TÍTULO: COMPARAÇÃO DE TÉCNICAS INTELIGENTES PARA A DETEÇÃO DE SPAM EM REDES DE COMPUTADORES

Tamanho: px
Começar a partir da página:

Download "TÍTULO: COMPARAÇÃO DE TÉCNICAS INTELIGENTES PARA A DETEÇÃO DE SPAM EM REDES DE COMPUTADORES"

Transcrição

1 TÍTULO: COMPARAÇÃO DE TÉCNICAS INTELIGENTES PARA A DETEÇÃO DE SPAM EM REDES DE COMPUTADORES CATEGORIA: CONCLUÍDO ÁREA: CIÊNCIAS EXATAS E DA TERRA SUBÁREA: COMPUTAÇÃO E INFORMÁTICA INSTITUIÇÃO: FACULDADE DE TECNOLOGIA DE BAURU AUTOR(ES): ATAIR ALVES CAMARGO JUNIOR, HENRIQUE P. MARTINS, KELTON A. P. DA COSTA, LUIS ALEXANDRE DA SILVA, MIGUEL NEVES ORIENTADOR(ES): PATRICIA BELLIN RIBEIRO

2 1. RESUMO Nas últimas décadas as anomalias em redes de computadores têm aumentado gerando uma preocupação e uma necessidade de criação de técnicas para identificar esses padrões de tráfegos incomuns. Esta pesquisa tem como objetivo a utilização de técnicas de mineração de dados, a fim de identificar corretamente o tipo de anomalia considerada Spam em mensagens eletrônicas ( s), para isso foi utilizada a ferramenta Weka que é composta por uma coleção de algoritmos de aprendizado de máquina para tarefas de mineração de dados, com a finalidade de identificar e analisar esse tipo de anomalia em um conjunto de dados de mensagens eletrônicas chamado SPAMBASE, gerando resultados para comparação da eficiência das técnicas utilizadas. 2. INTRODUÇÃO Nos últimos anos, várias pesquisas em ciência da computação foram conduzidas salientando o uso de redes neurais artificiais, mineração de dados e técnicas como árvore de decisão em uma tentativa de minimizar a taxa de recebimento de Spam no âmbito comercial e pessoal (CARRERAS; MARQUEZ, 2001; CORTEZ et al., 2009; RASIM; RAMIZ; SAADAT, 2011; KUFANDIRIMBWA; GOTORA, 2012; KUMAR; POONKUZHALI; SUDHAKAR, 2012; BORGES; MARQUES; BERNARDINO, 2013; RATHI; PAREEK, 2013). Entre uma ampla variedade de técnicas de aprendizagem automática, a mineração de dados pode ser considerada uma das mais utilizadas, esta faz parte do processo do KDD-based (Knowlegde Discovery in Datasets Descoberta de Conhecimento em Banco de Dados), cuja finalidade é encontrar padrões correlacionados sobre um interesse específico. Os passos para a aplicação do KDD podem ser apresentados de forma cognitiva, interativa e exploratória baseados nas seguintes fases: (i) definir o tempo de conhecimento a ser buscado, (ii) definir um conjunto de dados, (iii) pré-processar e reduzir o conjunto de dados, e (iv) então realizar a mineração de dados que busca interpretar os padrões descobertos (FAYYAD; PIATESKY-SHAPIRO; SMYTH, 1996; NARENDRAN, 2009). s Spam (lixo eletrônico) fazem parte de umas das áreas mais problemáticas da era da internet, que podem trazer prejuízo financeiro à organizações e danos à todos os usuários em geral. Por exemplo, Rambow et al. (2004), aplicou o classificador the

3 Ripper para identificar características linguísticas para definir se um é Spam ou não. Carreras e Marquez (2001) utilizaram o classificador árvore de decisão no mesmo contexto. Redes Bayesianas são amplamente usadas como uma técnica popular para detecção de Spams (SAHAMI; HECKERMAN; HORVITZ, 1998; RAMIZ; SAADAT, 2011; EROSHEVA; FIENBERG, 2004; KUFANDIRIMBWA; GOTORA, 2012), bem como lógica Fuzzy (MOHAMMAD, 2011) e outros métodos baseados em regras (BIRO; BENCZUR; SIKLOSI, 2009). Outras pesquisas também utilizaram o famoso algoritmo do vizinho mais próximo (k-nearest neighbor) (PERKINS, 2001), para detectar Spams, e também uma ampla variedade de métodos de aprendizagem automática como a mineração de dados TANAGRA que foi aplicada por Kumar, Poonkuzhali e Sudhakar (2012), no mesmo contexto. Cortez et al. (2009), descreveu uma abordagem de mineração de dados simbiótica, que unifica filtragem baseada no contexto com a filtragem colaborativa melhorando o contexto de detecção de Spam. Borges, Marques e Benardino (2013), compararam quatro ferramentas livres de mineração de dados com o mesmo propósito: KNIMME, Orange, RapidMiner e Weka, sendo seu objetivo descobrir a técnica mais precisa entre elas: classificação Bayesiana (Naïve Bayes), os mais próximos vizinhos (k-nearest neighbors), máquinas de vetores de suporte (Support Vector Machines) e classificador C4.5. Os resultados dos experimentos mostraram que não há uma única ferramenta ou técnica que sempre terá os melhores resultados. Bahrololum e Khaleghi (2008), propuseram um sistema de detecção de intrusões baseado no modelo de mistura Gaussiana, na qual a ideia era modelar os padrões de atividades normais e de intrusão para então classificar futuras amostras. A probabilidade máxima entre as diferentes amostras foi usada para distinguí-las, sendo que o banco de dados KDD 99 foi utilizado para executar o estudo (HETTICH; BAY, 1999). Buchtala, Klimek e Sick (2005), utilizaram um algoritmo evolutivo (AE) para realizar simultaneamente a seleção de características e modelos para quatro problemas de mineração de dados: detecção de intrusões em redes de computadores, verificação de assinaturas biométricas, métodos de marketing direto de vendas e a otimização de processos de produção química. Este mostrou que, em comparação com as técnicas de otimização baseadas em AE anteriores, o tempo de execução é reduzido em até 99%, enquanto a taxa de erros caiu em até 86% dependendo da aplicação. Liu et al. (2011), descreveram uma abordagem de detecção de anomalias usando uma rede neural probabilística otimizada.

4 Primeiramente usaram um algoritmo de estímulo adaptativo básico (AdaBoost) e analisaram suas desvantagens, e então utilizaram um algoritmo AdaBoost melhorado para classificar os eventos detectados como normais ou intrusivos. Sharms e Mercer (2013), apresentaram um método de classificação de Spam que usa características baseadas nas propriedades do tais como a frequência de palavras em Spams, tags de html, características de linguagem como gramática e erros de ortografia, entre outros. As características foram extraídas de quatro banco de dados de referência: CSDMC2010, Spam Assassin, Ling Machine, e classificação Bayssiana. Embora o experimento focou somente em s na língua inglesa, os resultados indicaram que o método proposto pode ser uma excelente abordagem para classificar Spams em outras línguas. Embora existam muitos estudos para detecção de Spams, apenas poucos deles focaram em uma única ferramenta para propósitos de comparação. Por isso, este estudo busca comparar três técnicas de reconhecimento de padrões utilizando a ferramenta Weka com: Multi-Layer Perceptron (MLP) usando redes neurais artificiais, Radial Basis Function (RBF) e o classificador baseado em árvore de decisão J48. Para este propósito, foi utilizado uma base com um conjunto de s chamado SPAMBASE (HOPKINS et al., 2014), que contêm amostras previamente rotuladas, onde rotuladas como normais (39,40%) e o restante, rotuladas como Spam (60,60%). Este estudo está organizado da seguinte maneira: a seção 3 apresenta os objetivo específico do trabalho, a seção 4 aborda uma breve revisão teórica sobre as técnicas usadas neste trabalho. As seções 5 e 6 apresentam a metodologia e os resultados dos experimentos. Finalizando, a seção 7 demostra as conclusões. 3. OBJETIVOS Utilizar técnicas de mineração de dados, a fim de identificar corretamente o tipo de anomalia considerada Spam em mensagens eletrônicas ( s). 4. METODOLOGIA Nesta seção, uma revisão teórica será brevemente apresentada sobre as técnicas de reconhecimento de padrões utilizadas neste trabalho. Sendo elas: o classificador

