Probabilidades e Estatística
|
|
|
- Zaira Brenda Prada Medina
- 10 Há anos
- Visualizações:
Transcrição
1 Departamento de Matemática - IST(TP) Secção de Estatística e Aplicações Probabilidades e Estatística 1 o Exame/1 o Teste/2 o Teste 2 o Semestre/1 a Época 2008/09 Duração: 3 horas/1 hora e 30 minutos 16/01/09 15 horas Nome: Número: Curso: Assinale a prova que vai entregar: 1 o Teste 2 o Teste Exame DOCENTE: SALA: Se pretender fazer apenas o 1 o Teste, deverá responder aos grupos I e II. Nesse caso terá 1 hora e 30 minutos, e as cotações são o dobro das indicadas. Se pretender fazer apenas o 2 o Teste, deverá responder aos grupos III e IV. Nesse caso terá 1 hora e 30 minutos, e as cotações são o dobro das indicadas. Se pretender fazer o Exame deverá responder a todos os grupos. Justifique convenientemente todas as respostas! O quadro abaixo destina-se à correcção da prova. Por favor não escreva nada. Grupo I Grupo II Grupo III Grupo IV NOTA FINAL 7.0 Val 3.0 Val 6.0 Val 4.0 Val Página 1 de 10
2 Grupo I val. 1. Foi desenvolvido um novo antivírus e, de forma a testar a sua eficiência, foi instalado num servidor de uma universidade. De acordo com as observações concluíu-se que: - 97% das mensagens infectadas por vírus são eliminadas; - 3% de mensagens serão eliminadas e não têm virus. Sabendo que nesse conjunto de mensagens 15% estão infectadas, determine: a) A probabilidade de uma mensagem ser eliminada. (1.0) b) A probabilidade de uma mensagem estar realmente infectada pelo vírus quando esta (1.0) é eliminada. Página 2 de 10
3 2. O agente imobiliário Sr. António vende em média 1 apartamento por semana de acordo com um Processo de Poisson. O Sr. António é muito generoso e quando vende 3 ou mais apartamentos numa semana dá bónus à sua secretária. Calcule: a) A probabilidade da secretária ganhar bónus numa semana. (1.0) Nota: Se não resolveu a alinea a) considere que a probabilidade da secretária ganhar bónus numa semana é 0.1. b) A probabilidade da secretária ganhar 2 ou mais bónus num mês (4 semanas). (1.5) c) A probabilidade de ser necessário esperar pelo menos 3 semanas até que a secretária (1.5) ganhe bónus. Página 3 de 10
4 d) Qual o número mais provável de andares vendidos pelo Sr. António em duas sema- (1.0) nas? Página 4 de 10
5 Grupo II val. Suponha que num dia o tempo, T, de espera na estação (em minutos) até à chegada de um comboio, é modelado por uma variável aleatória contínua com função densidade de probabilidade: f(t) = c e t 15, t > 0. a) Mostre que a constante c = (0.5) b) Qual a probabilidade de se ter que esperar entre 15 e 30 minutos pelo comboio? (1.0) Página 5 de 10
6 c) Qual é a probabilidade (aproximada) de em 60 dias o tempo total de espera até à (1.5) chegada do comboio ser, no máximo, 16 horas? Página 6 de 10
7 Grupo III val. 1. Durante a época de saldos, um lote de camisolas de mulher foi posto à venda. Sabese, no entanto, que algumas destas camisolas têm defeitos mas o fabricante garante ter o processo de fabrico controlado e afirma que só 10% de camisolas têm defeitos. Foi recolhida numa amostra de 100 destas camisolas e constactou-se que 15 apresentavam defeitos. a) Deduza a estimativa de máxima verosimilhança da proporção populacional de camiso- (1.5) las com defeitos e concretize-a para a amostra anterior. b) Construa um intervalo de confiança a aproximadamente 95% para a proporção popu- (1.5) lacional de camisolas defeituosas. Página 7 de 10
8 c) Acha que se pode afirmar que o processo de fabrico está controlado? Responda (1.5) usando um teste de hipóteses e calcule o valor-p. d) Mostre que a variância amostral não corrigida é dada por S 2 n = n i=1 (X i X) 2 /n = (1.5) X(1 X), onde X i denota o i-ésimo valor da amostra aleatória e X a respectiva média amostral. Página 8 de 10
9 Grupo IV val. Os dados do quadro seguinte representam os quocientes de inteligência, QI, (x) e os respectivos resultados num dado teste (Y ) para 19 indivíduos: i x i y i e 19 i=1 x i = 2065, 19 i=1 y i = 1345, 19 i=1 x2 i = , 19 i=1 y2 i = e 19 i=1 x iy i = Com base nestes valores foi ajustado um modelo de regressão linear simples usando x como variável explicativa. a) Obtenha as estimativas dos minímos quadrados de todos os parâmetros do modelo, in- (1.0) cluindo a variância da nota do teste. b) Calcule uma estimativa da diferença das notas esperadas dos testes de dois indivíduos (1.0) cujos QI s diferem de 20 unidades. Como interpreta este resultado? Página 9 de 10
10 d) Calcule o valor do resíduo para a 10 a observação. (0.5) c) Acha que é útil usar o coeficiente de inteligência para predizer a nota esperada do teste (1.5) com base no modelo adoptado (responda usando um nível de significância de 5%)? Página 10 de 10
(b) Qual a probabilidade de ter sido transmitido um zero, sabendo que foi recebido um (1.0) zero?
