Descomposição de Cholesky

Tamanho: px
Começar a partir da página:

Download "Descomposição de Cholesky"

Transcrição

1 Frederico Almeida & Guilherme Aguilar Universidade Federal de Minas Gerais 20 de Novembro de 2018 Frederico A. & Guilherme A. (ICEX - UFMG) 20 de Novembro de / 29

2 Motivação Métodos de otimização numérica são uma alternativa para estimar coeficientes de modelos nas situações em que a equação da verossimilhança não é analiticamente tratável; Na prática é comum obter estimativas cuja matriz hessiana associada não inversível (indefinida ou negativa definida); Uma forma alternativa para contornar esse problema consiste em descartar as amostras que fornecem uma matriz hessiana não inversível; A decomposição de Cholesky consistirá basicamente em transformar uma matriz indefinida ou negativa definida (não inversível) em positiva semi-definida (inversível). Frederico A. & Guilherme A. (ICEX - UFMG) 20 de Novembro de / 29

3 Introdução Foi desenvolvida pelo cartógrafo francês André-Louis Cholesky. É a decomposição de uma matriz hermitiana e positiva definida em um produto de uma matriz triangular inferior e sua matriz adjunta. Útil para soluções numéricas. Quando aplicável é duas vezes mais eficiente que a decomposição LU. Frederico A. & Guilherme A. (ICEX - UFMG) 20 de Novembro de / 29

4 Matriz Conjugada O conjugado complexo é formalmente definido por (A ) ij = A ji. O complexo conjugado de a + bi, onde a e b são reais, é a bi. Se [ ] 3 + i 5 A = 2 2i i então Ā = [ ] 3 i i i Frederico A. & Guilherme A. (ICEX - UFMG) 20 de Novembro de / 29

5 Matriz Hermitiana Uma matriz A é hermítica se a transposta de sua conjugada for igual a própria matriz A = Ā T = A; por exemplo i i 2 i 5 5 i i 5 + i 1 Se A R, então A é hermítica se A T = A. Matriz Positiva Definida é uma matriz hermítica. Uma matriz A é positiva definida se x T Ax > 0, z vetor não nulo. Como consequência, os determinante das submatrizes principais são todos positivos e a matriz inversa de A existe e é positiva definida. Frederico A. & Guilherme A. (ICEX - UFMG) 20 de Novembro de / 29

6 Matriz Hermitiana Uma matriz A é hermítica se a transposta de sua conjugada for igual a própria matriz A = Ā T = A; por exemplo i i 2 i 5 5 i i 5 + i 1 Se A R, então A é hermítica se A T = A. Matriz Positiva Definida é uma matriz hermítica. Uma matriz A é positiva definida se x T Ax > 0, z vetor não nulo. Como consequência, os determinante das submatrizes principais são todos positivos e a matriz inversa de A existe e é positiva definida. Frederico A. & Guilherme A. (ICEX - UFMG) 20 de Novembro de / 29

7 Introdução A decomposição de Cholesky de uma matriz Hermitiana positiva definida "A" tem a seguinte forma A = LL. Teorema Seja A M n (R) uma matriz positiva definida. Então, existe uma única matriz triangular superior G, com os elementos da diagonal principal positivos, tal que A = G t G. Prova!!! Frederico A. & Guilherme A. (ICEX - UFMG) 20 de Novembro de / 29

8 Exemplo 1 Seja a matriz A = [ ] 1 2, 2 13 Sua decomposição de Cholesky é dada por Frederico A. & Guilherme A. (ICEX - UFMG) 20 de Novembro de / 29

9 Exemplo 1 Seja a matriz A = [ ] 1 2, 2 13 Sua decomposição de Cholesky é dada por A = G t G, onde [ ] 1 2 G =. 0 3 Frederico A. & Guilherme A. (ICEX - UFMG) 20 de Novembro de / 29

10 Decompondo A Seja A = GG t, onde G G 11 G 21 G 31 A = GG T = G 21 G G 22 G 32 G 31 G 32 G G 33 G 2 (simétrico) 11 = G 21 G 11 G G2 22 G 31 G 11 G 31 G 21 + G 32 G 22 G G2 32 +, G2 33 Frederico A. & Guilherme A. (ICEX - UFMG) 20 de Novembro de / 29

11 Decompondo A Seja A = GG t, onde G G 11 G 21 G 31 A = GG T = G 21 G G 22 G 32 G 31 G 32 G G 33 G 2 (simétrico) 11 = G 21 G 11 G G2 22 G 31 G 11 G 31 G 21 + G 32 G 22 G G2 32 +, G2 33 ou seja A G = A 21 /G 11 A 22 G A 31 /G 11 (A 32 G 31 G 21 ) /G 22 A 33 G 2 31 G2 32 Frederico A. & Guilherme A. (ICEX - UFMG) 20 de Novembro de / 29

12 Exemplo 2 Escrevendo A = G t G da seguinte forma (para melhor visualização) decomposição de Cholesky de uma matriz simétrica real: então temos que: A = , Frederico A. & Guilherme A. (ICEX - UFMG) 20 de Novembro de / 29

13 Exemplo 2 Escrevendo A = G t G da seguinte forma (para melhor visualização) decomposição de Cholesky de uma matriz simétrica real: A = , então temos que: G t G = Frederico A. & Guilherme A. (ICEX - UFMG) 20 de Novembro de / 29

14 Exemplo Escrevendo A = G t G da seguinte forma (para melhor visualização) decomposição de Cholesky de uma matriz simétrica real: então temos que: A = , Frederico A. & Guilherme A. (ICEX - UFMG) 20 de Novembro de / 29

15 Exemplo Escrevendo A = G t G da seguinte forma (para melhor visualização) decomposição de Cholesky de uma matriz simétrica real: A = , então temos que: G t G = Frederico A. & Guilherme A. (ICEX - UFMG) 20 de Novembro de / 29

16 Econtrando os valores dos termos Para A = G t G, temos que G j,j = G i,j = 1 G j,j A i,j j 1 A j,j G 2 j,k, k=1 j 1 G i,k G j,k para i > j. k=1 E quando j = 1 o somatório tem valor zero. Frederico A. & Guilherme A. (ICEX - UFMG) 20 de Novembro de / 29

17 Algoritmo Frederico A. & Guilherme A. (ICEX - UFMG) 20 de Novembro de / 29

18 Definição (autovalores e autovetores) Seja A uma matriz em R n n. Um escalar λ R é um autovalor de A se existir um vetor v R n, com v 0, tal que: Av = λv. O vetor v é chamado de autovetor associado a λ. Como calcular λ? Os autovalores são calculados através das raízes do polinômio caraterístico P(λ). n P(λ) = det (A λi) = ( 1) n λ n + a j λ n j, a subtração do fator λi em A tem por objetivo, obter uma matriz singular. j=1 Frederico A. & Guilherme A. (ICEX - UFMG) 20 de Novembro de / 29