5 árvore de decisão J48 e as redes neurais artificiais MLP e RBF. Além disso, a ferramenta Weka é descrita DECISION TREE (J48) O classificador de árvore de decisão J48 é uma implementação de código livre Java do algoritmo C4.5 na ferramenta de mineração de dados Weka. Tal técnica foi utilizada para gerar uma árvore de decisão usando o conceito de entropia da informação, que pode ser usado para propósitos de classificação estatística (KARIMI; HAMILTON, 2002). A técnica produz um conjunto de regras chamadas de listas de decisão, trabalhando para formar um árvore de decisão parcial e imediatamente convertê-la em uma regra correspondente. O critério de separação é o ganho da informação normalizada. Por isso, o atributo com o maior ganho da informação normalizada é escolhido para formar a decisão (KOTSIANTIS, 2007) RADIAL BASIS FUNCTION (RBF) Funções de base radiais foram empregadas com sucesso em vários problemas de aprendizagem automatizada, e seu uso foi amplamente relatado na literatura. Tais abordagens são parte da rede neurais artificiais onde as funções de base radiais são usadas para computar a ativação de neurônios ocultos, e foram empregados em funções de aproximação e problemas de reconhecimento de padrões, com sucesso. Em geral, redes RBF estão associadas com arquiteturas compostas por três camadas, onde uma combinação não-linear dos resultados dos neurônios ocultos é então usada para calcular a resposta da rede neural artificial de uma amostra de dados (SILVA et al., 2010; BUCHTALA; KLIMEK; SICK, 2005; LIJUAN, 2009; GOVINDARAJAN; CHANDRASEKARAN, 2011). Khade, Kumar e Bhattacharya (2012), descreve que redes neurais RBF fazem parte da ferramenta Weka que implementa a rede de funções de base radiais Gaussiana. Este usa o algoritmo de média de um grupo (k-means clustering) para gerar as funções base e aprender tanto uma regressão logística (problemas de classe discreta) ou uma regressão linear (problemas de classe numérica). Classificação Gaussiana multivariada simétrica é adaptada para cada grupo de dados. Este

6 também padroniza todos os atributos numéricos da média zero e variação de unidades (KHADE; KUMAR; BHATTACHARYA, 2012; RAMBOW et al., 2004) MULTI-LAYER PERCEPTRON (MLP) A rede MLP utiliza o método de aprendizagem supervisionado (HAYKIN, 2009; SILVA; SPATTI; FLAUZINO, 2010). Tal técnica calcula a taxa de erro da camada de saída e retropropaga o resultado para as camadas ocultas para atualizar o peso de todas as camadas através do algoritmo de aprendizagem Backpropagation (HAYKIN, 2009). O processo de treinamento tem duas fases: (i) a propagação que é usada para gerar o resultado de ativação de um padrão de treinamento de um dado, e (ii) a retropropagação que usa o resultado real e de rede para atualizar o peso de ativação de todas as camadas, buscando minimizar a taxa de erro de treinamento (HAYKIN, 2009). A rede neural MLP somente será considerado treinado quando a taxa de erro entre os resultados estiver reduzido à um valor aceitável, isto é, um critério de convergência. De acordo com Haykin (2009), o algoritmo segue várias etapas: inicialização, apresentação da amostra de treinamento, propagação e retropropagação WEKA DATA MINING TOOL O Weka é uma popular ferramenta de aprendizagem automático escrito em Java, desenvolvido pelo Universidade de Waikato, Nova Zelândia. Este software está disponível sob a Licença Pública Geral (GNU) que contém uma coleção de ferramentas gráficas, algoritmos de análise de dados e modelos de predição, em conjunto com interfaces gráficas para um acesso facilitado às funcionalidades. Suporta várias tarefas de mineração de dados padrão, mais especificadamente, préprocessamento de dados, agrupamento (clustering), classificação, regressão, visualização e seleção de características. Todas as técnicas do Weka são predicadas na suposição que os dados estão formatados em um único arquivo ou relacionado onde cada ponto dos dados é descrito por um número fixo de atributos que podem ser numéricos ou nominais, porém alguns outros atributos também são compatíveis (WITTEN; FRANK; HALL, 2011; HOLMES; DONKIN; WITTEN, 1994). O painel de pré-processamento tem alguns recursos para importar dados de um banco de dados

7 (um arquivo CVS, por exemplo) e também algoritmos para realizar a filtragem dos dados. Os filtros podem ser usados para transformar, os atributos numéricos em discretos, tornando possível deletar instâncias e atributos de acordo com certos critérios (WITTEN; FRANK; HALL, 2011). O painel de classificação permite ao usuário aplicar algoritmos de classificação de regressão no banco de dados, estimar a precisão do modelo de resultado de predição, e além disso, visualizar as predições errôneas, com a técnica de curva Receiver Operating Characteriscs (ROC), ou até o próprio modelo. O formato de arquivo da ferramenta Weka é o modelo Attribute- Relation file format (ARFF) que é um arquivo de texto ASCII. 5. DESENVOLVIMENTO Nesta seção, apresentaremos a metodologia empregada para validar os resultados entre os classificadores descritos na seção 4. Para analisar a quantidade de anomalias, foi utilizado o banco de dados SPAMBASE, que contém 57 atributos relacionados a frequência de algumas palavras no conteúdo de s. Este banco de dados foi criado para aperfeiçoar a segurança de software de redes de computadores. Ataques usando s com Spam podem causar prejuízo relacionados a perda de tempo desnecessária, aumento de custo, perda de produtividade, conteúdo impróprio, ofensivo e perda financeira causada por fraude. O banco de dados pode ser carregado na ferramenta Weka usando o formato de arquivo ARFF, supramencionado, cada coluna contém um atributo dos dados, que representa um palavra e sua frequência. Um método estatístico padrão chamado de validação cruzada (HAYKIN, 2009), foi escolhido para avaliar a efetividade das técnicas comparadas. Tal abordagem particiona randomicamente o banco de dados em grupo de teste e treinamento, sendo o primeiro composto por 75% de todo o conjunto de dados, e o último contém os 25% restantes do conjunto de dados (estas porcentagens foram escolhidas empiricamente). Este procedimento foi realizado por 10 vezes, sendo que a precisão média foi empregada em propósito de comparação. Adicionalmente, uma técnica chamada curva ROC (SURI; RANGAYYAN, 2006), foi usada para avaliar a sensibilidade dos classificadores em pesquisas similares. Cada ponto da curva representa um limiar diferente entre o resultado da fração de verdadeiro positivo e a fração de falso positivo, gerando uma curva que mostra a relação entre a força do