Grupo I 5.0 valores 1. Um sistema de comunicação binária transmite zeros e uns com probabilidade 0.5 em qualquer dos casos. Devido ao ruído existente no canal de comunicação há erros na recepção: transmitido
Universidade Federal do Paraná Departamento de Informática. Reconhecimento de Padrões. Revisão de Probabilidade e Estatística
Universidade Federal do Paraná Departamento de Informática Reconhecimento de Padrões Revisão de Probabilidade e Estatística Luiz Eduardo S. Oliveira, Ph.D. http://lesoliveira.net Conceitos Básicos Estamos
UNIVERSIDADE FEDERAL DO PIAUÍ (UFPI) ENG. DE PRODUÇÃO PROBABILIDADE E ESTATÍSTICA 2
UNIVERSIDADE FEDERAL DO PIAUÍ (UFPI) ENG. DE PRODUÇÃO PROBABILIDADE E ESTATÍSTICA 2 LISTA N O 2 Prof.: William Morán Sem. I - 2011 1) Considere a seguinte função distribuição conjunta: 1 2 Y 0 0,7 0,0
Cláudio Tadeu Cristino 1. Julho, 2014
Inferência Estatística Estimação Cláudio Tadeu Cristino 1 1 Universidade Federal de Pernambuco, Recife, Brasil Mestrado em Nutrição, Atividade Física e Plasticidade Fenotípica Julho, 2014 C.T.Cristino
Resoluções comentadas de Raciocínio Lógico e Estatística - SEPLAG-2010 - EPPGG
Resoluções comentadas de Raciocínio Lógico e Estatística - SEPLAG-010 - EPPGG 11. Em uma caixa há 1 bolas de mesmo tamanho: 3 brancas, 4 vermelhas e 5 pretas. Uma pessoa, no escuro, deve retirar n bolas
ESCOLA SUPERIOR DE TECNOLOGIA
Departamento Matemática Curso Engenharia do Ambiente º Semestre 1º Folha Nº4: Intervalos de confiança Probabilidades e Estatística 1.a) Determine o intervalo de confiança a 90% para a média de uma população
Instituto Politécnico de Viseu Escola Superior de Tecnologia
Instituto Politécnico de Viseu Escola Superior de Tecnologia Departamento: Matemática Estatística I Curso: Contabilidade e Administração Ano: 3 o Semestre: o Prova: Exame Época: Normal Ano Lectivo: 2004/2005
Universidade Federal Fluminense
Universidade Federal Fluminense INSTITUTO DE MATEMÁTICA E ESTATÍSTICA DEPARTAMENTO DE ESTATÍSTICA ESTATÍSTICA V Lista 9: Intervalo de Confiança. 1. Um pesquisador está estudando a resistência de um determinado
1 Variáveis Aleatórias
Variáveis Aleatórias Exercício Num lançamento de 3 moedas equilibradas seja X avariável aleatória que representa o número de caras saídas Escreva a função de probabilidade de X Exercício Quantasvezessedevelançarumdadoaoarparaqueaprobabilidade
CURSO ON-LINE PROFESSOR: VÍTOR MENEZES. Comentários sobre as provas de estatística e financeira ICMS RJ
Comentários sobre as provas de estatística e financeira ICMS RJ Caríssimos, Acabei de voltar de uma longa auditoria em que visitamos inúmeros assentamentos federais do INCRA no interior do estado. Ou seja:
Universidade Federal de Alfenas Programa de Pós-graduação em Estatística Aplicada e Biometria Prova de Conhecimentos Específicos
Dados que podem ser necessários a algumas questões de Estatística: P (t > t α ) = α ν 0,05 0,025 15 1,753 2,131 16 1,746 2,120 28 1,791 2,048 30 1,697 2,042 (Valor: 1,4) Questão 1. Considere o seguinte
CAPÍTULO 9 Exercícios Resolvidos
CAPÍTULO 9 Exercícios Resolvidos R9.1) Diâmetro de esferas de rolamento Os dados a seguir correspondem ao diâmetro, em mm, de 30 esferas de rolamento produzidas por uma máquina. 137 154 159 155 167 159
Omatematico.com ESTATÍSTICA DESCRITIVA
Omatematico.com ESTATÍSTICA DESCRITIVA 1. Classifique as variáveis abaixo: (a) Tempo para fazer um teste. (b) Número de alunos aprovados por turma. (c) Nível sócio-econômico (d) QI (Quociente de inteligência).
