemos: (y 0), 300 f Y (y), y, 300 cujo gráfico é o seguinte: se 0 y 0 se 0 y 40 se 40 y 50 (b) Consideremos agora a viagem de trem: Para que ela consiga tomar o primeiro trem é necessário que chegue à estação ferroviária no máximo até 7:30, o que corresponde a 30 minutos, a partir das 7:00. A probabilidade de que isso aconteça pode ser calculada como o valor da função de distribuição acumulada de Y no ponto y = 30:
12 F Y (30) = (30 5). 30 Neste caso ela chegaria ao centro da cidade às 8:0. Para que ela perca o primeiro trem, mas consiga tomar o segundo trem é necessário que chegue à estação ferroviária entre 7:30 e 7:45, o que corresponde ao intervalo que vai desde 30 minutos até 45 minutos, a partir das 7:00. A probabilidade de que isso aconteça pode ser calculada como F Y (45) F Y (30) = (30 5) Neste caso ela chegaria ao centro da cidade às 8:5. Para que ela perca os dois primeiros trens, sendo portanto obrigada a tomar o terceiro trem é necessário que chegue à estação ferroviária após as 7:45, o que corresponde a 45 minutos, a partir das 7:00. A probabilidade de que isso aconteça pode ser calculada como F Y (45) = Neste caso ela chegaria ao centro da cidade às 8:45. Assim sendo, se W é a variável aleatória que corresponde ao momento em que ela chegará ao centro da cidade, contado em minutos a partir de 7:00, temos: 80, com probabilidade W 85, com probabilidade 4 05, com probabilidade 4 Ou, de outra forma, calculando as probabilidades como áreas sob a curva de f Y : PW 80 P0 Y PW 85 P30 Y PW 05 P45 Y Daí, E(W) ,33 minutos a partir de 7:00 e 4 4 DP(W) ,33 5,4 minutos. 4 4 Isso significa que o horário esperado da chegada ao centro é 8 horas, 3 minutos e 0 segundos, com um desvio padrão de 5 minutos e 8 segundos.
13 Exercícios Propostos P5.) Vendas semanais de carros importados e carros nacionais Uma concessionária de automóveis vem mantendo semanalmente em estoque carros importados e 3 de fabricação nacional, para atender aos seus clientes. Sejam X e Y as variáveis aleatórias que representam respectivamente o número de carros importados e o número de carros nacionais que ela vende ao longo de uma semana. Assim sendo, X pode assumir os valores 0,, e Y os valores 0,,, 3. A função de probabilidade conjunta de X e Y é dada pela tabela abaixo: Função de probabilidade conjunta de X e Y x y ,0 0,05 0,05 0,04 0,05 0,0 0,5 0,0 0,04 0,5 0,0 0,06 Qual a probabilidade de que, em uma determinada semana: (a) Não seja vendido nenhum carro importado? (b) Todos os carros nacionais sejam vendidos? (c) Sejam vendidos no máximo um carro importado e um carro nacional? (d) Sejam vendidos mais carros importados do que nacionais? (e) Sejam vendidos ao todo pelo menos 4 carros? P5.) Novamente as vendas semanais de carros importados e nacionais Considerando novamente a concessionária do exercício anterior, obtenha: (a) as distribuições marginais de X e de Y. (b) as distribuições condicionais de X dado Y, e de Y dado X. (c) Cov(X,Y) e ρ(x,y). P5.3) Erro grave Na resolução do exercício abaixo foi cometido um erro grave. Pergunta: Sejam X e Y duas v.a. s independentes e tais que X N(80; 9) e Y N(50; 6). Qual a distribuição de probabilidade da v.a. Z = X Y? Resposta: E(Z) = E(X Y) = E(X) E(Y) = = 30 Var(Z) = Var(X Y) = Var(X) Var(Y) = 9 6 = 7. Conclusão: Z N(30; 7). (a) Qual foi o erro cometido aqui? (b) Qual a solução correta? P5.4) Casais com exatamente filhos Admitamos que as probabilidades de nascimento de homens e de mulheres são iguais, ou seja, 50% para cada sexo. Consideremos apenas casais que tenham dois filhos. Então cada uma das 4 possibilidades de combinações quanto aos sexos dos filhos (MM, MF, FM, FF) tem 5% de chance de acontecer. Seja X igual a 0 ou conforme o primeiro
14 filho seja homem ou mulher. Seja Y igual a 0 ou conforme o segundo filho seja homem ou mulher. Mostre que: (a) As variáveis aleatórias X e Y são independentes e cada uma delas tem distribuição de Bernoulli com p =/. (b) Qual a distribuição de probabilidade de X + Y, o número de crianças do sexo feminino entre as duas? (c) Verifique, neste caso particular, a validade das propriedades: E(X + Y) = E(X) + E(Y) e Var(X + Y) = Var(X) + Var(Y). (d) Qual a distribuição de probabilidade da v.a. XY? (e) Verifique que, neste caso particular, Cov(X,Y) = 0. Por que? P5.5) Aposentadoria Todos os servidores aposentados de um certo país estão pleiteando que seja revisto o valor de sua aposentadoria. Por outro lado, eles estão sendo recadastrados ao longo de um ano. Admita que o percentual p de aposentados já recadastrados cresce uniformemente desde p = 0 no início do ano até p = no final do ano. Em determinado momento ao longo do ano serão sorteados 50 entre esses servidores, para que seus pleitos sejam analisados. Somente serão considerados os pleitos daqueles que já estiverem recadastrados. Calcule a probabilidade de que: a) Pelo menos 5 dos servidores selecionados tenham seus pleitos analisados, se essa seleção for feita no final de maio; b) Entre 0 e 30 dos servidores selecionados tenham seus pleitos analisados, se essa seleção for feita no final de junho; c) No máximo 5 dos servidores selecionados tenham seus pleitos analisados, se essa seleção for feita no final de agosto. P5.6) Detector de Mentiras Um detector de mentiras será usado pela polícia para investigar 0 suspeitos de envolvimento em um determinado crime. Admita que