8 teste com a probabilidade de cometer um erro. Por isso, cada ponto da curva ROC descreve um critério para distinguir os dados normais dos anormais. De acordo com Metz (1996), uma curva ROC representa a performance que pode ser alcançada entre a sensibilidade e a especificidade de um sistema de diagnóstico quando um limiar é alterado. Uma comparação entre os sistemas pode ser realizado através das áreas da curva de cada sistema (SURI; RANGAYYAN, 2006). A área Az é um dos índices mais frequentemente usados da curva ROC, e está área representa os resultados corretos no sistema (classificador), isto é, quando maior a área, maior é a quantidade de resultados corretos. Isto significa que se o sistema for bem balanceado e altamente preciso, a curva deveria estar o mais próximo possível da parte esquerda superior do eixo cartesiano, aumentando a área da curva (DORFMAN; ALF, 1969; HANLEY; MCNEIL, 1983). 6. RESULTADOS Nesta seção, será apresentado os resultados obtidos usando a metodologia previamente descrita. As tabelas 1, 2 e 3 apresentam os resultados das técnicas J48, RBF e MLP respectivamente. O algoritmo J48 obteve uma taxa de reconhecimento médio de 92,76%, onde 89,79% da amostra de s não Spam foram corretamente classificados, e 93,34% da amostra de s Spam foram corretamente reconhecidos. Observando que o Az empregado foi igual à 0,941. Tabela 1. Matrix de Confusão J48. Spam Não Spam Taxa% 2.602,32 185,68 93,34% 185, ,89 89,79% Taxa Média %: 92,76% A rede neural RBF foi ajustada conforme: 57 atributos de entrada, uma camada oculta com 2 neurônios e uma camada de saída com 1 neurônio. Após a finalização do processo de aprendizagem, foi possível obter uma taxa de conhecimento média de 84,30%, onde 78,60% da amostra de s de não Spam foram corretamente classificada e 89,99% da amostra de s Spam foram corretamente classificadas. Observe que o Az empregado foi igual à 0,920. Tabela 2. Matrix de Confusão RBF. Spam Não Spam Taxa% ,99% ,60% Taxa Média %: 84,30%

9 A arquitetura da rede MLP foi ajustada da seguinte forma: 57 atributos de entrada, uma camada intermediaria com 68 neurônios, e uma camada de saída com 1 neurônio. Uma taxa de aprendizagem de 0,3 e momentum igual à 0,2. Após a finalização do algoritmo de aprendizagem, foi possível obter uma taxa de reconhecimento de 93,89%, sendo que 93,87% dos s de não Spam foram corretamente classificados e 93,93% dos s Spam foram corretamente classificadas. Observando que o AZ empregado foi igual à 0,980. Tabela 3. Matrix de Confusão MLP. Spam Não Spam Taxa% 2.617,10 170,90 93,93% 110, ,95 93,87% Taxa Média %: 93,89% 7. CONSIDERAÇÕES FINAIS Atualmente, muitas pesquisas sobre redes de computadores e campos relacionados, empregam o uso de técnicas de aprendizagem automática para analisar o comportamento e habilidade para detectar qualquer possível anomalia de uma certa rede. Neste trabalho, o problema de detecção de Spam foi focado, utilizando a ferramenta Weka para comparar a efetividade de alguns algoritmos de aprendizagem com relação ao problema. Sendo abordadas as seguintes técnicas inteligentes: J48, RBF e a MLP. Os resultados dos experimentos foram analisados através da teoria da curva ROC. As taxas de reconhecimento demonstraram que o classificador J48 com 92,76% e o MLP com 93,89% obtiveram resultados muitos parecidos, seguidos dos resultados da rede RBF com um total de taxa de acerto de 89,99%. Para futuros trabalhos, poderá ser empregadas novas técnicas de reconhecimento de padrões com o mesmo propósito, tão quanto investigar abordagens que nunca foram aplicadas neste contexto. 8. FONTES CONSULTADAS BAHROLOLUM, M.; KHALEGHI, M. Anomaly Intrusion Detection System Using Gaussian Mixture Model. Convergence and Hybrid Information Technology, ICCIT '08. Third International Conference on, vol.1, no., pp.1162,1167, 11-13, Nov BIRO, I.; SZABO, J.; BENCZUR A.; SIKLOSI, D. Linked Latent Dirichlet Allocation in Web Spam Filtering. In Proceedings of the 4th International Workshop on Adversarial Information Retrieval on the Web (AIR Web), Madrid, Spain, 2009.

10 BORGES, L. C.; MARQUES, V. M.; BERNARDINO, J. Comparison of data mining techniques and tools for data classification. In Proceedings of the International C* Conference on Computer Science and Software Engineering. ACM, New York, NY, USA, , BUCHTALA, O.; KLIMEK, M.; SICK, B., Evolutionary optimization of radial basis function classifiers for data mining applications. Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on, vol. 35, no.5, p , Oct Carreras, X.; Marquez, L. Boosting trees for anti spam filtering. In International conference on Recent Advances in Natural Language Processing, p , CORTEZ, P.; LOPES, C.; SOUSA, P.; ROCHA, M.; Rio, M. Symniotic data mining for personalized spam filtering. In the Proceedings of the International Conference on Web Intelligence and Intelligent Agent Technology, p , DORFMAN, D.; ALF, E. Maximum likelihood estimation of parameters of signal detection theory and determination of confidence intervals-rating method data. Journal of Mathematical Psychology, 6, p , EROSHEVA, E. A.; FIENBERG, S. E. Bayesian mixed membership models for soft clustering and classification. Proceedings of National Academy of Sciences, 97(22): , FAYYAD, U. M.; PIATESKY-SHAPIRO, G.; SMYTH, P. From Data Mining to Knowledge Discovery: An Overview. In: Advances in Knowledge Discovery and Data Mining. AAAI Press, GOVINDARAJAN, M.; CHANDRASEKARAN, R. M., Signature verification using radial basis function classifier. Electronics Computer Technology (ICECT), rd International Conference on, vol.5, no., p.182,185, 8-10 April HANLEY, J. A.; MCNEIL, B. J. A method of comparing the areas under receiving operating characteristic curves derived from the same cases. Radiology, 148, p , HAYKIN, S. Neural Networks and Learning Machines. Editora Prentice Hall, 3 Ed., p. 936, HETTICH, S.; BAY, S. D. The UCI KDD Archive. Irvine, CA: University of California, Department of Information and Computer Science, HOLMES, G.; DONKIN, A.; WITTEN, I. H. Weka: A machine learning workbench. Proc Second Australia and New Zealand Conference on Intelligent Information Systems. Australia: Brisbane, HOPKINS, M.; REEBER, E.; FORMAN, G.; SUERMONDT, J. SPAMBASE. Disponível em: Acesso em: 20 Agosto de KARIMI, K.; HAMILTON, H. J. TimeSleuth: A Tool for Discovering Causal and Temporal Rules. ICTAI, KHADE, G., KUMAR, S., BHATTACHARYA, S. Classification of Web pages on Attractiveness: A Supervised Learning Approach. IEEE Procedings of 4th International Conference on Intelligent Human Computer Interaction, p , KOTSIANTIS, S. B. Supervised Machine Learning: A Review of Classification Techniques, Informática 31, , KUFANDIRIMBWA, O.; GOTORA, R. Spam detection using Artificial Neural Networks. In Online Journal of Physical and Environmental Science Research, 1:22-29, KUMAR KISHORE, R.; POONKUZHALI, G.; SUDHAKAR, P. Comparative study on spam classifier using data mining techniques. Lecture Notes in Engineering and Computer Science, 1, p , LIJUAN, Zhou; MINHUA, Wu; MINGSHENG, Xu; HAIJUN, Geng; LUPING, Duan, Research of Data Mining Approach Based on Radial Basis Function Neural Networks. Knowledge Acquisition and Modeling, KAM '09. Second International Symposium, vol.2, p , Dec LIU, W.; Ren, P.; LIU, K.; DUAN, H., Intrusion Detection Using SVM, Wireless Communications. Networking and Mobile Computing (WiCOM), th International Conference on, vol., no., pp.1,4, 23 25, METZ, C. E. ROC Methodology in Radiologic Imaging. Investigative Radiology, v. 21, p , MOHAMMAD, N. T. A Fuzzy clustering approach to filter spam . Proceedings of World Congress on Engineering, WCE-2011, vol. 3, NARENDRAN, C. R. Data Mining - Classification Algorithm Evaluation PERKINS, A. The classification of search engine spam. management.com/white papers/spam classification, RAMBOW, O.; SHRESTHA, L.; CHEN, J.; LAURIDSEN, C. Summarizing Threads. In Proceedings of HLT-NAACL 2004: Short Papers, p , RASIM M. A.; RAMIZ M. A.; SAADAT A. N. Classification of Textual spam using Data