Universidade Federal de Pernambuco Mestrado em Estatística
Universidade Federal de Pernambuco Mestrado em Estatística Lista 4 de Exercícios de Amostragem Prof. Cristiano Ferraz 1. Em relação ao plano amostral de Bernoulli: a) Explique como retirar uma amostra
UNIVERSIDADE FEDERAL DE UBERLÂNDIA FACULDADE DE MATEMÁTICA 4 a LISTA DE EXERCÍCIOS GBQ12 Professor: Ednaldo Carvalho Guimarães AMOSTRAGEM
1 UNIVERSIDADE FEDERAL DE UBERLÂNDIA FACULDADE DE MATEMÁTICA 4 a LISTA DE EXERCÍCIOS GBQ12 Professor: Ednaldo Carvalho Guimarães AMOSTRAGEM 1) Um pesquisador está interessado em saber o tempo médio que
Escola Básica e Secundária de Alfandega da Fé
Escola Básica e Secundária de Alfandega da Fé Prova de Avaliação MACS - 11.º B Em todas as respostas, indique todos os cálculos e todas as justificações necessárias. Atenção: quando, para um resultado,
Olá pessoal! Sem mais delongas, vamos às questões.
Olá pessoal! Resolverei neste ponto a prova para AFRE/SC 2010 realizada pela FEPESE no último final de semana. Nosso curso teve um resultado muito positivo visto que das 15 questões, vimos 14 praticamente
Universidade Estadual de Roraima. Resolução de Problema em Matemática
Universidade Estadual de Roraima Resolução de Problema em Matemática Provas de lápis e Papel Héctor José García Mendoza www.dmat.ufrr.br/~hector [email protected] 1 PROVA DE PAPEL E LAPIS Problema 1:
Aula de Exercícios - Variáveis Aleatórias Discretas - Modelos Probabiĺısticos
Aula de Exercícios - Variáveis Aleatórias Discretas - Modelos Probabiĺısticos Organização: Airton Kist Digitação: Guilherme Ludwig Exercício Se X b(n, p), sabendo-se que E(X ) = 12 e σ 2 = 3, determinar:
Departamento de Matemática - IST(TP)
Departamento de Matemática - IST(TP) Secção de Estatística e Aplicações Probabilidades e Estatística LEIC+LERC+LEE 2 o Exame/2 o Teste 2 o Semestre/2 a Época 2007/08 Duração: 3 horas/1 hora e 30 minutos
LISTA DE EXERCÍCIOS VARIÁVEIS ALEATÓRIAS
LISTA DE EXERCÍCIOS VARIÁVEIS ALEATÓRIAS 1. Construir um quadro e o gráfico de uma distribuição de probabilidade para a variável aleatória X: número de coroas obtidas no lançamento de duas moedas. 2. Fazer
UNIVERSIDADE FEDERAL DE SÃO JOÃO DEL-REI NÚCLEO DE EDUCAÇÃO À DISTÂNCIA CURSO DE GRADUAÇÃO EM ADMINISTRAÇÃO PÚBLICA GABARITO
UNIVERSIDADE FEDERAL DE SÃO JOÃO DEL-REI NÚCLEO DE EDUCAÇÃO À DISTÂNCIA CURSO DE GRADUAÇÃO EM ADMINISTRAÇÃO PÚBLICA GABARITO GRUPO: ESTATÍSTICA DATA: HORÁRIO: NOME DO CANDIDATO: CPF: ASSINATURA: INSTRUÇÕES:
Hipótese Estatística:
1 PUCRS FAMAT DEPTº DE ESTATÍSTICA TESTE DE HIPÓTESE SÉRGIO KATO Trata-se de uma técnica para se fazer inferência estatística. Ou seja, a partir de um teste de hipóteses, realizado com os dados amostrais,
Probabilidade. Distribuição Normal
Probabilidade Distribuição Normal Distribuição Normal Uma variável aleatória contínua tem uma distribuição normal se sua distribuição é: simétrica apresenta (num gráfico) forma de um sino Função Densidade
TESTE DE MATEMÁTICA. 1. Efectuou-se um estudo sobre as vendas de automóveis num determinado stand, o qual revelou que:
TESTE DE MATEMÁTICA Ano Lectivo / - 9º I - // Nome:.. Nº... Duração da Prova: 9 minutos O teste inclui cinco itens de escolha múltipla. Seleccione a única resposta correcta de entre as quatro alternativas
a) Suponha que na amostra de 20 declarações foram encontrados 15 com dados incorrectos. Construa um
Escola Superior de Tecnologia de Viseu Probabilidades e Estatística 2007/2008 Ficha nº 7 1. O director comercial de uma cadeia de lojas pretende comparar duas técnicas de vendas, A e B, para o mesmo produto.