19 Definição (espectro) O espectro de A M n (R) é o conjunto formado pelos seus autovalores, isto é, σ(a) = {λ 1,, λ n } Algumas propriedades Para j, o produto dos λ j é igual ao determinante de A; O número de autovalores não-nulos é igual ao rank da matriz; Se j, λ j > 0, então A é positiva definida; Se j, λ j 0, i.e, j, tal que λ j = 0, então a matriz A é dita ser positiva semi-definida; tr(a) = n a ij = n λ j. i=j j=1 Frederico A. & Guilherme A. (ICEX - UFMG) 20 de Novembro de / 29

20 Autovetores Para cada valor de λ, autovetores v são obtidos resolvendo a equação, (A λi) v = 0 No caso em que λ C, se Q for uma matriz rotação a γ = 90 o então, λ 1 = i e λ 2 = i, com tr(q)=0 e det(q) = 1. O par (λ j, v j ) ou { vj 0 v j N(A λi) } é chamado de auto-espaço. A norma de um autovetor v 1j = (v 1,, v 1n ) é dada por, v 1j = v v2 n. Frederico A. & Guilherme A. (ICEX - UFMG) 20 de Novembro de / 29

21 Autovetor unitário O autovetor padronizado é dado por: u 1j = v 1j v, 1j Dois auto(vetores) u 1j e u 2j são ditos serem ortogonais se o seu produto interno for nulo. u1j, u 1j u1j u 2j = 0. Frederico A. & Guilherme A. (ICEX - UFMG) 20 de Novembro de / 29

22 Exemplo 3 Considere a matriz apresentada a seguir: [ ] 1 2 A =, 2 4 O polinômio caraterístico é dado por P(λ) = λ(λ 5), com raízes λ 1 = 0 ou λ 2 = 5. Os autovetores são obtidos pela equação: (A λ 1 I)v 1 = 0 com v 1 = [x y] T = [ 2 1] T, (A λ 2 I)v 2 = 0 com v 2 = [1 2] T, se u 1 e u 2 são os autovetores normalizados, segue que u 1, u 2 =0. Frederico A. & Guilherme A. (ICEX - UFMG) 20 de Novembro de / 29

23 Transformação de matrizes Se a matriz A é indefinida, i.e, existe em σ(a) autovalores negativos e positivos, respectivamente. Seja Λ = diag(λ j ), Rebonato & Jackel (1999) propõem a seguinte transformação: λ Λ : λ j se λ j 0 j = 0 se λ j < 0. Se a matriz A é indefinida então ela tem pelo menos um λ j < 0. E portanto, a nova matriz A terá pelo menos um autovalor λ j = 0. Frederico A. & Guilherme A. (ICEX - UFMG) 20 de Novembro de / 29

24 Decomposição espectral Se Λ é uma matriz diagonal de autovalores modificados λ j e M é uma matriz ortogonal cujas colunas são os autovetores padronizados de A, então a matriz modificada (psd) é dada por: A = MΛ M 1, ou seja, a matriz M é dada por M = [u 1j u 2j ] Entre diferentes métodos de fatoração, à de Cholesky é considerada uma das mais estáveis numericamente (Thomas, 2017). Essa estabilidade segue o fato de que todos os elementos de L são limitados pelos elementos de A. i l 2 ik = a ii l ij a ii. k=1 Frederico A. & Guilherme A. (ICEX - UFMG) 20 de Novembro de / 29

25 Estritamente falando essa matriz resulta em uma matriz de covariancia, se c jj obter-se c jj 1. A matriz A será normalizada usando a equação (Brissette et al, 2007): A = A diag(a )diag(a ) t É natural pensar que essa abordagem é "empírica" à primeira vista, mas deve-se perceber que autovalores negativos não podem existir em uma matriz hessiana/correlações, e que sua remoção tem um sentido físico além de permitir uma fatoração subsequente de Cholesky da matriz modificada. Frederico A. & Guilherme A. (ICEX - UFMG) 20 de Novembro de / 29

26 Algoritmo Seja A uma matriz indefinida. Então: 1 Obtenha os autovalores e os respectivos autovetores de A; 2 Iguale a zero todos os autovalores menores que zero; 3 Calcule os novos autovetores v usando λ j j ; 4 Obtenha o fator de Cholesky L e a matriz Λ para o novo sistema de autovalores; 5 Calcule a nova matriz A de A; 6 Normalize a nova matriz; 7 Por fim, calcule a inversa da matriz A usando o algoritmo de Cholesky. Frederico A. & Guilherme A. (ICEX - UFMG) 20 de Novembro de / 29

27 Modificada Apesar da eficiência e estabilidade da decomposição de Cholesky, na prática podem surgir situações que impossibilitam a transformar uma matriz indefinida em positiva semi-definida. Como foi visto, se a matriz A é positiva semi-definida, então sempre existe a decomposição da forma A = LDL t Para uma matriz diagonal D com elementos não nulos a decomposição não é única. Portanto, podemos definir a matriz permutação P tal que, PAP t tem uma única decomposição da forma, LDL t, com [ ] D1 0 D = 0 0 Frederico A. & Guilherme A. (ICEX - UFMG) 20 de Novembro de / 29

28 Modificada onde D 1 é uma matriz diagonal quadrada com mesmo rank que amatriz A. De forma geral, existem diferentes algoritmos modificados para a decomposição de Cholesky; A ideia básica consiste em perturbar a matriz A (i.e, adicionando a matriz E) como fator de perturbação, tornando-a positiva definida; Após perturbar a matriz, o fator de Cholesky pode ser obtido para a nova matriz. Essa perturbação deve garantir que a nova matriz permaneça pertinente a aplicações originais. Frederico A. & Guilherme A. (ICEX - UFMG) 20 de Novembro de / 29

29 Modificada Dada A R n n uma matriz simétrica mas não necessariamente positiva definida, o objetivo da decomposição de Cholesky modificada baseia-se na construção do fator LL T da matriz positiva definida A + E. Sendo E uma matriz não-negativa. Se A é positiva definida, então segue que o fator de perturbação é nulo, i.e, E = 0; Se A é indefinida, então E deve ser relativamente pequena, i.e, E λ i (A), onde λ i (A) é o maior entre os autovalores negativos do espectro; A + E deve ser uma matriz razoavelmente bem condicionada. Frederico A. & Guilherme A. (ICEX - UFMG) 20 de Novembro de / 29

30 Modificada Na prática, precisamos fazer uma rotação (permutação) da matriz perturbada para garantir a estabilidade e decomposição, i.e, P(A + E)P t = LDL t, Algumas propostas para definir a matriz de perturbação são apresentadas na literatura. Uma forma obvia de escolher Econsiste em encontrar λ i (A) de tal forma que, se λ i (A) < 0 então, E = [ λ i (A) + ɛ] I n n, para algum positivo ɛ suficientemente pequeno. Frederico A. & Guilherme A. (ICEX - UFMG) 20 de Novembro de / 29