11 Mining Techniques. In the Journal of Applied Computational Intelligence and Soft Computing, RATHI, M.; PAREEK, V. Spam Mail Detection through Data Mining A Comparative Performance Analysis. I. J. Modern Education an Computer Science, 12, 31-39, SAHAMI, M.; DUMASI, S.; HECKERMAN, D.; HORVITZ, E. A Bayesian approach to filtering junk In Learning for text categorization. Papers from the 1998 Workshop, Madison, Wisconsin, SHAMS, R.; MERCER, R.E. Classifying Spam s Using Text and Readability Features. Data Mining (ICDM), 2013 IEEE 13th International Conference, p , Dec SILVA, I. N.; SPATTI, D.H.; FLAUZINO, R. A. Redes Neurais Artificiais: para engenharia e ciências aplicada. Ed. Artliber,. p. 399, SILVA, L. E. V.; DUQUE, J. J.; TINÓS, R.; MURTA JR, L. O. Reconstruciton of Multivariate Signals Using Q-Gaussian Radial Basis Function Network. Computing in Cardiology, 37, p , SURI, J. S.; RANGAYYAN, R. M. Recent Advances in Breast Imaging, Mammography, and Computer-Aided Diagnosis of Breast Cancer. Bellingham, Washington, SPIE Press, WITTEN, I. H.; FRANK, E.; HALL, M. A. Data Mining: Practical machine learning tools and techniques. 3 ed. San Francisco: Morgan Kaufmann, 2011.

MINERAÇÃO DE DADOS PARA DETECÇÃO DE SPAMs EM REDES DE COMPUTADORES

MINERAÇÃO DE DADOS PARA DETECÇÃO DE SPAMs EM REDES DE COMPUTADORES MINERAÇÃO DE DADOS PARA DETECÇÃO DE SPAMs EM REDES DE COMPUTADORES Kelton Costa; Patricia Ribeiro; Atair Camargo; Victor Rossi; Henrique Martins; Miguel Neves; Ricardo Fontes. kelton.costa@gmail.com; patriciabellin@yahoo.com.br;

Leia mais

PALAVRAS-CHAVE: Massas Nodulares, Classificação de Padrões, Redes Multi- Layer Perceptron.

PALAVRAS-CHAVE: Massas Nodulares, Classificação de Padrões, Redes Multi- Layer Perceptron. 1024 UMA ABORDAGEM BASEADA EM REDES PERCEPTRON MULTICAMADAS PARA A CLASSIFICAÇÃO DE MASSAS NODULARES EM IMAGENS MAMOGRÁFICAS Luan de Oliveira Moreira¹; Matheus Giovanni Pires² 1. Bolsista PROBIC, Graduando

Leia mais

Aprendizagem de Máquina

Aprendizagem de Máquina Aprendizagem de Máquina Alessandro L. Koerich Programa de Pós-Graduação em Informática Pontifícia Universidade Católica do Paraná (PUCPR) Horários Aulas Sala [quinta-feira, 7:30 12:00] Atendimento Segunda

Leia mais

MINERAÇÃO DE DADOS APLICADA. Pedro Henrique Bragioni Las Casas pedro.lascasas@dcc.ufmg.br

MINERAÇÃO DE DADOS APLICADA. Pedro Henrique Bragioni Las Casas pedro.lascasas@dcc.ufmg.br MINERAÇÃO DE DADOS APLICADA Pedro Henrique Bragioni Las Casas pedro.lascasas@dcc.ufmg.br Processo Weka uma Ferramenta Livre para Data Mining O que é Weka? Weka é um Software livre do tipo open source para

Leia mais

SISTEMAS DE APRENDIZADO PARA A IDENTIFICAÇÃO DO NÚMERO DE CAROÇOS DO FRUTO PEQUI LEARNING SYSTEMS FOR IDENTIFICATION OF PEQUI FRUIT SEEDS NUMBER

SISTEMAS DE APRENDIZADO PARA A IDENTIFICAÇÃO DO NÚMERO DE CAROÇOS DO FRUTO PEQUI LEARNING SYSTEMS FOR IDENTIFICATION OF PEQUI FRUIT SEEDS NUMBER SISTEMAS DE APRENDIZADO PARA A IDENTIFICAÇÃO DO NÚMERO DE CAROÇOS DO FRUTO PEQUI Fernando Luiz de Oliveira 1 Thereza Patrícia. P. Padilha 1 Conceição A. Previero 2 Leandro Maciel Almeida 1 RESUMO O processo

Leia mais

Prof. Msc. Paulo Muniz de Ávila

Prof. Msc. Paulo Muniz de Ávila Prof. Msc. Paulo Muniz de Ávila O que é Data Mining? Mineração de dados (descoberta de conhecimento em bases de dados): Extração de informação interessante (não-trivial, implícita, previamente desconhecida

Leia mais

UTILIZANDO O SOFTWARE WEKA

UTILIZANDO O SOFTWARE WEKA UTILIZANDO O SOFTWARE WEKA O que é 2 Weka: software livre para mineração de dados Desenvolvido por um grupo de pesquisadores Universidade de Waikato, Nova Zelândia Também é um pássaro típico da Nova Zelândia

Leia mais

Experimentos de Mineração de Dados em R Disciplina do curso de Pós-Graduação da UTFPR

Experimentos de Mineração de Dados em R Disciplina do curso de Pós-Graduação da UTFPR Experimentos de Mineração de Dados em R Disciplina do curso de Pós-Graduação da UTFPR Paulo Carvalho Diniz Junior CPGEI / UTFPR Avenida Sete de Setembro, 3165 Curitiba-PR - CEP 80.230-910 E-mail: paulo.carvalho.diniz@gmail.com

Leia mais

XIII Encontro de Iniciação Científica IX Mostra de Pós-graduação 06 a 11 de outubro de 2008 BIODIVERSIDADE TECNOLOGIA DESENVOLVIMENTO

XIII Encontro de Iniciação Científica IX Mostra de Pós-graduação 06 a 11 de outubro de 2008 BIODIVERSIDADE TECNOLOGIA DESENVOLVIMENTO XIII Encontro de Iniciação Científica IX Mostra de Pós-graduação 06 a 11 de outubro de 2008 BIODIVERSIDADE TECNOLOGIA DESENVOLVIMENTO EPE0147 UTILIZAÇÃO DA MINERAÇÃO DE DADOS EM UMA AVALIAÇÃO INSTITUCIONAL

Leia mais

Palavras-chave: Sistema neuro-fuzzy, Sistemas de avaliação, Sistemas Adaptativos.