Prova Parcial de Estatística I. Turma: AE1 AE2 AE3 AE4
ESCOLA DE ADMINISTRAÇÃO DE EMPRESAS DE SÃO PAULO FUNDAÇÃO GETULIO VARGAS Prova Parcial de Estatística I Data: Setembro / Professores: Eduardo Francisco Francisco Aranha Nelson Barth A Nome do Aluno: GABARITO
Estatística e Probabilidade
Correlação Estatística e Probabilidade Uma correlação é uma relação entre duas variáveis. Os dados podem ser representados por pares ordenados (x,y), onde x é a variável independente ou variável explanatória
Exemplo Regressão Linear Múltipla
Exemplo Regressão Linear Múltipla Gilberto A. Paula Departamento de Estatística IME-USP, Brasil [email protected] 1 o Semestre 2013 G. A. Paula (IME-USP) Salário de Executivos 1 o Semestre 2013 1 / 27
Disciplina Estatística Prof. Msc Quintiliano Siqueira Schroden Nomelini LISTA DE DSITRIBUIÇÕES DE PROBABILIDADE DISTRIBUIÇÕES DISCRETAS
Disciplina Estatística Prof. Msc Quintiliano Siqueira Schroden Nomelini LISTA DE DSITRIBUIÇÕES DE PROBABILIDADE DISTRIBUIÇÕES DISCRETAS 1) Devido às altas taxas de juros, uma firma informa que 30% de suas
COMENTÁRIO AFRM/RS 2012 ESTATÍSTICA Prof. Sérgio Altenfelder
Comentário Geral: Prova muito difícil, muito fora dos padrões das provas do TCE administração e Economia, praticamente só caiu teoria. Existem três questões (4, 45 e 47) que devem ser anuladas, por tratarem
Especialização em Engenharia Clínica
Especialização em Engenharia Clínica Introdução a Bioestatística Docente: > Marcelino M. de Andrade, Dr. Apresentação: Módulo 02 Teoria Elementar da Amostragem A teoria elementar da amostragem é um estudo
Faturamento de Restaurantes
Faturamento de Restaurantes Gilberto A. Paula Departamento de Estatística IME-USP, Brasil [email protected] 2 o Semestre 2015 G. A. Paula (IME-USP) Faturamento de Restaurantes 2 o Semestre 2015 1 / 28
INSTITUTO POLITÉCNICO DE SETÚBAL ESCOLA SUPERIOR DE TECNOLOGIA DE SETÚBAL DEPARTAMENTO DE MATEMÁTICA PROBABILIDADES E ESTATÍSTICA
INSTITUTO POLITÉCNICO DE SETÚBAL ESCOLA SUPERIOR DE TECNOLOGIA DE SETÚBAL DEPARTAMENTO DE MATEMÁTICA PROBABILIDADES E ESTATÍSTICA 1 o Semestre Ficha de Exercícios - Teoria das Probabilidades 2009/2010
INSTITUTO FEDERAL DO ESPÍRITO SANTO CAMPUS SERRA BACHARELADO EM SISTEMAS DE INFORMAÇÃO LISTA DE EXERCÍCIOS (VARIÁVEIS ALEATÓRIAS) ALUNO(A):
INSTITUTO FEDERAL DO ESPÍRITO SANTO CAMPUS SERRA BACHARELADO EM SISTEMAS DE INFORMAÇÃO LISTA DE EXERCÍCIOS (VARIÁVEIS ALEATÓRIAS) ALUNO(A): 1) A demanda quotidiana por um determinado produto no mercadinho
INE 7002 LISTA DE EXERCÍCIOS MODELOS PROBABILÍSTICOS
Lista de Exercícios - Modelos Probabilísticos 1 INE 7002 LISTA DE EXERCÍCIOS MODELOS PROBABILÍSTICOS 35) Em um sistema de transmissão de dados existe uma probabilidade igual a 0,05 de um dado ser transmitido
CURSO ON-LINE PROFESSOR GUILHERME NEVES
Olá pessoal! Neste ponto resolverei a prova de Matemática Financeira e Estatística para APOFP/SEFAZ-SP/FCC/2010 realizada no último final de semana. A prova foi enviada por um aluno e o tipo é 005. Os
Exercícios Resolvidos da Distribuição de Poisson
. a. Qual é a diferença entre as distribuições de Poisson e inomial? b. Dê alguns exemplos de quando podemos aplicar a distribuição de Poisson. c. Dê a fórmula da distribuição de Poisson e o significado
Teorema Central do Limite e Intervalo de Confiança
Probabilidade e Estatística Teorema Central do Limite e Intervalo de Confiança Teorema Central do Limite Teorema Central do Limite Um variável aleatória pode ter uma distribuição qualquer (normal, uniforme,...),
Distribuição Uniforme Discreta. Modelos de distribuições discretas. Distribuição de Bernoulli. Distribuição Uniforme Discreta
Distribuição Uniforme Discreta Modelos de distribuições discretas Notas de Aula da Profa. Verónica González-López e do Prof. Jesús Enrique García, digitadas por Beatriz Cuyabano. Acréscimos e modicações:
IMES Catanduva. Probabilidades e Estatística. no Excel. Matemática. Bertolo, L.A.