31 Modificada A ideia chave na abordagem de perturbação consiste em simplesmente em escolher um valor relativamente pequeno de e jj 0 de tal forma que l jj e d jj sejam positivos. l jj são elementos do fator de Cholesky anteriormente discutidos; e jj = (E) jj. Muitas outras abordagens como o algoritmo de Gill, Murray e Wright (GMW) e suas variantes bem como o algoritmo de Schnabel e Eskow (ES) são encontrados em Thomas (2017). Frederico A. & Guilherme A. (ICEX - UFMG) 20 de Novembro de / 29

32 Conclusões Existem diferentes métodos de decomposição na literatura, sendo que sua aplicação depende inteiramente do problema em estudo; A decomposição de Cholesky é estável e eficiente independentemente do algoritmo usado mas, o grau de eficiência e/ou a ordem de convergência varia em cada algoritmo; A aplicação prática usando a matriz das correlações apresentadas em Rebonato e Jackel (1999) permitiu corrigir a matriz de correção de indefinida para positiva semi-definida; Em geral, essa abordagem é aplicável para outro problemas envolvendo um nível de complexidade maior. Frederico A. & Guilherme A. (ICEX - UFMG) 20 de Novembro de / 29

33 Referências Bibliográficas Brissette, F.P., Khalili M. and Leconte R. (2007). Efficient stochastic generation of multi-site synthetic precipitation data. Elsevier. Faleiros, A. C. (2009). Curso de Álgebra Linear Aplicada. Lecture Notes, UFABC. Trefethen L. N., Bau, D. III (1997). Numerical Linear Algebra. Rebonato, R. and Jackel, P. (1999). The most general methodology to create a valid correlation matrix for risk management and option pricing purposes. Quantitative Research Centre of the NatWest Group. Thomas, McS. (2017). Modified Cholesky Decomposition and Applications. The University of Manchester. Frederico A. & Guilherme A. (ICEX - UFMG) 20 de Novembro de / 29

34 R script Frederico A. & Guilherme A. (ICEX - UFMG) 20 de Novembro de / 29

Métodos Computacionais Aplicados à Estatística

Métodos Computacionais Aplicados à Estatística Métodos Computacionais Aplicados à Estatística Decomposição de Cholesky Frederico M. Almeida Guilherme A. S. Aguilar 20 de Novembro de 2018 1 Introdução Os métodos de otimização numérica são uma alternativa

Leia mais

CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano

CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano CÁLCULO NUMÉRICO Profa. Dra. Yara de Souza Tadano yaratadano@utfpr.edu.br Aula 12 04/2014 Sistemas de Equações Lineares Parte 2 FATORAÇÃO LU Cálculo Numérico 3/37 FATORAÇÃO LU Uma fatoração LU de uma dada

Leia mais

Resolução de Sistemas Lineares. Ana Paula

Resolução de Sistemas Lineares. Ana Paula Resolução de Sistemas Lineares Sumário 1 Aula Anterior 2 3 Revisão Aula Anterior Aula Anterior Aula Anterior Aula Anterior Decomposição LU A matriz de coeficientes é decomposta em L e U L é uma matriz

Leia mais

étodos uméricos SISTEMAS DE EQUAÇÕES LINEARES (Continuação) Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA

étodos uméricos SISTEMAS DE EQUAÇÕES LINEARES (Continuação) Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA étodos uméricos SISTEMAS DE EQUAÇÕES LINEARES (Continuação) Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA UNIVERSIDADE DE JOÃO DEL-REI PRÓ-REITORIA DE PESQUISA CENTRO

Leia mais

Método de Newton modificado

Método de Newton modificado Método de Newton modificado Marina Andretta ICMC-USP 14 de setembro de 2010 Marina Andretta (ICMC-USP) sme0212 - Otimização não-linear 14 de setembro de 2010 1 / 36 Método de Newton Como já vimos, o método

Leia mais

Provas. As notas da primeira e segunda prova já foram digitadas no Minha UFMG. Caso você não veja sua nota, entre em contato com o professor.

Provas. As notas da primeira e segunda prova já foram digitadas no Minha UFMG. Caso você não veja sua nota, entre em contato com o professor. Provas As notas da primeira e segunda prova já foram digitadas no Minha UFMG. Caso você não veja sua nota, entre em contato com o professor. Terceira prova. Sábado, 15/junho, 10:00-12:00 horas, ICEx. Diagonalização

Leia mais

MP-208: Filtragem Ótima com Aplicações Aeroespaciais

MP-208: Filtragem Ótima com Aplicações Aeroespaciais MP-208: Filtragem Ótima com Aplicações Aeroespaciais Seção 2.1: Álgebra Linear e Matrizes Davi Antônio dos Santos Departamento de Mecatrônica Instituto Tecnológico de Aeronáutica davists@ita.br São José

Leia mais

Resolução de sistemas de equações lineares: Fatorações de matrizes

Resolução de sistemas de equações lineares: Fatorações de matrizes Resolução de sistemas de equações lineares: Fatorações de matrizes Marina Andretta/Franklina Toledo ICMC-USP 27 de agosto de 2012 Baseado no livro Análise Numérica, de R. L. Burden e J. D. Faires. Marina

Leia mais

Álgebra Linear I - Aula Forma diagonal de uma matriz diagonalizável

Álgebra Linear I - Aula Forma diagonal de uma matriz diagonalizável Álgebra Linear I - Aula 18 1 Forma diagonal de uma matriz diagonalizável 2 Matrizes ortogonais Roteiro 1 Forma diagonal de uma matriz diagonalizável Sejam A uma transformação linear diagonalizável, β =

Leia mais

Resolução de sistemas de equações lineares: Fatorações de matrizes

Resolução de sistemas de equações lineares: Fatorações de matrizes Resolução de sistemas de equações lineares: Fatorações de matrizes Marina Andretta/Franklina Toledo ICMC-USP 27 de fevereiro de 2015 Baseado no livro Análise Numérica, de R. L. Burden e J. D. Faires. Marina

Leia mais

Álgebra Linear I - Aula 22

Álgebra Linear I - Aula 22 Álgebra Linear I - Aula 1. Bases Ortonormais.. Matrizes Ortogonais. 3. Exemplos. 1 Bases Ortonormais Lembre que uma base β é ortogonal se está formada por vetores ortogonais entre si: para todo par de

Leia mais

Algoritmos Numéricos 2 a edição

Algoritmos Numéricos 2 a edição Algoritmos Numéricos 2 a edição Capítulo 2: Sistemas lineares c 2009 FFCf 2 2.1 Conceitos fundamentais 2.2 Sistemas triangulares 2.3 Eliminação de Gauss 2.4 Decomposição LU Capítulo 2: Sistemas lineares

Leia mais

Análise multivariada

Análise multivariada UNIFAL-MG, campus Varginha 11 de Setembro de 2018 Dada uma matriz A (p p), podemos obter um escalar λ e um vetor v (p 1) de modo que seja satisfeita? Av = λv (1) Dada uma matriz A (p p), podemos obter

Leia mais

Márcio Antônio de Andrade Bortoloti

Márcio Antônio de Andrade Bortoloti Márcio Antônio de Andrade Bortoloti Departamento de Ciências Exatas e Tecnológicas - DCET Universidade Estadual do Sudoeste da Bahia Sumário 1 Definição Uma matriz quadrada de ordem n é definida positiva