entre eles 5 são culpados (mas alegarão inocência) e os outros 5 são realmente inocentes. Sabe-se também que: mesmo quando uma pessoa diz a verdade, o detector tem uma chance de 5% de falhar, indicando que ela mentiu; mesmo quando ela mente, o detector tem uma chance de 30% de não conseguir detectar a mentira. Qual a probabilidade de que: (a) todos os 0 diagnósticos obtidos através do detector estejam corretos? (b) o detector libere todos os 0 suspeitos? (c) ao mesmo tempo, pelo menos 3 dos culpados sejam pegos e pelo menos 4 dos inocentes sejam liberados? P5.7) Pesquisa de mercado Está sendo realizada uma pesquisa de mercado para se investigar a demanda potencial por um novo produto a ser lançado proximamente. Dois entrevistadores, A e B, estão abordando aleatoriamente os consumidores que circulam por determinado local dentro de um Shoppíng Center o público alvo da pesquisa para que estes respondam às perguntas de um questionário. Admita que aqueles que estariam propensos a comprar o novo produto correspondem a uma determinada proporção p do público alvo. Seja X
15 (respectivamente Y) o número de entrevistas a serem feitas por A (respectivamente B), até que ele encontre o primeiro consumidor disposto a comprar o novo produto. (a) Quais os valores possíveis e a distribuição de probabilidade da variável X + Y, o número total de entrevistas feitas por A e por B até que cada um deles encontre pela primeira vez um consumidor potencial do novo produto? Você identifica a distribuição de probabilidade obtida como pertencente a alguma família conhecida de modelos probabilísticos. Qual? (b) Qual a distribuição de probabilidade condicional de X dado que X+Y = j. E Y X Y j. Ou seja, se A e B juntos tiveram que abordar j pessoas (c) Determine até que cada um deles encontrasse o primeiro consumidor potencial do produto, em média quantas entrevistas B terá feito até esse ponto? P5.8) Produção de milho Na safra de 000/00, a produtividade do solo, em toneladas por hectare, das plantações de milho no Brasil teve uma média de 3,3 t/ha e um desvio padrão de 0,5 t/ha. Por outro lado, a área, em hectares, das propriedades rurais dedicadas ao plantio do milho tinha nessa ocasião uma de média de 3,6 ha e um desvio padrão de, ha. Com base nessas informações, calcule, para a safra de 000/00: (a) A média e o desvio padrão da produção de milho, em toneladas, de uma propriedade rural. (b) A produção média de milho, em toneladas, correspondente às propriedades rurais onde a produtividade do solo era de exatamente 4 t/ha. (c) O desvio padrão da produção de milho, em toneladas, correspondente às propriedades rurais cuja área era exatamente 4, ha. (d) O coeficiente de correlação entre produtividade do solo e produção de milho. (e) O coeficiente de correlação entre área da propriedade rural e produção de milho. Obs.:. Os valores dos parâmetros deste problema são aproximações obtidas a partir de dados reais.. Admita que a produtividade do solo e a área da propriedade rural são variáveis aleatórias independentes. P5.9) Consumo de combustível Sabe-se que, em uma certa localidade: 60% dos carros são pequenos; 30% dos carros são médios; 0% dos carros são grandes; O desempenho de um carro grande em km/litro é uma variável aleatória com distribuição uniforme no intervalo [6; 0]; O desempenho de um carro médio em km/litro é uma variável aleatória com distribuição uniforme no intervalo [8; ]; O desempenho de um carro pequeno em km/litro é uma variável aleatória com distribuição uniforme no intervalo [0; 4];
16 A rodagem mensal dos carros em km/mês é uma variável aleatória com distribuição exponencial de média 000; A rodagem e o desempenho são variáveis aleatórias independentes. Qual o consumo médio de combustível dos carros do local em litros/mês? Sugestão: Se C é o consumo, R é a rodagem e D é o desempenho, então C = R e, pela independência, E(C) = E(R). Além disso =. 0,+.0,3+.0,6. Por que? Como para carros grandes, D U[6; 0],. Analogamente para carros médios e pequenos... P5.0) Soma e Produto de uniformes independentes Sejam X e Y duas v.a. s iid ambas Uniformes no intervalo [0,]. Sejam U = X + Y e V = XY. (a) Obtenha a função de densidade conjunta de U e V. (b) Obtenha as funções de densidade marginais de U e de V. P5.) Marcando um encontro Dois amigos combinaram de se encontrar em determinado local entre 4:00 e 6:00, sendo que cada um deles esperaria pelo outro no máximo até 5 minutos. Qual a probabilidade de que eles realmente se encontrem? Sugestão: Contando o tempo em minutos a partir das 4:00, o instante de chegada de cada um pode ser visto como uma v.a. Uniforme no intervalo [0; 0]. Além disso, essas v.a. s podem ser consideradas independentes. Desenhe uma figura em que cada eixo do plano bidimensional representa o instante de chegada de uma pessoa. Verifique qual é o subconjunto do quadrado [0; 0]x[0; 0] que corresponde a um encontro entre eles. P5.) Ainda o problema do encontro Considere novamente o problema anterior. Sejam S o tempo em minutos desde as 4:00 até o momento em que chega o primeiro dos dois e T o tempo em minutos desde as 4:00 até o momento em que ambos já chegaram. Obtenha: (a) a expressão algébrica das densidade marginais de S e de T. (b) E(S), Var(S), E(T), Var(T). Sugestão: Note que P(T t) = P(X t, Y t) e P(S s) = P(X s, Y s), sendo X e Y os instantes de chegada dessas duas pessoas.