IMES Catanduva Probabilidades e Estatística Estatística no Excel Matemática Bertolo, L.A. Aplicada Versão BETA Maio 2010 Bertolo Estatística Aplicada no Excel Capítulo 3 Dados Bivariados São pares de valores
7Testes de hipótese. Prof. Dr. Paulo Picchetti M.Sc. Erick Y. Mizuno. H 0 : 2,5 peças / hora
7Testes de hipótese Prof. Dr. Paulo Picchetti M.Sc. Erick Y. Mizuno COMENTÁRIOS INICIAIS Uma hipótese estatística é uma afirmativa a respeito de um parâmetro de uma distribuição de probabilidade. Por exemplo,
PROVA ESCRITA DE ESTATÍSTICA VERSÃO A. 04 As classes de uma distribuição de freqüência devem ser mutuamente exclusivas para que
COMANDO DA AERONÁUTICA DEPARTAMENTO DE ENSINO DA AERONÁUTICA CENTRO DE INSTRUÇÃO E ADAPTAÇÃO DA AERONÁUTICA CONCURSO DE ADMISSÃO AO EAOT 00 EXAME DE CONHECIMENTOS ESPECIALIZADOS PROVA ESCRITA DE ESTATÍSTICA
Prova Escrita de Matemática Aplicada às Ciências Sociais
EXAME NACIONAL DO ENSINO SECUNDÁRIO Decreto-Lei n.º 74/2004, de 26 de Março Prova Escrita de Matemática Aplicada às Ciências Sociais 10.º/11.º Anos ou 11.º/12.º Anos de Escolaridade Prova 835/1.ª Fase
Versão 1.0 09/Set/2013. www.wedocenter.com.br. WeDo Soluções para Contact Center Consultorias
Verificação do Modelo de Erlang Ponto de Análise: Processo de chegada de contatos Operações de Contact Center Receptivo Por: Daniel Lima e Juliano Nascimento Versão 1.0 09/Set/2013 Ponto de Análise Processo
DISTRIBUIÇÃO DE WEIBULL CONCEITOS BÁSICOS APLICAÇÕES
LUIZ CLAUDIO BENCK KEVIN WONG TAMARA CANDIDO DISTRIBUIÇÃO DE WEIBULL CONCEITOS BÁSICOS APLICAÇÕES Trabalho apresentado para avaliação na disciplina de Estatística e Métodos Numéricos do Curso de Administração
EXCEL NA ANÁLISE DE REGRESSÃO
EXCEL NA ANÁLISE DE REGRESSÃO _2010_03_Exercicio _Regressão_exemplo O gerente de uma loja de artigos escolares, cada semana, deve decidir quanto gastar com propaganda e que atrativo (por exemplo preços
MAE116 Noções de Estatística
MAE6 Noções de Estatística Grupo A - º semestre de 007 Exercício ( pontos) Uma máquina de empacotar um determinado produto o faz segundo uma distribuição normal, com média µ e desvio padrão 0g. (a) Em
Lista de Exercícios. Vetores
Lista de Exercícios Vetores LINGUAGEM DE PROGRAMAÇÃO PROF. EDUARDO SILVESTRI. WWW.EDUARDOSILVESTRI.COM.BR ATUALIZADO EM: 13/03/2007 Página 1/1 1. Faça um programa que crie um vetor de inteiros de 50 posições
UNIVERSIDADE DOS AÇORES Cursos de Sociologia e de Serviço Social Estatística I 1º Semestre 2006/2007
UNIVERSIDADE DOS AÇORES Cursos de Sociologia e de Serviço Social Estatística I 1º Semestre 2006/2007 Ficha de Exercícios nº 5 Distribuições Importantes 1. A probabilidade de os doentes de uma determinada
O comportamento conjunto de duas variáveis quantitativas pode ser observado por meio de um gráfico, denominado diagrama de dispersão.
ESTATÍSTICA INDUTIVA 1. CORRELAÇÃO LINEAR 1.1 Diagrama de dispersão O comportamento conjunto de duas variáveis quantitativas pode ser observado por meio de um gráfico, denominado diagrama de dispersão.