Palavras-chave: Sistema neuro-fuzzy, Sistemas de avaliação, Sistemas Adaptativos. ANÁLISE DO CURSO DE ENGENHARIA ELÉTRICA NA UERJ A PARTIR DE INDICADORES CONSTRUÍDOS BASEADOS NO EXAME NACIONAL DE CURSOS: UM SISTEMA NEBULOSO DE AVALIAÇÃO Maria Luiza F. Velloso mlfv@centroin.com.br Universidade

Leia mais

Sistema de mineração de dados para descobertas de regras e padrões em dados médicos

Sistema de mineração de dados para descobertas de regras e padrões em dados médicos Sistema de mineração de dados para descobertas de regras e padrões em dados médicos Pollyanna Carolina BARBOSA¹; Thiago MAGELA² 1Aluna do Curso Superior Tecnólogo em Análise e Desenvolvimento de Sistemas

Leia mais

TÓPICOS AVANÇADOS EM ENGENHARIA DE SOFTWARE

TÓPICOS AVANÇADOS EM ENGENHARIA DE SOFTWARE TÓPICOS AVANÇADOS EM ENGENHARIA DE SOFTWARE Engenharia de Computação Professor: Rosalvo Ferreira de Oliveira Neto Estudos Comparativos Recentes - Behavior Scoring Roteiro Objetivo Critérios de Avaliação

Leia mais

Extração de Árvores de Decisão com a Ferramenta de Data Mining Weka

Extração de Árvores de Decisão com a Ferramenta de Data Mining Weka Extração de Árvores de Decisão com a Ferramenta de Data Mining Weka 1 Introdução A mineração de dados (data mining) pode ser definida como o processo automático de descoberta de conhecimento em bases de

Leia mais

DWARF DATAMINER: UMA FERRAMENTA GENÉRICA PARA MINERAÇÃO DE DADOS

DWARF DATAMINER: UMA FERRAMENTA GENÉRICA PARA MINERAÇÃO DE DADOS DWARF DATAMINER: UMA FERRAMENTA GENÉRICA PARA MINERAÇÃO DE DADOS Tácio Dias Palhão Mendes Bacharelando em Sistemas de Informação Bolsista de Iniciação Científica da FAPEMIG taciomendes@yahoo.com.br Prof.

Leia mais

Aula 2 RNA Arquiteturas e Treinamento

Aula 2 RNA Arquiteturas e Treinamento 2COP229 Aula 2 RNA Arquiteturas e Treinamento 2COP229 Sumário 1- Arquiteturas de Redes Neurais Artificiais; 2- Processos de Treinamento; 2COP229 1- Arquiteturas de Redes Neurais Artificiais -Arquitetura:

Leia mais

TÉCNICAS DE COMPUTAÇÃO PARALELA PARA MELHORAR O TEMPO DA MINERAÇÃO DE DADOS: Uma análise de Tipos de Coberturas Florestais

TÉCNICAS DE COMPUTAÇÃO PARALELA PARA MELHORAR O TEMPO DA MINERAÇÃO DE DADOS: Uma análise de Tipos de Coberturas Florestais UNIVERSIDADE ESTADUAL DE PONTA GROSSA PRÓ-REITORIA DE PESQUISA E PÓS-GRADUAÇÃO PROGRAMA DE PÓS-GRADUAÇÃO EM COMPUTAÇÃO APLICADA CRISTIAN COSMOSKI RANGEL DE ABREU TÉCNICAS DE COMPUTAÇÃO PARALELA PARA MELHORAR

Leia mais

Fabrício J. Barth. Apontador http://www.apontador.com.br http://www.apontador.com.br/institucional/ fabricio.barth@lbslocal.com

Fabrício J. Barth. Apontador http://www.apontador.com.br http://www.apontador.com.br/institucional/ fabricio.barth@lbslocal.com Uma Introdução à Mineração de Informações Fabrício J. Barth Apontador http://www.apontador.com.br http://www.apontador.com.br/institucional/ fabricio.barth@lbslocal.com Outubro de 2010 Objetivo Apresentar

Leia mais

Data, Text and Web Mining

Data, Text and Web Mining Data, Text and Web Mining Fabrício J. Barth TerraForum Consultores Junho de 2010 Objetivo Apresentar a importância do tema, os conceitos relacionados e alguns exemplos de aplicações. Data, Text and Web

Leia mais

Curva ROC. George Darmiton da Cunha Cavalcanti Tsang Ing Ren CIn/UFPE

Curva ROC. George Darmiton da Cunha Cavalcanti Tsang Ing Ren CIn/UFPE Curva ROC George Darmiton da Cunha Cavalcanti Tsang Ing Ren CIn/UFPE Introdução ROC (Receiver Operating Characteristics) Curva ROC é uma técnica para a visualização e a seleção de classificadores baseado

Leia mais

UNISINOS - UNIVERSIDADE DO VALE DO RIO DOS SINOS

UNISINOS - UNIVERSIDADE DO VALE DO RIO DOS SINOS UNISINOS - UNIVERSIDADE DO VALE DO RIO DOS SINOS Curso: Informática Disciplina: Redes Neurais Prof. Fernando Osório E-mail: osorio@exatas.unisinos.br EXEMPLO DE QUESTÕES DE PROVAS ANTIGAS 1. Supondo que

Leia mais

AVALIAÇÃO COMPARATIVA DE ALGORITMOS PARA SISTEMAS DE RECOMENDAÇÃO EM MÚLTIPLOS DOMÍNIOS: MODELOS INTERPRETÁVEIS APLICADOS A DADOS EDUCACIONAIS

AVALIAÇÃO COMPARATIVA DE ALGORITMOS PARA SISTEMAS DE RECOMENDAÇÃO EM MÚLTIPLOS DOMÍNIOS: MODELOS INTERPRETÁVEIS APLICADOS A DADOS EDUCACIONAIS AVALIAÇÃO COMPARATIVA DE ALGORITMOS PARA SISTEMAS DE RECOMENDAÇÃO EM MÚLTIPLOS DOMÍNIOS: MODELOS INTERPRETÁVEIS APLICADOS A DADOS EDUCACIONAIS Hugo Marques Casarini Faculdade de Engenharia de Computação

Leia mais

Tópicos Especiais: INTELIGÊNCIA DE NEGÓCIOS II. Mineração de Dados. Sylvio Barbon Junior barbon@uel.br. 26 de junho de 2015 DC-UEL Sylvio Barbon Jr 1

Tópicos Especiais: INTELIGÊNCIA DE NEGÓCIOS II. Mineração de Dados. Sylvio Barbon Junior barbon@uel.br. 26 de junho de 2015 DC-UEL Sylvio Barbon Jr 1 Tópicos Especiais: INTELIGÊNCIA DE NEGÓCIOS II Mineração de Dados Sylvio Barbon Junior barbon@uel.br 26 de junho de 2015 DC-UEL Sylvio Barbon Jr 1 Sumário Etapa I Etapa II Inteligência de Negócios Visão

Leia mais

Técnicas de Seleção de Atributos utilizando Paradigmas de Algoritmos Disciplina de Projeto e Análise de Algoritmos