Leia mais

SME Roberto F. Ausas / Gustavo C. Buscaglia

SME Roberto F. Ausas / Gustavo C. Buscaglia SME0305-2016 Roberto F. Ausas / Gustavo C. Buscaglia ICMC - Ramal 736628, rfausas@gmail.com ICMC - Ramal 738176, gustavo.buscaglia@gmail.com Cálculo de autovalores e autovetores Existem vários problemas

Leia mais

decomposição de Cholesky.

decomposição de Cholesky. Decomposição LU e Cholesky Prof Doherty Andrade - DMA-UEM Sumário 1 Introdução 1 2 Método de Eliminação de Gauss 1 3 Decomposição LU 2 4 O método de Cholesky 5 5 O Algoritmo para a decomposição Cholesky

Leia mais

SME Gustavo C. Buscaglia

SME Gustavo C. Buscaglia SME0602-2017 Gustavo C. Buscaglia ICMC - Ramal 738176, gustavo.buscaglia@gmail.com Cálculo de autovalores e autovetores Existem vários problemas na engenharia em que precisamos calcular os autovalores

Leia mais

Matrizes hermitianas e unitárias

Matrizes hermitianas e unitárias Matrizes hermitianas e unitárias Amit Bhaya, Programa de Engenharia Elétrica COPPE/UFRJ Universidade Federal do Rio de Janeiro amit@nacad.ufrj.br http://www.nacad.ufrj.br/ amit Matrizes complexas O produto

Leia mais

AUTOVALORES E AUTOVETORES

AUTOVALORES E AUTOVETORES AUTOVALORES E AUTOVETORES Prof a Simone Aparecida Miloca Definição 1 Uma tranformação linear T : V V é chamada de operador linear. Definição Seja T : V V um operador linear. existirem vetores não-nulos

Leia mais

Autovalores e Autovetores

Autovalores e Autovetores Autovalores e Autovetores Maria Luísa B. de Oliveira SME0300 Cálculo Numérico 24 de novembro de 2010 Introdução Objetivo: Dada matriz A, n n, determinar todos os vetores v que sejam paralelos a Av. Introdução

Leia mais

Algebra Linear. 1. Revisitando autovalores e autovetores. 2. Forma Diagonal e Forma de Jordan. 2.1 Autovalores distintos. 2.2 Autovalores complexos

Algebra Linear. 1. Revisitando autovalores e autovetores. 2. Forma Diagonal e Forma de Jordan. 2.1 Autovalores distintos. 2.2 Autovalores complexos Algebra Linear 1. Revisitando autovalores e autovetores 2. Forma Diagonal e Forma de Jordan 2.1 Autovalores distintos 2.2 Autovalores complexos 2.3 Nem todos autovalores distintos 3. Autovalores e autovetores

Leia mais

Modelagem Computacional. Parte 6 2

Modelagem Computacional. Parte 6 2 Mestrado em Modelagem e Otimização - RC/UFG Modelagem Computacional Parte 6 2 Prof. Thiago Alves de Queiroz 2/2016 2 [Cap. 6 e 7] BURDEN, R. L.; FAIRES, J. D. Numerical Analysis (9th ed). Cengage Learning,

Leia mais

Exercício: Identifique e faça um esboço do conjunto solução da. 3x xy + y 2 + 2x 2 3y = 0

Exercício: Identifique e faça um esboço do conjunto solução da. 3x xy + y 2 + 2x 2 3y = 0 Motivação Exercício: Identifique e faça um esboço do conjunto solução da equação 3x 2 + 2 3xy + y 2 + 2x 2 3y = 0 Motivação Exercício: Identifique e faça um esboço do conjunto solução da equação 3x 2 +

Leia mais

Parte I. Álgebra Linear. Sistemas Dinâmicos Lineares. Autovalores, autovetores. Autovalores, autovetores. Autovalores e Autovetores.

Parte I. Álgebra Linear. Sistemas Dinâmicos Lineares. Autovalores, autovetores. Autovalores, autovetores. Autovalores e Autovetores. Sistemas Dinâmicos Lineares Romeu Reginatto Programa de Pós-Graduação em Engenharia de Sistemas Dinâmicos e Energéticos Universidade Estadual do Oeste do Paraná Parte I Álgebra Linear Adaptado das notas

Leia mais

1 Álgebra linear matricial

1 Álgebra linear matricial MTM510019 Métodos Computacionais de Otimização 2018.2 1 Álgebra linear matricial Revisão Um vetor x R n será representado por um vetor coluna x 1 x 2 x =., x n enquanto o transposto de x corresponde a

Leia mais

G3 de Álgebra Linear I

G3 de Álgebra Linear I G3 de Álgebra Linear I 2.2 Gabarito ) Considere a matriz 4 N = 4. 4 Observe que os vetores (,, ) e (,, ) são dois autovetores de N. a) Determine uma forma diagonal D de N. b) Determine uma matriz P tal

Leia mais

ESTATÍSTICA COMPUTACIONAL

ESTATÍSTICA COMPUTACIONAL ESTATÍSTICA COMPUTACIONAL Ralph dos Santos Silva Departamento de Métodos Estatísticos Instituto de Matemática Universidade Federal do Rio de Janeiro Sumário Introdução Solução de equações não lineares

Leia mais

Geovan Tavares, Hélio Lopes e Sinésio Pesco PUC-Rio Departamento de Matemática Laboratório Matmidia

Geovan Tavares, Hélio Lopes e Sinésio Pesco PUC-Rio Departamento de Matemática Laboratório Matmidia Álgebra Linear Computacional Geovan Tavares, Hélio Lopes e Sinésio Pesco PUC-Rio Departamento de Matemática Laboratório Matmidia http://www.matmidia.mat.puc-rio.br 1 Álgebra Linear Computacional - Parte

Leia mais

MAE125 Álgebra Linear /1 Turmas EQN/QIN

MAE125 Álgebra Linear /1 Turmas EQN/QIN MAE25 Álgebra Linear 2 205/ Turmas EQN/QIN Planejamento (última revisão: 0 de junho de 205) Os exercícios correspondentes a cada aula serão cobrados oralmente na semana seguinte à aula e valem nota Todas

Leia mais

P3 de Álgebra Linear I

P3 de Álgebra Linear I P3 de Álgebra Linear I 2008.2 Data: 14 de Novembro de 2008. Gabarito. 1) Decida se cada afirmação a seguir é verdadeira ou falsa. Considere uma transformação linear T : R 3 R 3 tal que existem vetores

Leia mais

Resolução de Sistemas Lineares. Ana Paula

Resolução de Sistemas Lineares. Ana Paula Resolução de Sistemas Lineares Sumário 1 Introdução 2 Alguns Conceitos de Álgebra Linear 3 Sistemas Lineares 4 Métodos Computacionais 5 Sistemas Triangulares 6 Revisão Introdução Introdução Introdução