Disciplinas: Cálculo das Probabilidades e Estatística I
Introdução a Inferência Disciplinas: Cálculo das Probabilidades e Estatística I Universidade Federal da Paraíba Prof a. Izabel Alcantara Departamento de Estatística (UFPB) Introdução a Inferência Prof
DISTRIBUIÇÕES DE PROBABILIDADE
DISTRIBUIÇÕES DE PROBABILIDADE i1 Introdução Uma distribuição de probabilidade é um modelo matemático que relaciona um certo valor da variável em estudo com a sua probabilidade de ocorrência. Há dois tipos
Processos Estocásticos
Processos Estocásticos Segunda Lista de Exercícios 01 de julho de 2013 1 Uma indústria fabrica peças, das quais 1 5 são defeituosas. Dois compradores, A e B, classificam os lotes de peças adquiridos em
LISTA DE INTERVALO DE CONFIANÇA E TESTE DE HIPÓTESES
Monitora Juliana Dubinski LISTA DE INTERVALO DE CONFIANÇA E TESTE DE HIPÓTESES EXERCÍCIO 1 (INTERVALO DE CONFIANÇA PARA MÉDIA) Suponha que X represente a duração da vida de uma peça de equipamento. Admita-se
UNIVERSIDADE DO ALGARVE
UNIVERSIDADE DO ALGARVE ESCOLA SUPERIOR DE TECNOLOGIA C.E.T. EM TOPOGRAFIA E CADASTRO REGIME DIURNO - 2º SEMESTRE - 1º ANO - 2007 / 2008 DISCIPLINA DE NOÇÕES DE PROBABILIDADES E ESTATÍSTICA Ficha nº2 -
Estatística Aplicada
INSTITUTO SUPERIOR POLITÉCNICO DE VISEU ESCOLA SUPERIOR DE TECNOLOGIA Estatística Aplicada Ano Lectivo 2006/2007 Ficha n.º1 1. O director comercial de uma cadeia de lojas pretende comparar duas técnicas
Monitor Giovani Roveroto
Monitor Giovani Roveroto Intervalo de Confiança 1. Suponha que o gerente de uma loja de comércio de tintas queira calcular a verdadeira quantidade de tinta contida em um galão, comprados de um fabricante
Lista 09: Estimação de Parâmetros
INSTITUTO TECNOLÓGICO DE AERONÁUTICA DIVISÃO DE ENGENHARIA MECÂNICA-AERONÁUTICA MB-210: Probabilidade e Estatística Lista 09: Estimação de Parâmetros Prof. Denise Beatriz Ferrari [email protected] 2 o Sem/2013
1. Registou-se o número de assoalhadas da população de 100 apartamentos vendidos num bairro residencial
Escola Superior de Tecnologia de Viseu Fundamentos de Estatística 2010/2011 Ficha nº 1 1. Registou-se o número de assoalhadas da população de 100 apartamentos vendidos num bairro residencial 0; 0; 0; 1;
Exemplo Regressão Linear Simples
Exemplo Regressão Linear Simples Gilberto A. Paula Departamento de Estatística IME-USP, Brasil [email protected] 1 o Semestre 2013 G. A. Paula (IME-USP) Área e Preço de Imóveis 1 o Semestre 2013 1 /
Distribuições de Probabilidade Distribuição Binomial
PROBABILIDADES Distribuições de Probabilidade Distribuição Binomial BERTOLO PRELIMINARES Quando aplicamos a Estatística na resolução de situações-problema, verificamos que muitas delas apresentam as mesmas
CAP4: Distribuições Contínuas Parte 1 Distribuição Normal
CAP4: Distribuições Contínuas Parte 1 Distribuição Normal Quando a variável sendo medida é expressa em uma escala contínua, sua distribuição de probabilidade é chamada distribuição contínua. Exemplo 4.1
Variáveis Aleatórias Discretas e Distribuições de Probabilidade
Variáveis Aleatórias Discretas e Distribuições de Probabilidade Objetivos do aprendizado a.determinar probabilidades a partir de funções de probabilidade b.determinar probabilidades a partir de funções
Descreve de uma forma adequada o
EST029 Cálculo de Probabilidade I Cap. 8 - Variáveis Aleatórias Contínuas Prof. Clécio da Silva Ferreira Depto Estatística - UFJF 1 Variável Aleatória Normal Caraterização: Descreve de uma forma adequada
LISTA DE EXERCÍCIOS 3
DISCIPLINA: CÁLCULO DAS PROBABILIDADES E ESTATÍSTICA I PERÍODO: 2013.2 LISTA DE EXERCÍCIOS 3 1) Uma empresa fabricante de pastilhas para freio efetua um teste para controle de qualidade de seus produtos.
CAP5: Amostragem e Distribuição Amostral
CAP5: Amostragem e Distribuição Amostral O que é uma amostra? É um subconjunto de um universo (população). Ex: Amostra de sangue; amostra de pessoas, amostra de objetos, etc O que se espera de uma amostra?
94 (8,97%) 69 (6,58%) 104 (9,92%) 101 (9,64%) 22 (2,10%) 36 (3,44%) 115 (10,97%) 77 (7,35%) 39 (3,72%) 78 (7,44%) 103 (9,83%)
Distribuição das 1.048 Questões do I T A 94 (8,97%) 104 (9,92%) 69 (6,58%) Equações Irracionais 09 (0,86%) Equações Exponenciais 23 (2, 101 (9,64%) Geo. Espacial Geo. Analítica Funções Conjuntos 31 (2,96%)
Capítulo 5: Aplicações da Derivada
Instituto de Ciências Exatas - Departamento de Matemática Cálculo I Profª Maria Julieta Ventura Carvalho de Araujo Capítulo 5: Aplicações da Derivada 5- Acréscimos e Diferenciais - Acréscimos Seja y f
12.º Ano de Escolaridade
gabinete de avaliação educacional T E S T E I N T E R M É D I O D E M A T E M Á T I C A 12.º Ano de Escolaridade (Decreto-Lei n.º 286/89, de 29 de Agosto) (Dec.-Lei n.º 286/89, de 29 de Agosto, para alunos
Momentos de uma variável aleatória
Momentos de uma variável aleatória O cálculo de E[X] (valor médio de X) e E[X 2 ] (que intervém na variância), pode ser generalizado pensando em E[X k ] com k IN. Definição: Dada uma v.a. X, chama-se momento
NOME DO ALUNO: Nome da Escola: Nome do
International Statistical Literacy Competition of the ISLP Competição Internacional de Literacia Estatística do ISLP NOME DO ALUNO: Ano de Escolaridade: Idade: Nome da Escola: Nome do Professor: Turma:
Instruções para a Prova de MATEMÁTICA APLICADA:
Instruções para a Prova de : Confira se seu nome e RG estão corretos. Não se esqueça de assinar a capa deste caderno, no local indicado, com caneta azul ou preta. A duração total do Módulo Discursivo é
UFV Universidade Federal de Viçosa DMA Departamento de Matemática MAT 138 Noções de Álgebra Linear
UFV Universidade Federal de Viçosa DMA Departamento de Matemática MAT 138 Noções de Álgebra Linear 1 2 a LISTA DE EERCÍCIOS - 2005/I 1. Resolva os sistemas abaixo e classifique-os quanto ao número de soluções:
INE 5111 Gabarito da Lista de Exercícios de Probabilidade INE 5111 LISTA DE EXERCÍCIOS DE PROBABILIDADE
INE 5 LISTA DE EERCÍCIOS DE PROBABILIDADE INE 5 Gabarito da Lista de Exercícios de Probabilidade ) Em um sistema de transmissão de dados existe uma probabilidade igual a 5 de um dado ser transmitido erroneamente.