17 P5.3) Mistura de Normais Sejam X, Y e W v.a. s independentes e tais que X N(, Y N( e W Bernoulli(p). Definamos agora uma outra v.a.: Z = ( W)X + WY. Neste caso, dizemos que Z é uma mistura de duas Normais. Prove que: (a) A densidade de Z é h(z) = ( p), z. (b) E(Z) = ( p) + p. (c) Var(Z) = ( p) + p + p( p). Obs.: Note que no Exercício Resolvido 3.? temos uma mistura de Normais. P5.4) Pureza do Minério de Ferro Sejam X e Y duas v.a. s tais que: X = teor de pureza de um minério de ferro Y = 0, se é tomada a decisão de não aproveitar esse minério na produção de aço Y =, se é tomada a decisão de aproveitar esse minério na produção de aço A distribuição marginal de X é Uniforme entre 0 e ; A distribuição condicional de Y dado que X = x é Bernoulli(x). (a) Determine E(X Y = 0) e Var(X Y = 0), ou seja, a média e a variância do teor de pureza do minério, dado que foi tomada a decisão de não aproveitar esse minério na produção de aço. (b) Determine E(X Y = ) e Var(X Y = ), ou seja, a média e a variância do teor de pureza do minério, dado que foi tomada a decisão de aproveitar esse minério na produção de aço. P5.5) Pedidos de informação em um aeroporto Seja Z o número de pessoas em geral (nacionais ou estrangeiros) que recorrem ao balcão de informações de um aeroporto ao longo de uma hora. Sabe-se que: o número X de usuários nacionais que recorrem a esse balcão em uma hora é uma variável aleatória cuja lei de probabilidade é Poisson com freqüência média de chegada λ = 0 pessoas por hora; o número Y de usuários estrangeiros que recorrem a esse balcão em uma hora segue também uma lei de probabilidade de Poisson com freqüência média de chegada λ = 4 pessoas por hora; X e Y são variáveis aleatórias independentes. (a) Calcule a probabilidade P( Z 7) de que entre e 7 pessoas, nacionais ou estrangeiras, recorrerão ao balcão de informações em uma hora. (b) Mostre que a lei de probabilidade condicional de X dado que Z = z é uma binomial com parâmetros z e p = 0/4.
18 P5.6) Número de atendentes e tamanho da fila em um cartório O número de atendentes que, em determinado momento, estão à disposição do público em um cartório pode variar desde até 4, com 5% de chance para cada valor possível. Dado que há k atendentes naquele momento, o tamanho da fila única de pessoas que estão aguardando para serem atendidas segue uma distribuição de Poisson com parâmetro λ = /k. Alguém acaba de chegar ao cartório nesse momento. Calcule: (a) A probabilidade de que haja 4 pessoas na fila. (b) A probabilidade de que haja atendentes, dado que há 4 pessoas na fila. (c) A média e a variância do número de atendentes. (d) A média e a variância do tamanho da fila. P5.7) Distribuição Normal Bivariada * Se é um vetor aleatório com distribuição normal bi-variada sendo: E(X ) = µ, E(X ) = µ, Var(X ) =, Var(X ) = e Cov(X, X ) = ρ, então a densidade conjunta de (X, X ) é dada por f x, x π σ ρ x μ x μ x μ x μ exp ρ σ σ σ σ ρ para todo par (x, x ) de R. Mostre que: (a) a densidade marginal de X i é uma Normal ( i, i ), i =, (b) X e X são independentes se e só se X e X são não correlacionadas (c) a densidade condicional de X dado que X = x é uma Normal cuja média é e cuja variância é Obs.: Nas condições do enunciado acima, dizemos que X tem vetor de médias μ σ ρσ σ μ e matriz de covariâncias Σ μ ρσ σ σ,
19 Sugestão: Pode ser provado que se é um vetor aleatório cuja distribuição é Normal bivariada com os parâmetros listados acima, então podemos escrever: ou seja,, onde U e U são v.a. s iid, ambas com distribuição Normal padrão. Neste caso também é possível expressar U e U em função de X e X :. P5.8) Exportações e Importações A distribuição conjunta das variáveis x = ln(exportações) e y = ln(importações) onde exportações e importações, definidas para qualquer país do mundo, estão ambas expressas em bilhões de dólares relativos ao ano de 007 pode ser modelada como uma Normal bivariada com Vetor de médias = e Matriz de covariâncias =. (a) Dado que um país exportou 50 bilhões de dólares em 007, quanto em média ele deve ter importado nesse ano? Qual o desvio padrão? (b) Dado que um país importou 00 bilhões de dólares em 007, quanto em média ele deve ter exportado nesse ano? Qual o desvio padrão? Obs.: Se Y = ln(x) tem distribuição Normal(µ; ), então E(X) = e Var(X) =.
Processos Estocásticos
Processos Estocásticos Terceira Lista de Exercícios 22 de julho de 20 Seja X uma VA contínua com função densidade de probabilidade f dada por Calcule P ( < X < 2. f(x = 2 e x x R. A fdp dada tem o seguinte
Exercícios resolvidos sobre Função de probabilidade e densidade de probabilidade
Exercícios resolvidos sobre Função de probabilidade e densidade de probabilidade Você aprendeu o que é função probabilidade e função densidade de probabilidade e viu como esses conceitos são importantes
Probabilidades e Estatística
Departamento de Matemática Probabilidades e Estatística LEAN, LEE, LEGI, LERC, LMAC, MEAer, MEAmbi, MEBiol, MEEC, MEMec o semestre 011/01 1 o Teste B 1/04/01 11:00 Duração: 1 hora e 30 minutos Justifique
Variáveis aleatórias contínuas e distribuiçao Normal. Henrique Dantas Neder
Variáveis aleatórias contínuas e distribuiçao Normal Henrique Dantas Neder Definições gerais Até o momento discutimos o caso das variáveis aleatórias discretas. Agora vamos tratar das variáveis aleatórias
Resoluções comentadas de Raciocínio Lógico e Estatística - SEPLAG-2010 - APO
Resoluções comentadas de Raciocínio Lógico e Estatística - SEPLAG-010 - APO 11. O Dia do Trabalho, dia 1º de maio, é o 11º dia do ano quando o ano não é bissexto. No ano de 1958, ano em que o Brasil ganhou,
Probabilidades: Função massa de probabilidades ou função distribuição de probabilidade ou modelo de probabilidade:
Exame MACS- Probabilidades Probabilidades: Função massa de probabilidades ou função distribuição de probabilidade ou modelo de probabilidade: Nos modelos de probabilidade: há uma primeira fase em que colocamos
CAPÍTULO 5 - Exercícios
CAPÍTULO 5 - Exercícios Distibuições de variáveis aleatórias discretas: Binomial 1. Se 20% dos parafusos produzidos por uma máquina são defeituosos, determinar a probabilidade de, entre 4 parafusos escolhidos
MODELOS PROBABILÍSTICOS MAIS COMUNS VARIÁVEIS ALEATÓRIAS DISCRETAS
MODELOS PROBABILÍSTICOS MAIS COMUNS VARIÁVEIS ALEATÓRIAS DISCRETAS Definições Variáveis Aleatórias Uma variável aleatória representa um valor numérico possível de um evento incerto. Variáveis aleatórias
Capítulo 3 Modelos Estatísticos
Capítulo 3 Modelos Estatísticos Slide 1 Resenha Variáveis Aleatórias Distribuição Binomial Distribuição de Poisson Distribuição Normal Distribuição t de Student Distribuição Qui-quadrado Resenha Slide
Exercícios Teóricos Resolvidos
Universidade Federal de Minas Gerais Instituto de Ciências Exatas Departamento de Matemática Exercícios Teóricos Resolvidos O propósito deste texto é tentar mostrar aos alunos várias maneiras de raciocinar
FUNÇÃO DE 1º GRAU. = mx + n, sendo m e n números reais. Questão 01 Dadas as funções f de IR em IR, identifique com um X, aquelas que são do 1º grau.