Leia mais

Teorema da Triangularização de Schur e Diagonalização de Matrizes Normais

Teorema da Triangularização de Schur e Diagonalização de Matrizes Normais Teorema da Triangularização de Schur e Diagonalização de Matrizes Normais Reginaldo J Santos Departamento de Matemática-ICEx Universidade Federal de Minas Gerais http://wwwmatufmgbr/~regi 16 de novembro

Leia mais

Revisão de Álgebra Linear

Revisão de Álgebra Linear Introdução: Revisão de Álgebra Linear Antonio Elias Fabris Instituto de Matemática e Estatística Universidade de São Paulo Map 2121 Aplicações de Álgebra Linear Antonio Elias Fabris (IME-USP) Revisão de

Leia mais

Resolução de Sistemas Lineares. Ana Paula

Resolução de Sistemas Lineares. Ana Paula Resolução de Sistemas Lineares Sumário 1 Aula Anterior 2 Decomposição LU 3 Decomposição LU com Pivotamento 4 Revisão Aula Anterior Aula Anterior Aula Anterior Aula Anterior Eliminação de Gauss Transforma

Leia mais

Algebra Linear. 1. Ortonormalização. 2. Sistema de Equações Lineares. pag.1 Teoria de Sistemas Lineares Aula 6. c Reinaldo M.

Algebra Linear. 1. Ortonormalização. 2. Sistema de Equações Lineares. pag.1 Teoria de Sistemas Lineares Aula 6. c Reinaldo M. Algebra Linear 1. Ortonormalização 2. Sistema de Equações Lineares pag.1 Teoria de Sistemas Lineares Aula 6 Ortonormalização Um vetor x é dito estar normalizado se sua norma Euclidiana é igual a 1, ie,

Leia mais

étodos uméricos SISTEMAS DE EQUAÇÕES LINEARES (Continuação) Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA

étodos uméricos SISTEMAS DE EQUAÇÕES LINEARES (Continuação) Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA étodos uméricos SISTEMAS DE EQUAÇÕES LINEARES (Continuação) Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA UNIVERSIDADE DE JOÃO DEL-REI PRÓ-REITORIA DE PESQUISA CENTRO

Leia mais

Álgebra Linear /2 Turma 11852

Álgebra Linear /2 Turma 11852 Álgebra Linear 2 202/2 Turma 852 Planejamento (última revisão: 26/0/202) Os exercícios correspondentes a cada aula serão cobrados oralmente na aula seguinte e valem nota Todas as referências e exercícios

Leia mais

Álgebra Linear /2 Turma EM1 (unificada)

Álgebra Linear /2 Turma EM1 (unificada) Álgebra Linear 2 2013/2 Turma EM1 (unificada) Planejamento preliminar (última revisão: 3/4/2013) Os exercícios correspondentes a cada aula serão discutidos na aula seguinte e não valem nota Este planejamento

Leia mais

Álgebra Linear I - Lista 11. Autovalores e autovetores. Respostas. 1) Calcule os autovalores e autovetores das matrizes abaixo.

Álgebra Linear I - Lista 11. Autovalores e autovetores. Respostas. 1) Calcule os autovalores e autovetores das matrizes abaixo. Álgebra Linear I - Lista 11 Autovalores e autovetores Respostas 1 Calcule os autovalores e autovetores das matrizes abaixo. (a ( 4 1 1, (b ( 1 1, (c ( 5 6 3 4, (d 1 1 3 1 6 6, (e 3 5 1, (f 1 1 1 1 1 1

Leia mais

MAP Métodos Numéricos e Aplicações Escola Politécnica 1 Semestre de 2017 EPREC - Entrega em 27 de julho de 2017

MAP Métodos Numéricos e Aplicações Escola Politécnica 1 Semestre de 2017 EPREC - Entrega em 27 de julho de 2017 1 Preliminares MAP3121 - Métodos Numéricos e Aplicações Escola Politécnica 1 Semestre de 2017 EPREC - Entrega em 27 de julho de 2017 A decomposição de Cholesky aplicada a Finanças O exercício-programa

Leia mais

Autovetor e Autovalor de um Operador Linear

Autovetor e Autovalor de um Operador Linear Autovetor e Autovalor de um Operador Linear Definição Seja T : V V um operador linear. Um vetor v V, v 0, é dito um autovetor de T se existe um número real λ tal que T (v) = λv. O número real λ acima é

Leia mais

Dou Mó Valor aos Autovalores

Dou Mó Valor aos Autovalores 1. Definições Preliminares Dou Mó Valor aos Autovalores 21ª Semana Olímpica Maceió, AL Prof. Davi Lopes Nível U Dada uma matriz quadrada A n n de entradas complexas, podemos definir os conceitos a seguir,

Leia mais

Laboratório de Simulação Matemática. Parte 6 2

Laboratório de Simulação Matemática. Parte 6 2 Matemática - RC/UFG Laboratório de Simulação Matemática Parte 6 2 Prof. Thiago Alves de Queiroz 2/2017 2 [Cap. 6] BURDEN, R. L.; FAIRES, J. D. Numerical Analysis (9th ed). Cengage Learning, 2010. Thiago

Leia mais

G3 de Álgebra Linear I

G3 de Álgebra Linear I G de Álgebra Linear I 7 Gabarito ) Considere a transformação linear T : R R cuja matriz na base canônica E = {(,, ), (,, ), (,, )} é [T] E = a) Determine os autovalores de T e seus autovetores correspondentes

Leia mais

Álgebra Linear I - Lista 12. Matrizes semelhantes. Diagonalização. Respostas

Álgebra Linear I - Lista 12. Matrizes semelhantes. Diagonalização. Respostas Álgebra Linear I - Lista 12 Matrizes semelhantes. Diagonalização Respostas 1) Determine quais das matrizes a seguir são diagonalizáveis. Nos caso afirmativos encontre uma base de autovetores e uma forma

Leia mais

Geometria Analítica e Álgebra Linear

Geometria Analítica e Álgebra Linear UNIFEI - Universidade Federal de Itajubá campus Itabira Geometria Analítica e Álgebra Linear Parte 1 Matrizes 1 Introdução A teoria das equações lineares desempenha papel importante e motivador da álgebra

Leia mais

3 a Lista de Exercícios de Introdução à Álgebra Linear IMPA - Verão e B =

3 a Lista de Exercícios de Introdução à Álgebra Linear IMPA - Verão e B = 3 a Lista de Exercícios de Introdução à Álgebra Linear IMPA - Verão 2008. (a) Ache os auto-valores e auto-vetores de A = 3 4 2 0 2 0 0 0 e B = 0 0 2 0 2 0 2 0 0 (b) Mostre que λ + λ 2 + λ 3 é igual ao

Leia mais

Álgebra Linear I - Aula 20

Álgebra Linear I - Aula 20 Álgebra Linear I - Aula 20 1 Matrizes diagonalizáveis Exemplos 2 Forma diagonal de uma matriz diagonalizável 1 Matrizes diagonalizáveis Exemplos Lembramos que matriz quadrada a 1,1 a 1,2 a 1,n a 2,1 a