Técnicas de Seleção de Atributos utilizando Paradigmas de Algoritmos Disciplina de Projeto e Análise de Algoritmos Técnicas de Seleção de Atributos utilizando Paradigmas de Algoritmos Disciplina de Projeto e Análise de Algoritmos Theo Silva Lins, Luiz Henrique de Campos Merschmann PPGCC - Programa de Pós-Graduação

Leia mais

Aprendizagem de Máquina

Aprendizagem de Máquina Aprendizagem de Máquina Professor: Rosalvo Ferreira de Oliveira Neto Disciplina: Inteligência Artificial Tópicos 1. Definições 2. Tipos de aprendizagem 3. Paradigmas de aprendizagem 4. Modos de aprendizagem

Leia mais

UNIVERSIDADE FEDERAL DE PERNAMBUCO GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO CENTRO DE INFORMÁTICA

UNIVERSIDADE FEDERAL DE PERNAMBUCO GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO CENTRO DE INFORMÁTICA UNIVERSIDADE FEDERAL DE PERNAMBUCO GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO CENTRO DE INFORMÁTICA ANÁLISE DE AGENTES CLASSIFICADORES PARA CATEGORIZAÇÃO AUTOMÁTICA DE DOCUMENTOS DIGITAIS PROPOSTA DE TRABALHO

Leia mais

Descoberta de Domínio Conceitual de Páginas Web

Descoberta de Domínio Conceitual de Páginas Web paper:25 Descoberta de Domínio Conceitual de Páginas Web Aluno: Gleidson Antônio Cardoso da Silva gleidson.silva@posgrad.ufsc.br Orientadora: Carina Friedrich Dorneles dorneles@inf.ufsc.br Nível: Mestrado

Leia mais

Automatização do processo de determinação do número de ciclos de treinamento de uma Rede Neural Artificial

Automatização do processo de determinação do número de ciclos de treinamento de uma Rede Neural Artificial Automatização do processo de determinação do número de ciclos de treinamento de uma Rede Neural Artificial André Ricardo Gonçalves; Maria Angélica de Oliveira Camargo Brunetto Laboratório Protem Departamento

Leia mais

Data Mining II Modelos Preditivos

Data Mining II Modelos Preditivos Data Mining II Modelos Preditivos Prof. Doutor Victor Lobo Mestre André Melo Mestrado em Estatística e Gestão de Informação Objectivo desta disciplina Fazer previsões a partir de dados. Conhecer os principais

Leia mais

Predição da Resposta ao Tramento Anti- Retroviral de Pacientes portadores do vírus HIV-1 através de Redes Neurais Artificiais

Predição da Resposta ao Tramento Anti- Retroviral de Pacientes portadores do vírus HIV-1 através de Redes Neurais Artificiais Universidade Federal de Pernambuco UFPE Centro de Informática CIn Pós-graduação em Ciência da Computação Princípios e Técnicas da Análise Estatística Experimental Predição da Resposta ao Tramento Anti-

Leia mais

Fatores de Impacto para alguns Periódicos Base JCR-2003 /ISI 1

Fatores de Impacto para alguns Periódicos Base JCR-2003 /ISI 1 Fatores de Impacto para alguns Periódicos Base JCR-2003 /ISI 1 O Journal Citation Reports (JCR) publica anualmente o índice conhecido por fator de impacto de um periódico para medir a freqüência com que

Leia mais

IN0997 - Redes Neurais

IN0997 - Redes Neurais IN0997 - Redes Neurais Aluizio Fausto Ribeiro Araújo Universidade Federal de Pernambuco Centro de Informática - CIn Departamento de Sistemas da Computação aluizioa@cin.ufpe.br Conteúdo Objetivos Ementa

Leia mais

Nathalie Portugal Vargas

Nathalie Portugal Vargas Nathalie Portugal Vargas 1 Introdução Trabalhos Relacionados Recuperação da Informação com redes ART1 Mineração de Dados com Redes SOM RNA na extração da Informação Filtragem de Informação com Redes Hopfield

Leia mais

REDE BAYESIANA PARA ESTIMAÇÃO DE FALHAS INCIPIENTES EM TRANSFORMADORES DE POTÊNCIA UTILIZANDO DETECÇÃO DE DESCARGAS PARCIAIS POR EMISSÃO ACÚSTICA

REDE BAYESIANA PARA ESTIMAÇÃO DE FALHAS INCIPIENTES EM TRANSFORMADORES DE POTÊNCIA UTILIZANDO DETECÇÃO DE DESCARGAS PARCIAIS POR EMISSÃO ACÚSTICA REDE BAYESIANA PARA ESTIMAÇÃO DE FALHAS INCIPIENTES EM TRANSFORMADORES DE POTÊNCIA UTILIZANDO DETECÇÃO DE DESCARGAS PARCIAIS POR EMISSÃO ACÚSTICA Pedro Henrique da S. PALHARES 1, Leonardo da C. BRITO 1,

Leia mais

INTRODUÇÃO A MINERAÇÃO DE DADOS UTILIZANDO O WEKA

INTRODUÇÃO A MINERAÇÃO DE DADOS UTILIZANDO O WEKA INTRODUÇÃO A MINERAÇÃO DE DADOS UTILIZANDO O WEKA Marcelo DAMASCENO(1) (1) Instituto Federal de Educação, Ciência e Tecnologia do Rio Grande do Norte/Campus Macau, Rua das Margaridas, 300, COHAB, Macau-RN,

Leia mais

Aprendizado de classificadores das ementas da Jurisprudência do Tribunal Regional do Trabalho da 2ª. Região - SP

Aprendizado de classificadores das ementas da Jurisprudência do Tribunal Regional do Trabalho da 2ª. Região - SP Aprendizado de classificadores das ementas da Jurisprudência do Tribunal Regional do Trabalho da 2ª. Região - SP Thiago Ferauche, Maurício Amaral de Almeida Laboratório de Pesquisa em Ciência de Serviços

Leia mais

1. Introdução 2. Séries Temporais

1. Introdução 2. Séries Temporais 1. Introdução Predição de valores de ações é uma tarefa desafiadora na área de predição de séries temporais financeiras, devido à grande quantidade de variáveis que envolvem essas predições. No passado,

Leia mais

FILTRAGEM DE INFORMAÇÃO NA WEB USANDO REDE NEURAL DE HOPFIELD E ONTOLOGIA

FILTRAGEM DE INFORMAÇÃO NA WEB USANDO REDE NEURAL DE HOPFIELD E ONTOLOGIA FILTRAGEM DE INFORMAÇÃO NA WEB USANDO REDE NEURAL DE HOPFIELD E ONTOLOGIA Daniel Mandelli Martins Faculdade de Engenharia de Computação CEATEC danielmartins@puc-campinas.edu.br Juan Manuel Adán Coello

Leia mais

Extensão do WEKA para Métodos de Agrupamento com Restrição de Contigüidade

Extensão do WEKA para Métodos de Agrupamento com Restrição de Contigüidade Extensão do WEKA para Métodos de Agrupamento com Restrição de Contigüidade Carlos Eduardo R. de Mello, Geraldo Zimbrão da Silva, Jano M. de Souza Programa de Engenharia de Sistemas e Computação Universidade

Leia mais

Resumo. 1 Introdução. (jim, ramices)@das.ufsc.br

Resumo. 1 Introdução. (jim, ramices)@das.ufsc.br Análise Comparativa de Técnicas de Inteligência Computacional para a Detecção de Spam Jim Lau, Ramices dos Santos Silva DAS/CTC Universidade Federal de Santa Catarina (UFSC) Florianópolis SC Brasil (jim,