FUNÇÃO DE 1º GRAU Veremos, a partir daqui algumas funções elementares, a primeira delas é a função de 1º grau, que estabelece uma relação de proporcionalidade. Podemos então, definir a função de 1º grau
Unidade de Ensino Descentralizada de Colatina Coordenadoria de Informática Disciplina: Probabilidade e Estatística Prof. Leandro Melo de Sá
Unidade de Ensino Descentralizada de Colatina Coordenadoria de Informática Disciplina: Probabilidade e Estatística Prof. Leandro Melo de Sá 2006/2 Unidade 2 - PROBABILIDADE Conceitos básicos * Probabilidade:
UNIVERSIDADE FEDERAL DO PIAUÍ (UFPI) ENG. DE PRODUÇÃO PROBABILIDADE E ESTATÍSTICA 2
UNIVERSIDADE FEDERAL DO PIAUÍ (UFPI) ENG. DE PRODUÇÃO PROBABILIDADE E ESTATÍSTICA 2 LISTA N O 2 Prof.: William Morán Sem. I - 2011 1) Considere a seguinte função distribuição conjunta: 1 2 Y 0 0,7 0,0
Aula 5 Distribuição amostral da média
Aula 5 Distribuição amostral da média Nesta aula você irá aprofundar seus conhecimentos sobre a distribuição amostral da média amostral. Na aula anterior analisamos, por meio de alguns exemplos, o comportamento
Estatística e Probabilidade. Aula 8 Cap 05. Distribuição normal de probabilidade
Estatística e Probabilidade Aula 8 Cap 05 Distribuição normal de probabilidade Estatística e Probabilidade Na aula anterior vimos... Distribuições Binomiais Distribuição Geométrica Distribuição de Poisson
Modelos Estocásticos. Resolução de alguns exercícios da Colectânea de Exercícios 2005/06 PROCESSOS ESTOCÁSTICOS E FILAS DE ESPERA LEGI
Modelos Estocásticos Resolução de alguns exercícios da Colectânea de Exercícios 2005/06 LEGI Capítulo 7 PROCESSOS ESTOCÁSTICOS E FILAS DE ESPERA Nota: neste capítulo ilustram-se alguns dos conceitos de
O mercado de bens CAPÍTULO 3. Olivier Blanchard Pearson Education. 2006 Pearson Education Macroeconomia, 4/e Olivier Blanchard
O mercado de bens Olivier Blanchard Pearson Education CAPÍTULO 3 3.1 A composição do PIB A composição do PIB Consumo (C) são os bens e serviços adquiridos pelos consumidores. Investimento (I), às vezes
CURSO de CIÊNCIAS ECONÔMICAS - Gabarito
UNIVERSIDADE FEDERAL FLUMINENSE TRANSFERÊNCIA 2 o semestre letivo de 2006 e 1 o semestre letivo de 2007 CURSO de CIÊNCIAS ECONÔMICAS - Gabarito INSTRUÇÕES AO CANDIDATO Verifique se este caderno contém:
Processos Estocásticos
Processos Estocásticos Segunda Lista de Exercícios 01 de julho de 2013 1 Uma indústria fabrica peças, das quais 1 5 são defeituosas. Dois compradores, A e B, classificam os lotes de peças adquiridos em
CPV O Cursinho que Mais Aprova na GV
CPV O Cursinho que Mais Aprova na GV FGV ADM Objetiva Prova A 03/junho/01 matemática 01. Em um período de grande volatilidade no mercado, Rosana adquiriu um lote de ações e verificou, ao final do dia,
Aula 4 Estatística Conceitos básicos
Aula 4 Estatística Conceitos básicos Plano de Aula Amostra e universo Média Variância / desvio-padrão / erro-padrão Intervalo de confiança Teste de hipótese Amostra e Universo A estatística nos ajuda a
BC0406 Introdução à Probabilidade e à Estatística Lista de Exercícios Suplementares 2 3 quadrimestre 2011
BC0406 Introdução à Probabilidade e à Estatística Lista de Exercícios Suplementares outubro 011 BC0406 Introdução à Probabilidade e à Estatística Lista de Exercícios Suplementares 3 quadrimestre 011 Além
Texto 07 - Sistemas de Partículas. A figura ao lado mostra uma bola lançada por um malabarista, descrevendo uma trajetória parabólica.
Texto 07 - Sistemas de Partículas Um ponto especial A figura ao lado mostra uma bola lançada por um malabarista, descrevendo uma trajetória parabólica. Porém objetos que apresentam uma geometria, diferenciada,
1. Cinco cartas são extraídas de um baralho comum (52 cartas, 13 de cada naipe) sem reposição. Defina a v.a. X = número de cartas vermelhas sorteadas.