Leia mais

Autovalores e Autovetores Determinante de. Motivando com Geometria Definição Calculando Diagonalização Teorema Espectral:

Autovalores e Autovetores Determinante de. Motivando com Geometria Definição Calculando Diagonalização Teorema Espectral: Lema (determinante de matriz ) A B A 0 Suponha que M = ou M =, com A e D 0 D C D matrizes quadradas Então det(m) = det(a) det(d) A B Considere M =, com A, B, C e D matrizes C D quadradas De forma geral,

Leia mais

CM005 Álgebra Linear Lista 3

CM005 Álgebra Linear Lista 3 CM005 Álgebra Linear Lista 3 Alberto Ramos Seja T : V V uma transformação linear. Se temos que T v = λv, v 0, para λ K. Dizemos que λ é um autovalor de T e v autovetor de T associado a λ. Observe que λ

Leia mais

G3 de Álgebra Linear I

G3 de Álgebra Linear I G3 de Álgebra Linear I 11.1 Gabarito 1) Seja A : R 3 R 3 uma transformação linear cuja matriz na base canônica é 4 [A] = 4. 4 (a) Determine todos os autovalores de A. (b) Determine, se possível, uma forma

Leia mais

2. Sistemas lineares

2. Sistemas lineares 2. Sistemas lineares 2.1 Conceitos fundamentais. 2.2 Sistemas triangulares. 2.3 Eliminação de Gauss. 2.4 Decomposição LU. 2.5 Decomposição de Cholesky. 2.6 Decomposição espectral. 2.7 Uso da decomposição.

Leia mais

étodos uméricos SISTEMAS DE EQUAÇÕES LINEARES (Continuação) Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA

étodos uméricos SISTEMAS DE EQUAÇÕES LINEARES (Continuação) Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA étodos uméricos SISTEMAS DE EQUAÇÕES LINEARES (Continuação) Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA UNIVERSIDADE DE JOÃO DEL-REI PRÓ-REITORIA DE PESQUISA CENTRO

Leia mais

. (1) Se S é o espaço vetorial gerado pelos vetores 1 e,0,1

. (1) Se S é o espaço vetorial gerado pelos vetores 1 e,0,1 QUESTÕES ANPEC ÁLGEBRA LINEAR QUESTÃO 0 Assinale V (verdadeiro) ou F (falso): (0) Os vetores (,, ) (,,) e (, 0,) formam uma base de,, o espaço vetorial gerado por,, e,, passa pela origem na direção de,,

Leia mais

Estabilidade Interna. 1. Estabilidade Interna. 2. Análise de Estabilidade Segundo Lyapunov. 3. Teorema de Lyapunov

Estabilidade Interna. 1. Estabilidade Interna. 2. Análise de Estabilidade Segundo Lyapunov. 3. Teorema de Lyapunov Estabilidade Interna 1. Estabilidade Interna 2. Análise de Estabilidade Segundo Lyapunov 3. Teorema de Lyapunov 4. Teorema de Lyapunov Caso Discreto pag.1 Teoria de Sistemas Lineares Aula 13 Estabilidade

Leia mais

Autovalores e Autovetores

Autovalores e Autovetores Algoritmos Numéricos II / Computação Científica Autovalores e Autovetores Lucia Catabriga 1 1 DI/UFES - Brazil Junho 2016 Introdução Ideia Básica Se multiplicarmos a matriz por um autovetor encontramos

Leia mais

Matrizes e Linearidade

Matrizes e Linearidade Matrizes e Linearidade 1. Revisitando Matrizes 1.1. Traço, Simetria, Determinante 1.. Inversa. Sistema de Equações Lineares. Equação Característica.1. Autovalor & Autovetor 4. Polinômios Coprimos 5. Função

Leia mais

Roteiros e Exercícios - Álgebra Linear v1.0

Roteiros e Exercícios - Álgebra Linear v1.0 Roteiros e Exercícios - Álgebra Linear v1.0 Robinson Alves Lemos 14 de janeiro de 2017 Introdução Este material é um roteiro/apoio para o curso de álgebra linear da engenharia civil na UNEMAT de Tangará

Leia mais

étodos uméricos SISTEMAS DE EQUAÇÕES LINEARES (Continuação) Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA

étodos uméricos SISTEMAS DE EQUAÇÕES LINEARES (Continuação) Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA étodos uméricos SISTEMAS DE EQUAÇÕES LINEARES (Continuação) Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA UNIVERSIDADE DE JOÃO DEL-REI PRÓ-REITORIA DE PESQUISA CENTRO

Leia mais

FUNDAMENTOS DE SISTEMAS LINEARES PARTE 1

FUNDAMENTOS DE SISTEMAS LINEARES PARTE 1 FUNDAMENTOS DE SISTEMAS LINEARES PARTE 1 Prof. Iury V. de Bessa Departamento de Eletricidade Faculdade de Tecnologia Universidade Federal do Amazonas Revisão O que é um corpo (campo)? O que é um espaço

Leia mais

5 a Lista de Exercícios de Introdução à Álgebra Linear IMPA - Verão Encontre os autovalores, os autovetores e a exponencial e At para

5 a Lista de Exercícios de Introdução à Álgebra Linear IMPA - Verão Encontre os autovalores, os autovetores e a exponencial e At para 5 a Lista de Exercícios de Introdução à Álgebra Linear IMPA - Verão 2008 1. Encontre os autovalores, os autovetores e a exponencial e At para [ ] 1 1 1 1 2. Uma matriz diagonal Λ satisfaz a regra usual

Leia mais

MAE125 Álgebra Linear /2 Turmas EQN/QIN

MAE125 Álgebra Linear /2 Turmas EQN/QIN MAE25 Álgebra Linear 2 205/2 Turmas EQN/QIN Planejamento (última revisão: 26 de outubro de 205) Os exercícios correspondentes a cada aula serão cobrados oralmente na aula seguinte e valem nota Todas as

Leia mais

Matrizes Semelhantes e Matrizes Diagonalizáveis

Matrizes Semelhantes e Matrizes Diagonalizáveis Diagonalização Matrizes Semelhantes e Matrizes Diagonalizáveis Nosso objetivo neste capítulo é estudar aquelas transformações lineares de R n para as quais existe pelo menos uma base em que elas são representadas

Leia mais

Departamento de Estatística

Departamento de Estatística Departamento de Estatística Universidade Federal de São Carlos José Carlos Fogo São Carlos Julho de 207 Sumário Vetores Definição Representação gráfica no R 2 2 2 Propriedades algébricas 2 2 Vetores especiais

Leia mais

Capítulo 4 - Valores e Vectores Próprios

Capítulo 4 - Valores e Vectores Próprios Capítulo 4 - Valores e Vectores Próprios Carlos Balsa balsa@ipb.pt Departamento de Matemática Escola Superior de Tecnologia e Gestão de Bragança Matemática I - 1 o Semestre 2011/2012 Matemática I 1/ 17