Matemática. O coeficiente angular dado pelo 3º e 4º pontos é igual ao coeficiente angular dado pelo 1º e 3º. Portanto:
Matemática O gráfico de uma função polinomial do primeiro grau passa pelos pontos de coordenadas ( x, y) dados abaixo x y 0 5 m 8 6 4 7 k Podemos concluir que o valor de k m é: A 5,5 B 6,5 C 7,5 D 8,5
Simulação Estocástica
Simulação Estocástica O que é Simulação Estocástica? Simulação: ato ou efeito de simular Disfarce, fingimento,... Experiência ou ensaio realizado com o auxílio de modelos. Aleatório: dependente de circunstâncias
Vetores Aleatórios, correlação e conjuntas
Vetores Aleatórios, correlação e conjuntas Cláudio Tadeu Cristino 1 1 Universidade Federal Rural de Pernambuco, Recife, Brasil Segundo Semestre, 2013 C.T.Cristino (DEINFO-UFRPE) Vetores Aleatórios 2013.2
Universidade da Beira Interior - Departamento de Matemática ESTATÍSTICA APLICADA À PSICOLOGIA I
Ano lectivo: 2008/2009 Universidade da Beira Interior - Departamento de Matemática ESTATÍSTICA APLICADA À PSICOLOGIA I Ficha de exercícios 1 Validação de Pré-Requisitos: Estatística Descritiva Curso: Psicologia
Nome: N.º Turma: Suficiente (50% 69%) Bom (70% 89%)
Escola E.B. 2,3 Eng. Nuno Mergulhão Portimão Ano Letivo 2012/2013 Teste de Avaliação Escrita de Matemática 9.º ano de escolaridade Duração do Teste: 90 minutos 17 de outubro de 2012 Nome: N.º Turma: Classificação:
CI202 - Métodos Numéricos
CI202 - Métodos Numéricos Lista de Exercícios 2 Zeros de Funções Obs.: as funções sen(x) e cos(x) devem ser calculadas em radianos. 1. Em geral, os métodos numéricos para encontrar zeros de funções possuem
Questões de Exames Passados. 1. Considere o polígono integral das distribuições a seguir e responda as perguntas abaixo. F(x) C D
Faculdade de Economia, Universidade Nova de Lisboa Tratamento de Dados André C. Silva Questões de Exames Passados 1. Considere o polígono integral das distribuições a seguir e responda as perguntas abaixo.