GET007 Métodos Estatísticos Aplicados à Economia I Lista de Exercícios - variáveis Aleatórias Discretas Profa. Ana Maria Farias. Cinco cartas são extraídas de um baralho comum ( cartas, de cada naipe sem
Matemática SSA 2 REVISÃO GERAL 1
1. REVISÃO 01 Matemática SSA REVISÃO GERAL 1. Um recipiente com a forma de um cone circular reto de eixo vertical recebe água na razão constante de 1 cm s. A altura do cone mede cm, e o raio de sua base
Eventos independentes
Eventos independentes Adaptado do artigo de Flávio Wagner Rodrigues Neste artigo são discutidos alguns aspectos ligados à noção de independência de dois eventos na Teoria das Probabilidades. Os objetivos
CAPÍTULO 4 Exercícios Resolvidos
CAPÍTULO 4 Exercícios Resolvidos R4.1) Condição para concretização de uma venda Um certo tipo de componente é vendido em lotes de 1000 itens. O preço de venda do lote é usualmente de 60 u.m. Um determinado
CONCEITOS. Evento: qualquer subconjunto do espaço amostral. Uma primeira idéia do cálculo de probabilidade. Eventos Teoria de conjuntos
INTRODUÇÃO À PROAILIDADE Exemplos: O problema da coincidência de datas de aniversário O problema da mega sena A teoria das probabilidade nada mais é do que o bom senso transformado em cálculo A probabilidade
Resolução dos Exercícios sobre Derivadas
Resolução dos Eercícios sobre Derivadas Eercício Utilizando a idéia do eemplo anterior, encontre a reta tangente à curva nos pontos onde e Vamos determinar a reta tangente à curva nos pontos de abscissas
Exercícios de Filas de Espera Enunciados
Capítulo 8 Exercícios de Filas de Espera Enunciados Enunciados 124 Problema 1 Os autocarros de uma empresa chegam para limpeza à garagem central em grupos de cinco por. Os autocarros são atendidos em ordem
UNIVERSIDADE DOS AÇORES Cursos de Sociologia e de Serviço Social Estatística I 1º Semestre 2006/2007
UNIVERSIDADE DOS AÇORES Cursos de Sociologia e de Serviço Social Estatística I 1º Semestre 2006/2007 Ficha de Exercícios nº 5 Distribuições Importantes 1. A probabilidade de os doentes de uma determinada
Dois eventos são disjuntos ou mutuamente exclusivos quando não tem elementos em comum. Isto é, A B = Φ
Probabilidade Vimos anteriormente como caracterizar uma massa de dados, como o objetivo de organizar e resumir informações. Agora, apresentamos a teoria matemática que dá base teórica para o desenvolvimento
Capítulo 5: Aplicações da Derivada
Instituto de Ciências Exatas - Departamento de Matemática Cálculo I Profª Maria Julieta Ventura Carvalho de Araujo Capítulo 5: Aplicações da Derivada 5- Acréscimos e Diferenciais - Acréscimos Seja y f
Além do Modelo de Bohr
Além do Modelo de Bor Como conseqüência do princípio de incerteza de Heisenberg, o conceito de órbita não pode ser mantido numa descrição quântica do átomo. O que podemos calcular é apenas a probabilidade
CAP5: Amostragem e Distribuição Amostral
CAP5: Amostragem e Distribuição Amostral O que é uma amostra? É um subconjunto de um universo (população). Ex: Amostra de sangue; amostra de pessoas, amostra de objetos, etc O que se espera de uma amostra?
Tipos de Modelos. Exemplos. Modelo determinístico. Exemplos. Modelo probabilístico. Causas Efeito. Determinístico. Sistema Real.
Tipos de Modelos Sistema Real Determinístico Prof. Lorí Viali, Dr. [email protected] http://www.mat.ufrgs.br/~viali/ Probabilístico Modelo determinístico Exemplos Gravitação F GM M /r Causas Efeito Aceleração
Faculdade Sagrada Família
AULA 12 - AJUSTAMENTO DE CURVAS E O MÉTODO DOS MÍNIMOS QUADRADOS Ajustamento de Curvas Sempre que desejamos estudar determinada variável em função de outra, fazemos uma análise de regressão. Podemos dizer
Resoluções comentadas de Raciocínio Lógico e Estatística SEFAZ - Analista em Finanças Públicas Prova realizada em 04/12/2011 pelo CEPERJ
Resoluções comentadas de Raciocínio Lógico e Estatística SEFAZ - Analista em Finanças Públicas Prova realizada em 04/1/011 pelo CEPERJ 59. O cartão de crédito que João utiliza cobra 10% de juros ao mês,
MÉDIA ARITMÉTICA MÉDIA PONDERADA MODA MEDIANA
MÉDIA ARITMÉTICA MÉDIA PONDERADA MODA MEDIANA Em um amostra, quando se têm os valores de uma certa característica, é fácil constatar que os dados normalmente não se distribuem uniformemente, havendo uma
Disponibilizo a íntegra das 8 questões elaboradas para o Simulado, no qual foram aproveitadas 4 questões, com as respectivas resoluções comentadas.
Disponibilizo a íntegra das 8 questões elaboradas para o Simulado, no qual foram aproveitadas questões, com as respectivas resoluções comentadas. Amigos, para responder às questões deste Simulado, vamos
3 Matemática financeira e atuarial
3 Matemática financeira e atuarial A teoria dos juros compostos em conjunto com a teoria da probabilidade associada à questão da sobrevivência e morte de um indivíduo são os fundamentos do presente trabalho.
Canguru Matemático sem Fronteiras 2015
http://www.mat.uc.pt/canguru/ Destinatários: alunos do 1. o ano de escolaridade Nome: Turma: Duração: 1h 30min Não podes usar calculadora. Em cada questão deves assinalar a resposta correta. As questões
4. Metodologia. Capítulo 4 - Metodologia
Capítulo 4 - Metodologia 4. Metodologia Neste capítulo é apresentada a metodologia utilizada na modelagem, estando dividida em duas seções: uma referente às tábuas de múltiplos decrementos, e outra referente
Análise de Arredondamento em Ponto Flutuante
Capítulo 2 Análise de Arredondamento em Ponto Flutuante 2.1 Introdução Neste capítulo, chamamos atenção para o fato de que o conjunto dos números representáveis em qualquer máquina é finito, e portanto
MD Sequências e Indução Matemática 1
Sequências Indução Matemática Renato Martins Assunção [email protected] Antonio Alfredo Ferreira Loureiro [email protected] MD Sequências e Indução Matemática 1 Introdução Uma das tarefas mais importantes
Fração como porcentagem. Sexto Ano do Ensino Fundamental. Autor: Prof. Francisco Bruno Holanda Revisor: Prof. Antonio Caminha M.