Leia mais

Álgebra Linear. Professor Alessandro Monteiro. 1º Sábado - Matrizes - 11/03/2017

Álgebra Linear. Professor Alessandro Monteiro. 1º Sábado - Matrizes - 11/03/2017 º Sábado - Matrizes - //7. Plano e Programa de Ensino. Definição de Matrizes. Exemplos. Definição de Ordem de Uma Matriz. Exemplos. Representação Matriz Genérica m x n 8. Matriz Linha 9. Exemplos. Matriz

Leia mais

MATRIZES POSITIVAS DEFINIDAS

MATRIZES POSITIVAS DEFINIDAS MATRIZES POSITIVAS DEFINIDAS Álgebra Linear (MAT-27) Ronaldo Rodrigues Pelá IEFF-ITA 7 de novembro de 2011 Roteiro 1 2 3 Roteiro 1 2 3 Por que saber se uma matriz é definida positiva? Importância do sinal

Leia mais

Uma equação linear com n variáveis tem a seguinte forma:

Uma equação linear com n variáveis tem a seguinte forma: Edgard Jamhour Uma equação linear com n variáveis tem a seguinte forma: a 1 x 1 + a 2 x 2 +... + a n x n = b onde a 1, a 2,..., a n e b são constantes reais. Um sistema de equações lineares é um conjunto

Leia mais

Álgebra Linear I - Aula 21

Álgebra Linear I - Aula 21 Álgebra Linear I - Aula 1 1. Matrizes ortogonalmente diagonalizáveis: exemplos. Matrizes simétricas. Roteiro 1 Matrizes ortogonalmente diagonalizáveis: exemplos Exemplo 1. Considere a matriz M = 4 4 4

Leia mais

Cálculo Diferencial e Integral 2 Formas Quadráticas

Cálculo Diferencial e Integral 2 Formas Quadráticas Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise Cálculo Diferencial e Integral 2 Formas Quadráticas 1 Formas quadráticas Uma forma quadrática em R n é um polinómio do

Leia mais

Álgebra Linear Teoria de Matrizes

Álgebra Linear Teoria de Matrizes Álgebra Linear Teoria de Matrizes 1. Sistemas Lineares 1.1. Coordenadas em espaços lineares: independência linear, base, dimensão, singularidade, combinação linear 1.2. Espaço imagem (colunas) - Espaço

Leia mais

Álgebra Linear e suas Aplicações Notas de Aula. Petronio Pulino = Q

Álgebra Linear e suas Aplicações Notas de Aula. Petronio Pulino = Q Álgebra Linear e suas Aplicações Notas de Aula Petronio Pulino 1 3 4 3 1 0 4 0 1 = Q 4 1 6 Qt Q t Q = 1 1 1 PULINUS Álgebra Linear e suas Aplicações Notas de Aula Petronio Pulino Departamento de Matemática

Leia mais

Determinação numérica de autovalores e autovetores: Método das Potências Inversas

Determinação numérica de autovalores e autovetores: Método das Potências Inversas Determinação numérica de autovalores e autovetores: Marina Andretta/Franklina Toledo ICMC-USP 3 de setembro de 2012 Marina Andretta/Franklina Toledo (ICMC-USP) sme0300 - Cálculo Numérico 3 de setembro

Leia mais

Determinação numérica de autovalores e autovetores: Método das Potências Inversas

Determinação numérica de autovalores e autovetores: Método das Potências Inversas Determinação numérica de autovalores e autovetores: Marina Andretta/Franklina Toledo ICMC-USP 27 de março de 2015 Marina Andretta/Franklina Toledo (ICMC-USP) sme0301 - Métodos Numéricos para Engenharia

Leia mais

Universidade Federal do Espírito Santo - UFES

Universidade Federal do Espírito Santo - UFES Universidade Federal do Espírito Santo - UFES Centro Universitário Norte do Espírito Santo - CEUNES Departamento de Matemática Aplicada - DMA Prof. Isaac P. Santos - 2018/1 Aula: Métodos Iterativos Para

Leia mais

Instituto Superior Técnico Departamento de Matemática Última actualização: 18/Nov/2003 ÁLGEBRA LINEAR A

Instituto Superior Técnico Departamento de Matemática Última actualização: 18/Nov/2003 ÁLGEBRA LINEAR A Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise Última actualização: 18/Nov/2003 ÁLGEBRA LINEAR A REVISÃO DA PARTE III Parte III - (a) Ortogonalidade Conceitos: produto

Leia mais

Elementos de Matemática Avançada

Elementos de Matemática Avançada Elementos de Matemática Avançada Prof. Dr. Arturo R. Samana Semestre: 2012.2 Conteúdo - Objetivos da Disciplina - Ementa curricular - Critérios de avaliação - Conteúdo programático - Programação Objetivos

Leia mais

G4 de Álgebra Linear I

G4 de Álgebra Linear I G4 de Álgebra Linear I 27.1 Gabarito 1) Considere a base η de R 3 η = {(1, 1, 1); (1,, 1); (2, 1, )} (1.a) Determine a matriz de mudança de coordenadas da base canônica para a base η. (1.b) Considere o

Leia mais

Resolução de sistemas de equações lineares: Fatorações de matrizes

Resolução de sistemas de equações lineares: Fatorações de matrizes Resolução de sistemas de equações lineares: Fatorações de matrizes Marina Andretta/Franklina Toledo ICMC-USP 5 de fevereiro de 2014 Baseado no livro Análise Numérica, de R. L. Burden e J. D. Faires. Marina

Leia mais

5 a Lista de Exercícios de Introdução à Álgebra Linear IMPA - Verão 2009

5 a Lista de Exercícios de Introdução à Álgebra Linear IMPA - Verão 2009 5 a Lista de Exercícios de Introdução à Álgebra Linear IMPA - Verão 29 Soluções dos exercícios Devido ao fato de A ser simétrica, existe uma base ortonormal {u,, u n } formada por autovetores de A, então

Leia mais

Processamento de Imagens CPS755

Processamento de Imagens CPS755 Processamento de Imagens CPS755 aula 04 - sistemas lineares Antonio Oliveira Ricardo Marroquim 1 / 32 laboratório de processamento de imagens tópicos decomposições (álgebra linear) decomposição QR decomposição

Leia mais

Parte 3 - Produto Interno e Diagonalização

Parte 3 - Produto Interno e Diagonalização Parte 3 - Produto Interno e Diagonalização Produto Escalar: Sejam u = (u 1,..., u n ) e v = (v 1,..., v n ) dois vetores no R n. O produto escalar, ou produto interno euclidiano, entre esses vetores é

Leia mais

Geometria anaĺıtica e álgebra linear

Geometria anaĺıtica e álgebra linear Geometria anaĺıtica e álgebra linear Francisco Dutenhefner Departamento de Matematica ICEx UFMG 22/08/13 1 / 24 Determinante: teorema principal Teorema: Se A é uma matriz quadrada, então o sistema linear

Leia mais

Universidade Federal de Alagoas UFAL Centro de Tecnologia - CTEC Programa de Pós-Graduação em Engenharia Civil - PPGEC

Universidade Federal de Alagoas UFAL Centro de Tecnologia - CTEC Programa de Pós-Graduação em Engenharia Civil - PPGEC Universidade Federal de Alagoas UFAL Centro de Tecnologia - CTEC Programa de Pós-Graduação em Engenharia Civil - PPGEC Introdução à Mecânica do Contínuo Tensores Professor: Márcio André Araújo Cavalcante

Leia mais

ficha 4 valores próprios e vectores próprios

ficha 4 valores próprios e vectores próprios Exercícios de Álgebra Linear ficha 4 valores próprios e vectores próprios Exercícios coligidos por Jorge Almeida e Lina Oliveira Departamento de Matemática, Instituto Superior Técnico 2 o semestre 2011/12

Leia mais

GAAL - Exame Especial - 12/julho/2013. Questão 1: Considere os pontos A = (1, 2, 3), B = (2, 3, 1), C = (3, 1, 2) e D = (2, 2, 1).