Leia mais

Pós-Graduação em Engenharia Elétrica Inteligência Artificial

Pós-Graduação em Engenharia Elétrica Inteligência Artificial Pós-Graduação em Engenharia Elétrica Inteligência Artificial João Marques Salomão Rodrigo Varejão Andreão Inteligência Artificial Definição (Fonte: AAAI ): "the scientific understanding of the mechanisms

Leia mais

MLP (Multi Layer Perceptron)

MLP (Multi Layer Perceptron) MLP (Multi Layer Perceptron) André Tavares da Silva andre.silva@udesc.br Roteiro Rede neural com mais de uma camada Codificação de entradas e saídas Decorar x generalizar Perceptron Multi-Camada (MLP -

Leia mais

Inteligência Computacional [2COP229]

Inteligência Computacional [2COP229] Inteligência Computacional [2COP229] Mestrado em Ciência da Computação Sylvio Barbon Jr barbon@uel.br (2/24) Tema Aula 1 Introdução ao Reconhecimento de Padrões 1 Introdução 2 Componentes clássicos da

Leia mais

tipos de métodos, técnicas de inteligência artificial e técnicas de otimização. Por fim, concluise com as considerações finais.

tipos de métodos, técnicas de inteligência artificial e técnicas de otimização. Por fim, concluise com as considerações finais. 1. Introdução A previsão de vendas é fundamental para as organizações uma vez que permite melhorar o planejamento e a tomada de decisão sobre o futuro da empresa. Contudo toda previsão carrega consigo

Leia mais

SVM Support Vector Machine

SVM Support Vector Machine SVM Support Vector Machine Ø Introduction Ø Application to Indoor Localization (MLP x LVQ x SVM) Laboratório de Automação e Robótica - A. Bauchspiess Soft Computing - Neural Networks and Fuzzy Logic SVM

Leia mais

3 Metodologia de Previsão de Padrões de Falha

3 Metodologia de Previsão de Padrões de Falha 3 Metodologia de Previsão de Padrões de Falha Antes da ocorrência de uma falha em um equipamento, ele entra em um regime de operação diferente do regime nominal, como descrito em [8-11]. Para detectar

Leia mais

KDD UMA VISAL GERAL DO PROCESSO

KDD UMA VISAL GERAL DO PROCESSO KDD UMA VISAL GERAL DO PROCESSO por Fernando Sarturi Prass 1 1.Introdução O aumento das transações comerciais por meio eletrônico, em especial as feitas via Internet, possibilitou as empresas armazenar

Leia mais

Ambiente Weka Waikato Environment for Knowledge Analysis

Ambiente Weka Waikato Environment for Knowledge Analysis Universidade Federal de São Carlos - UFSCar Departamento de Computação - DC Programa de Pós-Graduação em Ciência da Computação - PPGCC Ambiente Weka Waikato Environment for Knowledge Analysis Classificação

Leia mais

Profs. Luiz Laranjeira, Nilton Silva, e Fabrício Braz

Profs. Luiz Laranjeira, Nilton Silva, e Fabrício Braz Laboratório de Dependabilidade e Segurança Lades Profs. Luiz Laranjeira, Nilton Silva, e Fabrício Braz RENASIC/CD-CIBER CD Ciber CTC - Comitê Técnico Científico RENASIC CD Comitê Diretor ASTECA VIRTUS

Leia mais

UNIVERSIDADE F EDERAL DE P ERNAMBUCO ANÁLISE DE UM MÉTODO PARA DETECÇÃO DE PEDESTRES EM IMAGENS PROPOSTA DE TRABALHO DE GRADUAÇÃO

UNIVERSIDADE F EDERAL DE P ERNAMBUCO ANÁLISE DE UM MÉTODO PARA DETECÇÃO DE PEDESTRES EM IMAGENS PROPOSTA DE TRABALHO DE GRADUAÇÃO UNIVERSIDADE F EDERAL DE P ERNAMBUCO GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO CENTRO DE INFORMÁTICA 2010.2 ANÁLISE DE UM MÉTODO PARA DETECÇÃO DE PEDESTRES EM IMAGENS PROPOSTA DE TRABALHO DE GRADUAÇÃO Aluno!

Leia mais

Potencial de técnicas de mineração de dados para modelos de alerta da ferrugem do cafeeiro

Potencial de técnicas de mineração de dados para modelos de alerta da ferrugem do cafeeiro Potencial de técnicas de mineração de dados para modelos de alerta da ferrugem do cafeeiro Cesare Di Girolamo Neto 1, Luiz Henrique Antunes Rodrigues 2, Thiago Toshiyuki Thamada 1, Carlos Alberto Alves

Leia mais

Análise e visualização de dados utilizando redes neurais artificiais auto-organizáveis

Análise e visualização de dados utilizando redes neurais artificiais auto-organizáveis Análise e visualização de dados utilizando redes neurais artificiais auto-organizáveis Adriano Lima de Sá Faculdade de Computação Universidade Federal de Uberlândia 20 de junho de 2014 Adriano L. Sá (UFU)

Leia mais

Recuperação de Imagens na Web Baseada em Informações Textuais

Recuperação de Imagens na Web Baseada em Informações Textuais Recuperação de Imagens na Web Baseada em Informações Textuais André Ribeiro da Silva Mário Celso Candian Lobato Universidade Federal de Minas Gerais Departamento de Ciência da Computação {arsilva,mlobato}@dcc.ufmg.br

Leia mais

Classificação de Imagens Tomográficas de Ciência dos Solos Utilizando Redes Neurais e Combinação de Classificadores

Classificação de Imagens Tomográficas de Ciência dos Solos Utilizando Redes Neurais e Combinação de Classificadores Classificação de Imagens Tomográficas de Ciência dos Solos Utilizando Redes Neurais e Combinação de Classificadores Fabricio Aparecido Breve Prof. Dr. Nelson Delfino d Ávila Mascarenhas Apresentação Objetivos

Leia mais

Universidade Tecnológica Federal do Paraná UTFPR Programa de Pós-Graduação em Computação Aplicada Disciplina de Mineração de Dados

Universidade Tecnológica Federal do Paraná UTFPR Programa de Pós-Graduação em Computação Aplicada Disciplina de Mineração de Dados Universidade Tecnológica Federal do Paraná UTFPR Programa de Pós-Graduação em Computação Aplicada Disciplina de Mineração de Dados Prof. Celso Kaestner Poker Hand Data Set Aluno: Joyce Schaidt Versão:

Leia mais

Método Dialético de Otimização usando o Princípio da Máxima Entropia

Método Dialético de Otimização usando o Princípio da Máxima Entropia Learning and Nonlinear Models Revista da Sociedade Brasileira de Redes Neurais (SBRN) Vol 7 No. 2 pp. 54-64 2009 Método Dialético de Otimização usando o Princípio da Máxima Entropia Wellington Pinheiro

Leia mais

Web Data Mining com R

Web Data Mining com R Web Data Mining com R Fabrício J. Barth fabricio.barth@gmail.com VAGAS Tecnologia e Faculdade BandTec Maio de 2014 Objetivo O objetivo desta palestra é apresentar conceitos sobre Web Data Mining, fluxo

Leia mais

Reconhecimento de entidades nomeadas em textos em português do Brasil no domínio do e-commerce