Material Teórico - Módulo de FRAÇÕES COMO PORCENTAGEM E PROBABILIDADE Fração como porcentagem Sexto Ano do Ensino Fundamental Autor: Prof. Francisco Bruno Holanda Revisor: Prof. Antonio Caminha M. Neto
www.enemdescomplicado.com.br
Exercícios de Física Gravitação Universal 1-A lei da gravitação universal de Newton diz que: a) os corpos se atraem na razão inversa de suas massas e na razão direta do quadrado de suas distâncias. b)
3.4 O Princípio da Equipartição de Energia e a Capacidade Calorífica Molar
3.4 O Princípio da Equipartição de Energia e a Capacidade Calorífica Molar Vimos que as previsões sobre as capacidades caloríficas molares baseadas na teoria cinética estão de acordo com o comportamento
AV1 - MA 12-2012. (b) Se o comprador preferir efetuar o pagamento à vista, qual deverá ser o valor desse pagamento único? 1 1, 02 1 1 0, 788 1 0, 980
Questão 1. Uma venda imobiliária envolve o pagamento de 12 prestações mensais iguais a R$ 10.000,00, a primeira no ato da venda, acrescidas de uma parcela final de R$ 100.000,00, 12 meses após a venda.
UFV Universidade Federal de Viçosa DMA Departamento de Matemática MAT 138 Noções de Álgebra Linear
UFV Universidade Federal de Viçosa DMA Departamento de Matemática MAT 138 Noções de Álgebra Linear 1 2 a LISTA DE EERCÍCIOS - 2005/I 1. Resolva os sistemas abaixo e classifique-os quanto ao número de soluções:
Undécima lista de exercícios. Função exponencial e função logarítmica.
MA091 Matemática básica Verão de 01 Undécima lista de exercícios Função exponencial e função logarítmica 1 Você pegou um empréstimo bancário de R$ 500,00, a uma taxa de 5% ao mês a) Escreva a função que
Distribuição Binomial
Distribuição Binomial Exemplo Na manufatura de certo artigo, é sabido que um entre dez artigos é defeituoso. Qual a probabilidade de que uma amostra casual de tamanho quatro contenha: (a) Nenhum defeituoso?
NOME: Nº. ASSUNTO: Recuperação Final - 1a.lista de exercícios VALOR: 13,0 NOTA:
NOME: Nº 1 o ano do Ensino Médio TURMA: Data: 11/ 12/ 12 DISCIPLINA: Física PROF. : Petrônio L. de Freitas ASSUNTO: Recuperação Final - 1a.lista de exercícios VALOR: 13,0 NOTA: INSTRUÇÕES (Leia com atenção!)
Os gráficos estão na vida
Os gráficos estão na vida A UUL AL A Nas Aulas 8, 9 e 28 deste curso você já se familiarizou com o estudo de gráficos. A Aula 8 introduziu essa importante ferramenta da Matemática. A Aula 9 foi dedicada
Distribuição Gaussiana. Modelo Probabilístico para Variáveis Contínuas
Distribuição Gaussiana Modelo Probabilístico para Variáveis Contínuas Distribuição de Frequências do Peso, em gramas, de 10000 recém-nascidos Frequencia 0 500 1000 1500 2000 2500 3000 3500 1000 2000 3000
Exercícios Adicionais
Exercícios Adicionais Observação: Estes exercícios são um complemento àqueles apresentados no livro. Eles foram elaborados com o objetivo de oferecer aos alunos exercícios de cunho mais teórico. Nós recomendamos
RESOLUÇÃO DAS QUESTÕES DE MATEMÁTICA E RACIOCÍNIO LÓGICO
RESOLUÇÃO DAS QUESTÕES DE MATEMÁTICA E RACIOCÍNIO LÓGICO Caro aluno, Disponibilizo abaixo a resolução das questões de Matemática e Raciocínio Lógico da prova para o cargo de Oficial de Promotoria do Ministério
Lista 1 para a P2. Operações com subespaços
Lista 1 para a P2 Observação 1: Estes exercícios são um complemento àqueles apresentados no livro. Eles foram elaborados com o objetivo de oferecer aos alunos exercícios de cunho mais teórico. Nós sugerimos
RESOLUÇÃO DAS QUESTÕES DE RACIOCÍNIO LÓGICO-MATEMÁTICO
RESOLUÇÃO DAS QUESTÕES DE RACIOCÍNIO LÓGICO-MATEMÁTICO Caro aluno, Disponibilizo abaixo a resolução resumida das questões de Raciocínio Lógico-Matemático da prova de Técnico de Atividade Judiciária do
Exercícios - Distribuição Normal (Gauss)
Exercícios - Distribuição Normal (Gauss) Monitora: Juliana e Prof. Jomar 01. Uma empresa produz televisores de dois tipos, tipo A (comum) e tipo B (luxo), e garante a restituição da quantia paga se qualquer
CAP4: Distribuições Contínuas Parte 1 Distribuição Normal
CAP4: Distribuições Contínuas Parte 1 Distribuição Normal Quando a variável sendo medida é expressa em uma escala contínua, sua distribuição de probabilidade é chamada distribuição contínua. Exemplo 4.1
Exercício de Revisao 1
Exercício de Revisao 1 Considere que seu trabalho é comparar o desempenho de dois algoritmos (A e B) de computação gráfica, que usam métodos diferentes para geração de faces humanas realistas. São sistema
Cap. 7 - Fontes de Campo Magnético
Universidade Federal do Rio de Janeiro Instituto de Física Física III 2014/2 Cap. 7 - Fontes de Campo Magnético Prof. Elvis Soares Nesse capítulo, exploramos a origem do campo magnético - cargas em movimento.