Inferência Estatística-Macs11ºano
INFERÊNCIA ESTATÍSTICA Inferência Estatística-Macs11ºano Estatística Descritiva: conjunto de métodos para sintetizar e representar de forma compreensível a informação contida num conjunto de dados. Usam-se,
CURSO ON-LINE PROFESSOR GUILHERME NEVES 1
CURSO ON-LINE PROFESSOR GUILHERME NEVES 1 Olá pessoal! Resolverei neste ponto a prova de Matemática e Estatística para Técnico Administrativo para o BNDES 2008 organizado pela CESGRANRIO. Sem mais delongas,
Universidade Nova de Lisboa FACULDADE DE ECONOMIA
Universidade Nova de Lisboa FACULDADE DE ECONOMIA Nome: Exame de Econometria I 1998/1999 (150 minutos) 5 de Fevereiro de 1999 Na folha existem espaços para apresentar as suas respostas. Defina todos os
Gestão de Processos Produtivos e Qualidade GESTÃO DE PROCESSOS PRODUTIVOS E QUALIDADE. 8º aula
GESTÃO DE PROCESSOS PRODUTIVOS E QUALIDADE 8º aula Prof. Alexandre Gonçalves [email protected] LOTE ECONÔMICO DE COMPRAS LOTE ECONÔMICO DE COMPRA Quando temos estoque-reserva toda vez que
Logo, para estar entre os 1% mais caros, o preço do carro deve ser IGUAL OU SUPERIOR A:
MQI 00 ESTATÍSTICA PARA METROLOGIA - SEMESTRE 008.0 Teste 6/05/008 GABARITO PROBLEMA O preço de um certo carro usado é uma variável Normal com média R$ 5 mil e desvio padrão R$ 400,00. a) Você está interessado
UNIVERSIDADE DE SÃO PAULO. Faculdade de Arquitetura e Urbanismo
UNIVERSIDADE DE SÃO PAULO Faculdade de Arquitetura e Urbanismo DISTRIBUIÇÃO AMOSTRAL ESTIMAÇÃO AUT 516 Estatística Aplicada a Arquitetura e Urbanismo 2 DISTRIBUIÇÃO AMOSTRAL Na aula anterior analisamos
MEDIDAS DE DISPERSÃO
MEDIDAS DE DISPERSÃO 1) (PETROBRAS) A variância da lista (1; 1; 2; 4) é igual a: a) 0,5 b) 0,75 c) 1 d) 1,25 e) 1,5 2) (AFPS ESAF) Dada a seqüência de valores 4, 4, 2, 7 e 3 assinale a opção que dá o valor
PESQUISA DE AUDIÊNCIA JORNAIS IMPRESSOS E TELEVISÃO. AGOSTO de 2010. www.univali.br/ips Fone: (47) 3341-7791 e-mail: instituto@univali.
DADOS DE PESQUISA PARA JORNAIS IMPRESSOS PESQUISA DE AUDIÊNCIA JORNAIS IMPRESSOS E TELEVISÃO AGOSTO de 2010 APRESENTAÇÃO Neste relatório constam os dados obtidos pelo Instituto de Pesquisas Sociais Universidade
1. Avaliação de impacto de programas sociais: por que, para que e quando fazer? (Cap. 1 do livro) 2. Estatística e Planilhas Eletrônicas 3.
1 1. Avaliação de impacto de programas sociais: por que, para que e quando fazer? (Cap. 1 do livro) 2. Estatística e Planilhas Eletrônicas 3. Modelo de Resultados Potenciais e Aleatorização (Cap. 2 e 3
Teste de hipóteses com duas amostras. Estatística Aplicada Larson Farber
8 Teste de hipóteses com duas amostras Estatística Aplicada Larson Farber Seção 8.1 Testando a diferença entre duas médias (amostras grandes e independentes) Visão geral Para testar o efeito benéfico de
Redes de Computadores I Licenciatura em Eng. Informática e de Computadores 1 o Semestre, 26 de Outubro de 2005 1 o Teste A
Redes de Computadores I Licenciatura em Eng. Informática e de Computadores 1 o Semestre, 26 de Outubro de 2005 1 o Teste A Número: Nome: Duração: 1 hora O teste é sem consulta O teste deve ser resolvido
Matemática A. Versão 2. Na sua folha de respostas, indique de forma legível a versão do teste. Teste Intermédio de Matemática A.
Teste Intermédio de Matemática A Versão 2 Teste Intermédio Matemática A Versão 2 Duração do Teste: 90 minutos 24.05.2013 12.º Ano de Escolaridade Decreto-Lei n.º 74/2004, de 26 de março????????????? Na
Expressões Algébricas e Polinômios. 8 ano/e.f.
Módulo de Expressões Algébricas e Polinômios Expressões Algébricas e Polinômios. 8 ano/e.f. Determine: a) a expressão que representa a área do terreno. b) a área do terreno para x = 0m e y = 15m. Exercício
ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS 12º ANO DE ESCOLARIDADE DE MATEMÁTICA A. TESTE Nº 2 Grupo I
ESCOLA SECUNDÁRIA COM º CICLO D. DINIS º ANO DE ESCOLARIDADE DE MATEMÁTICA A TESTE Nº Grupo I As cinco questões deste grupo são de escolha múltipla. Para cada uma delas são indicadas quatro alternativas,
Investigação Operacional
Licenciatura em Engenharia de Comunicações Licenciatura em Engenharia Electrónica Industrial e Computadores Investigação Operacional Exercícios de Métodos para Programação Linear Grupo de Optimização e
Primeira Lista de Exercícios de Estatística
Primeira Lista de Exercícios de Estatística Professor Marcelo Fernandes Monitor: Márcio Salvato 1. Suponha que o universo seja formado pelos naturais de 1 a 10. Sejam A = {2, 3, 4}, B = {3, 4, 5}, C =
Pesquisador em Informações Geográficas e Estatísticas A I SISTEMA FINANCEIRO LEIA ATENTAMENTE AS INSTRUÇÕES ABAIXO.
9 EDITAL N o 04/2013 LEIA ATENTAMENTE AS INSTRUÇÕES ABAIXO. 01 - O candidato recebeu do fiscal o seguinte material: a) este CADERNO DE QUESTÕES, com os enunciados das 8 (oito) questões discursivas, sem