GAAL - Exame Especial - 12/julho/2013. Questão 1: Considere os pontos A = (1, 2, 3), B = (2, 3, 1), C = (3, 1, 2) e D = (2, 2, 1). GAAL - Exame Especial - /julho/3 SOLUÇÕES Questão : Considere os pontos A = (,, 3), B = (, 3, ), C = (3,, ) e D = (,, ) (a) Chame de α o plano que passa pelos pontos A, B e C e de β o plano que passa pelos

Leia mais

UNIVERSIDADE FEDERAL DO ABC

UNIVERSIDADE FEDERAL DO ABC UNIVERSIDADE FEDERAL DO ABC BC49 Cálculo Numérico - LISTA - sistemas lineares de equações Profs André Camargo, Feodor Pisnitchenko, Marijana Brtka, Rodrigo Fresneda Métodos diretos Analise os sistemas

Leia mais

Álgebra Linear I - Aula Autovetores e autovalores de uma transformação

Álgebra Linear I - Aula Autovetores e autovalores de uma transformação Álgebra Linear I - Aula 18 1. Autovalores e autovetores. 2. Cálculo dos autovetores e autovalores. Polinômio característico. Roteiro 1 Autovetores e autovalores de uma transformação linear Considere uma

Leia mais

Aula 1 Autovetores e Autovalores de Matrizes Aula 2 Autovetores e Autovalores de Matrizes Casos Especiais 17

Aula 1 Autovetores e Autovalores de Matrizes Aula 2 Autovetores e Autovalores de Matrizes Casos Especiais 17 Sumário Aula 1 Autovetores e Autovalores de Matrizes.......... 8 Aula 2 Autovetores e Autovalores de Matrizes Casos Especiais 17 Aula 3 Polinômio Característico................. 25 Aula 4 Cálculo de Autovalores

Leia mais

Noções de Álgebra Linear

Noções de Álgebra Linear Noções de Álgebra Linear 1. Espaços vetoriais lineares 1.1. Coordenadas 2. Operadores lineares 3. Subespaços fundamentais 4. Espaços normados 5. Espaços métricos 6. Espaços de Banach 7. Espaços de Hilbert

Leia mais

Álgebra Linear e Geometria Analítica

Álgebra Linear e Geometria Analítica Álgebra Linear e Geometria Analítica Engenharia Electrotécnica Escola Superior de Tecnologia de Viseu wwwestvipvpt/paginaspessoais/lucas lucas@matestvipvpt 007/008 Álgebra Linear e Geometria Analítica

Leia mais

Álgebra Linear (MAT-27) Ronaldo Rodrigues Pelá. 21 de outubro de 2011

Álgebra Linear (MAT-27) Ronaldo Rodrigues Pelá. 21 de outubro de 2011 APLICAÇÕES DA DIAGONALIZAÇÃO Álgebra Linear (MAT-27) Ronaldo Rodrigues Pelá IEFF-ITA 21 de outubro de 2011 Roteiro 1 2 3 Roteiro 1 2 3 Introdução Considere a equação de uma cônica: Forma Geral Ax 2 + Bxy

Leia mais

Modelagem Computacional. Parte 7 2

Modelagem Computacional. Parte 7 2 Mestrado em Modelagem e Otimização - RC/UFG Modelagem Computacional Parte 7 2 Prof. Thiago Alves de Queiroz 2/2016 2 [Cap. 7] BURDEN, R. L.; FAIRES, J. D. Numerical Analysis (9th ed). Cengage Learning,

Leia mais

5. Seja A uma matriz qualquer. Assinale a afirmativa

5. Seja A uma matriz qualquer. Assinale a afirmativa UFRJ Instituto de Matemática Disciplina: Algebra Linear II - MAE 125 Professor: Bruno, Gregório, Luiz Carlos, Mario, Milton, Monique e Umberto Data: 12 de julho de 2013 Terceira Prova 1. Considere no espaço

Leia mais

Álgebra Linear. Determinantes, Valores e Vectores Próprios. Jorge Orestes Cerdeira Instituto Superior de Agronomia

Álgebra Linear. Determinantes, Valores e Vectores Próprios. Jorge Orestes Cerdeira Instituto Superior de Agronomia Álgebra Linear Determinantes, Valores e Vectores Próprios Jorge Orestes Cerdeira Instituto Superior de Agronomia - 200 - ISA/UTL Álgebra Linear 200/ 2 Conteúdo Determinantes 5 2 Valores e vectores próprios

Leia mais

SME0812 Modelos Lineares. Álgebra Matricial. 17 de março de / 1

SME0812 Modelos Lineares. Álgebra Matricial. 17 de março de / 1 SME0812 Modelos Lineares Álgebra Matricial 17 de março de 2015 1 / 1 Notação Escreveremos A = A n m para denotar uma matriz de dimensão n m, ou seja, uma matriz com n linhas e m colunas: a 11 a 12 : :

Leia mais

Matrizes positivas definidas, semidefinidas, etc.

Matrizes positivas definidas, semidefinidas, etc. Matrizes positivas definidas, semidefinidas, etc. Amit Bhaya, Programa de Engenharia Elétrica COPPE/UFRJ Universidade Federal do Rio de Janeiro amit@nacad.ufrj.br http://www.nacad.ufrj.br/ amit Funções

Leia mais

Lista de Exercícios III. junho de 2005

Lista de Exercícios III. junho de 2005 ÁLGEBRA LINEAR II Prof Amit Bhaya Lista de Exercícios III junho de 2005 Ortogonalidade, espaços fundamentais 1 Se Ax = b possui solução e A T y = 0, então y é perpendicular a 2 Se Ax = b não possui solução

Leia mais

Álgebra Linear I - Aula Bases Ortonormais e Matrizes Ortogonais

Álgebra Linear I - Aula Bases Ortonormais e Matrizes Ortogonais Álgebra Linear I - Aula 19 1. Bases Ortonormais e Matrizes Ortogonais. 2. Matrizes ortogonais 2 2. 3. Rotações em R 3. Roteiro 1 Bases Ortonormais e Matrizes Ortogonais 1.1 Bases ortogonais Lembre que

Leia mais