Vetores Aleatórios, correlação e conjuntas
Vetores Aleatórios, correlação e conjuntas Cláudio Tadeu Cristino 1 1 Universidade Federal Rural de Pernambuco, Recife, Brasil Segundo Semestre, 2013 C.T.Cristino (DEINFO-UFRPE) Vetores Aleatórios 2013.2
MATEMÁTICA A - 12o Ano Probabilidades - Triângulo de Pascal Propostas de resolução
MATEMÁTICA A - 12o Ano Probabilidades - Triângulo de Pascal Propostas de resolução Exercícios de exames e testes intermédios 1. A linha do triângulo de Pascal em que a soma dos dois primeiros elementos
Prog A B C A e B A e C B e C A,B e C Nenhum Pref 100 150 200 20 30 40 10 130
Polos Olímpicos de Treinamento Curso de Combinatória - Nível 2 Prof. Bruno Holanda Aula 2 Lógica II Quando lemos um problema de matemática imediatamente podemos ver que ele está dividido em duas partes:
Estatística II Antonio Roque Aula 9. Testes de Hipóteses
Testes de Hipóteses Os problemas de inferência estatística tratados nas aulas anteriores podem ser enfocados de um ponto de vista um pouco diferente: ao invés de se construir intervalos de confiança para
Grupo A - 1 o semestre de 2014 Gabarito Lista de exercícios 5 - Variáveis Aleatórias e Distribuição Binomial C A S A
Exercício 1. (2,0 pontos). Dados sobre acidentes automobilísticos levantados por uma companhia de seguros informaram o seguinte: a probabilidade de que um motorista segurado sofra um acidente automobilístico
UNITAU APOSTILA PROBABILIDADES PROF. CARLINHOS
ESCOLA DE APLICAÇÃO DR. ALFREDO JOSÉ ALI UNITAU APOSTILA PROAILIDADES ibliografia: Curso de Matemática Volume Único Autores: ianchini&paccola Ed. Moderna Matemática Fundamental - Volume Único Autores:
Introdução a Teoria das Filas
DISC. : PESQUISA OPERACIONAL II Introdução a Teoria das Filas Prof. Mestre José Eduardo Rossilho de Figueiredo Introdução a Teoria das Filas Introdução As Filas de todo dia. Como se forma uma Fila. Administrando
5 Um simulador estocástico para o fluxo de caixa
5 Um simulador estocástico para o fluxo de caixa O objetivo desse capítulo é o de apresentar um simulador estocástico para o fluxo de caixa de um plano de previdência do tipo PGBL de um único indivíduo.
PROVA RESOLVIDA E COMENTADA DA POLÍCIA RODOVIÁRIA FEDERAL(PRF) - Professor Joselias Out- 2009.
PROVA RESOLVIDA E COMENTADA DA POLÍCIA RODOVIÁRIA FEDERAL(PRF) - Oi Amigos, Como estou recebendo muitos pedidos da resolução da prova a PRF-2009. Elaborei os comentários das questões. Observe que foram
Objetivos. Teoria de Filas. Teoria de Filas
Objetivos Teoria de Filas Michel J. Anzanello, PhD [email protected] 2 Teoria de Filas Filas estão presentes em toda a parte; Exemplos evidentes de fila podem ser verificados em bancos, lanchonetes,
b) a 0 e 0 d) a 0 e 0
IFRN - INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DO RN PROFESSOR: MARCELO SILVA MATEMÁTICA FUNÇÃO DO º GRAU 1. Um grupo de pessoas gastou R$ 10,00 em uma lanchonete. Quando foram pagar a conta,
Lista 2 - Probabilidade. Probabilidade. 1. Uma letra é escolhida entre as letras da palavra PROBABILIDADE
Estatística 2 a LISTA DE EXERCÍCIOS Prof. Ânderson Vieira Probabilidade Espaço Amostral Em cada um dos exercícios a 0. Determine o espaço amostral.. Uma letra é escolhida entre as letras da palavra PROBABILIDADE
Exercícios Complementares 5.2
Exercícios Complementares 5.2 5.2A Veri que se a função dada é ou não solução da edo indicada: (a) y = 2e x + xe x ; y 00 + 2y 0 + y = 0: (b) x = C e 2t + C 2 e 3t ; :: x 0 : x + 6x = 0: (c) y = ln x;
Equações Diferenciais Ordinárias
Equações Diferenciais Ordinárias Uma equação diferencial é uma equação que relaciona uma ou mais funções (desconhecidas com uma ou mais das suas derivadas. Eemplos: ( t dt ( t, u t d u ( cos( ( t d u +
INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA
INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA PARA A COMPUTAÇÃO PROF. DANIEL S. FREITAS UFSC - CTC - INE Prof. Daniel S. Freitas - UFSC/CTC/INE/2007 p.1/59 2 - FUNDAMENTOS 2.1) Teoria dos Conjuntos 2.2) Números
Trabalho de laboratório Avaliação semestral Exame final MÉDIA PONDERADA CONCEITO
Exercícios de Seletores (estrutura condicional) Exercício 1. [ASCENCIO] A nota final de um estudante é calculada a partir de três notas atribuídas, respectivamente, a um trabalho de laboratório, a uma
CAPÍTULO 2 FUNÇÕES 1. INTRODUÇÃO. y = 0,80.x. 2. DEFINIÇÃO DE FUNÇÃO DE A EM B ( f: A B) 4. GRÁFICO DE UMA FUNÇÃO
CAPÍTULO 2 FUNÇÕES 1. INTRODUÇÃO Muitas grandezas com as quais lidamos no nosso cotidiano dependem uma da outra, isto é, a variação de uma delas tem como conseqüência a variação da outra. Exemplo 1: Tio
Notas de Cálculo Numérico
Notas de Cálculo Numérico Túlio Carvalho 6 de novembro de 2002 2 Cálculo Numérico Capítulo 1 Elementos sobre erros numéricos Neste primeiro capítulo, vamos falar de uma limitação importante do cálculo
29/Abril/2015 Aula 17
4/Abril/015 Aula 16 Princípio de Incerteza de Heisenberg. Probabilidade de encontrar uma partícula numa certa região. Posição média de uma partícula. Partícula numa caixa de potencial: funções de onda
Aula 4 Conceitos Básicos de Estatística. Aula 4 Conceitos básicos de estatística
Aula 4 Conceitos Básicos de Estatística Aula 4 Conceitos básicos de estatística A Estatística é a ciência de aprendizagem a partir de dados. Trata-se de uma disciplina estratégica, que coleta, analisa
Avaliação 1 - MA12-2015.1 - Gabarito
MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL Avaliação 1 - MA1-015.1 - Gabarito Questão 01 [,00 pts ] Uma escola pretende formar uma comissão de 6 pessoas para organizar uma festa junina. Sabe-se
Curso destinado à preparação para Concursos Públicos e Aprimoramento Profissional via INTERNET www.concursosecursos.com.br. Aula Gratuita PORCENTAGEM
MATEMÁTICA FINANCEIRA ON LINE Aula Gratuita PORCENTAGEM Introdução (Clique aqui para assistir à aula gravada) A porcentagem é o estudo da matemática financeira mais aplicado ao nosso dia-a-dia. É freqüente
Modelos de Filas de Espera
Departamento de Informática Modelos de Filas de Espera Métodos Quantitativos LEI 2006/2007 Susana Nascimento ([email protected]) Advertência Autor João Moura Pires ([email protected]) Este material pode
INE 5111 Gabarito da Lista de Exercícios de Probabilidade INE 5111 LISTA DE EXERCÍCIOS DE PROBABILIDADE
INE 5 LISTA DE EERCÍCIOS DE PROBABILIDADE INE 5 Gabarito da Lista de Exercícios de Probabilidade ) Em um sistema de transmissão de dados existe uma probabilidade igual a 5 de um dado ser transmitido erroneamente.
(c) 2a = b. (c) {10,..., 29}
11 Atividade extra UNIDADE CONJUTOS Fascículo 4 Matemática Unidade 11 Conjuntos Exercı cio 11.1 Sejam os conjuntos A = {a, 7, 0} e B = {0, 1, b}, tal que os conjuntos A e B sejam iguais. Qual é a relação
Resolução da prova de Raciocínio Lógico APO 2010 (ESAF)
Resolução da prova de Raciocínio Lógico APO 2010 (ESAF) Questão 01) Um viajante, a caminho de determinada cidade, deparou-se com uma bifurcação onde estão três meninos e não sabe que caminho tomar. Admita
Teoria de Filas Aula 15
Teoria de Filas Aula 15 Aula de hoje Correção Prova Aula Passada Prova Little, medidas de interesse em filas Medidas de Desempenho em Filas K Utilização: fração de tempo que o servidor está ocupado Tempo
Gestão de Operações II Teoria das Filas
Gestão de Operações II Teoria das Filas Prof Marcio Cardoso Machado Filas O que é uma fila de espera? É um ou mais clientes esperando pelo atendimento O que são clientes? Pessoas (ex.: caixas de supermercado,
Um estudo sobre funções contínuas que não são diferenciáveis em nenhum ponto
Um estudo sobre funções contínuas que não são diferenciáveis em nenhum ponto Maria Angélica Araújo Universidade Federal de Uberlândia - Faculdade de Matemática Graduanda em Matemática - Programa de Educação
CPV 82% de aprovação na ESPM
CPV 8% de aprovação na ESPM ESPM julho/010 Prova E Matemática 1. O valor da expressão y =,0 é: a) 1 b) c) d) e) 4 Sendo x =, e y =,0, temos: x 1 + y 1 x. y 1 y. x 1 1 1 y + x x 1 + y 1 + x y xy = = = xy
FGV-EAESP PROVA DE RACIOCÍNIO MATEMÁTICO CURSO DE GRADUAÇÃO AGOSTO/2004
QUESTÃO 1. Numa cidade do interior do estado de São Paulo, uma prévia eleitoral entre 2.000 filiados revelou as seguintes informações a respeito de três candidatos A, B, e C, do Partido da Esperança (PE)
PROVA RESOLVIDA E COMENTADA DO BANCO DO BRASIL - 2010 - FCC MATEMÁTICA E RACIOCÍNIO LÓGICO.
PROVA RESOLVIDA E COMENTADA DO BANCO DO BRASIL - 2010 - FCC MATEMÁTICA E RACIOCÍNIO LÓGICO. Professor Joselias - http://professorjoselias.blogspot.com/. MATEMÁTICA 16. Segundo a Associação Brasileira de
Distribuições de Probabilidade Distribuição Poisson
PROBABILIDADES Distribuições de Probabilidade Distribuição Poisson BERTOLO PRELIMINARES Quando aplicamos a Estatística na resolução de situações-problema, verificamos que muitas delas apresentam as mesmas
Módulo de Probabilidade Miscelânea de Exercícios. Cálculo de Probabilidades. Professores Tiago Miranda e Cleber Assis
Módulo de Probabilidade Miscelânea de Exercícios Cálculo de Probabilidades a série E.M. Professores Tiago Miranda e Cleber Assis Probabilidade Miscelânea de Exercícios Cálculo de Probabilidades 1 Exercícios
Equações Diferenciais
Equações Diferenciais EQUAÇÕES DIFERENCIAS Em qualquer processo natural, as variáveis envolvidas e suas taxas de variação estão interligadas com uma ou outras por meio de princípios básicos científicos
VESTIBULAR 2004 - MATEMÁTICA
01. Dividir um número real não-nulo por 0,065 é equivalente a multiplicá-lo por: VESTIBULAR 004 - MATEMÁTICA a) 4 c) 16 e) 1 b) 8 d) 0. Se k é um número inteiro positivo, então o conjunto A formado pelos
Notas sobre a Fórmula de Taylor e o estudo de extremos
Notas sobre a Fórmula de Taylor e o estudo de etremos O Teorema de Taylor estabelece que sob certas condições) uma função pode ser aproimada na proimidade de algum ponto dado) por um polinómio, de modo