Reconhecimento de entidades nomeadas em textos em português do Brasil no domínio do e-commerce Reconhecimento de entidades nomeadas em textos em português do Brasil no domínio do e-commerce Lucas Hochleitner da Silva 1,2, Helena de Medeiros Caseli 1 1 Departamento de Computação Universidade Federal

Leia mais

Aplicação de Ensembles de Classificadores na Detecção de Patologias na Coluna Vertebral

Aplicação de Ensembles de Classificadores na Detecção de Patologias na Coluna Vertebral Aplicação de Ensembles de Classificadores na Detecção de Patologias na Coluna Vertebral Hedenir M. Pinheiro Instituto de Informática Universidade Federal de Goiás (UFG) Caixa Postal 131 74001-970 Goiânia

Leia mais

Mineração de Dados Meteorológicos pela Teoria dos Conjuntos Aproximativos para Aplicação na Previsão de Precipitação Sazonal

Mineração de Dados Meteorológicos pela Teoria dos Conjuntos Aproximativos para Aplicação na Previsão de Precipitação Sazonal Anais do CNMAC v.2 ISSN 1984-820X Mineração de Dados Meteorológicos pela Teoria dos Conjuntos Aproximativos para Aplicação na Previsão de Precipitação Sazonal Juliana Aparecida Anochi Instituto Nacional

Leia mais

Meta-Aprendizado de Algoritmos de Treinamento para Redes Multi-Layer Perceptron

Meta-Aprendizado de Algoritmos de Treinamento para Redes Multi-Layer Perceptron Meta-Aprendizado de Algoritmos de Treinamento para Redes Multi-Layer Perceptron Silvio Guerra, Ricardo Prudêncio, Teresa Ludermir 1 Centro de Informática, Universidade Federal de Pernambuco Caixa Postal

Leia mais

Automatização do processo de determinação do número de ciclos de treinamento de uma Rede Neural Artificial

Automatização do processo de determinação do número de ciclos de treinamento de uma Rede Neural Artificial Automatização do processo de determinação do número de ciclos de treinamento de uma Rede Neural Artificial André Ricardo Gonçalves 1, Maria Angélica de Oliveira Camargo Brunetto 2 1,2 Laboratório de Pesquisa

Leia mais

APLICAÇÃO DE DATA MINING NA IDENTIFICAÇÃO DE PADRÕES EM CRIANÇAS RESPIRADORAS BUCAIS E NASAIS 1.

APLICAÇÃO DE DATA MINING NA IDENTIFICAÇÃO DE PADRÕES EM CRIANÇAS RESPIRADORAS BUCAIS E NASAIS 1. APLICAÇÃO DE DATA MINING NA IDENTIFICAÇÃO DE PADRÕES EM CRIANÇAS RESPIRADORAS BUCAIS E NASAIS 1. SQUIZANI, Cleonice Schell 2 ; MORALES, Yuri 2 ; VIEIRA, Sylvio André Garcia 2 1 Trabalho de pesquisa - UNIFRA

Leia mais

Análise de Sentimentos e Mineração de Links em uma Rede de Co-ocorrência de Hashtags

Análise de Sentimentos e Mineração de Links em uma Rede de Co-ocorrência de Hashtags Universidade Federal de Pernambuco Graduação em Ciência da Computação 2012.2 Análise de Sentimentos e Mineração de Links em uma Rede de Co-ocorrência de Hashtags Proposta de Trabalho de Graduação Aluno:

Leia mais

Web Data mining com R: aprendizagem de máquina

Web Data mining com R: aprendizagem de máquina Web Data mining com R: aprendizagem de máquina Fabrício Jailson Barth Faculdade BandTec e VAGAS Tecnologia Junho de 2013 Sumário O que é Aprendizagem de Máquina? Hierarquia de aprendizado. Exemplos de

Leia mais

Categorização de Textos baseada em Conceitos

Categorização de Textos baseada em Conceitos Pontifícia Universidade Católica do Rio Grande do Sul Faculdade de Informática Programa de Pós-Graduação em Ciência da Computação Encontro de PLN Categorização de Textos baseada em Conceitos Silvia Maria

Leia mais

Luiz Henrique Marino Cerqueira Faculdade de Engenharia de Computação CEATEC luiz.hmc@puccamp.edu.br

Luiz Henrique Marino Cerqueira Faculdade de Engenharia de Computação CEATEC luiz.hmc@puccamp.edu.br AVALIAÇÃO COMPARATIVA DE ALGORITMOS PARA SISTEMAS DE RECOMENDAÇÃO EM MÚLTIPLOS DOMÍNOS: PREVISÃO DO DESEMPENHO DE ESTUDANTES A PARTIR DE SUA INTERAÇÃO COM UM SISTEMA TUTOR. Luiz Henrique Marino Cerqueira

Leia mais

servidores Web com RapidMiner

servidores Web com RapidMiner Mineração de regras de associação em servidores Web com RapidMiner Fabrício J. Barth fabricio.barth@gmail.com Resumo Este texto apresenta o uso da ferramenta RapidMiner na mineração de regras de associação

Leia mais

Inteligência Artificial. Redes Neurais Artificiais

Inteligência Artificial. Redes Neurais Artificiais Curso de Especialização em Sistemas Inteligentes Aplicados à Automação Inteligência Artificial Redes Neurais Artificiais Aulas Práticas no Matlab João Marques Salomão Rodrigo Varejão Andreão Matlab Objetivos:

Leia mais

Classificação Automática dos Usuários da Rede Social Acadêmica Scientia.Net

Classificação Automática dos Usuários da Rede Social Acadêmica Scientia.Net Classificação Automática dos Usuários da Rede Social Acadêmica Scientia.Net Vinícius Ponte Machado 1, Bruno Vicente Alves de Lima 2, Heloína Alves Arnaldo 3, Sanches Wendyl Ibiapina Araújo 4 Departamento

Leia mais

Comparação entre as Redes Neurais Artificiais MLP, RBF e LVQ na Classificação de Dados. Fernando Nunes Bonifácio

Comparação entre as Redes Neurais Artificiais MLP, RBF e LVQ na Classificação de Dados. Fernando Nunes Bonifácio UNIOESTE Universidade Estadual do Oeste do Paraná CENTRO DE CIÊNCIAS EXATAS E TECNOLÓGICAS Colegiado de Ciência da Computação Curso de Bacharelado em Ciência da Computação Comparação entre as Redes Neurais

Leia mais

Projeto de Redes Neurais e MATLAB

Projeto de Redes Neurais e MATLAB Projeto de Redes Neurais e MATLAB Centro de Informática Universidade Federal de Pernambuco Sistemas Inteligentes IF684 Arley Ristar arrr2@cin.ufpe.br Thiago Miotto tma@cin.ufpe.br Baseado na apresentação

Leia mais

Uma aplicação de Inteligência Computacional e Estatística Clássica na Previsão do Mercado de Seguros de Automóveis Brasileiro

Uma aplicação de Inteligência Computacional e Estatística Clássica na Previsão do Mercado de Seguros de Automóveis Brasileiro Uma aplicação de Inteligência Computacional e Estatística Clássica na Previsão do Mercado de Seguros de Automóveis Brasileiro Tiago Mendes Dantas t.mendesdantas@gmail.com Departamento de Engenharia Elétrica,

Leia mais

Máquinas de comitê aplicadas ao problema da detecção do uso de capacete por motociclistas

Máquinas de comitê aplicadas ao problema da detecção do uso de capacete por motociclistas Máquinas de comitê aplicadas ao problema da detecção do uso de capacete por motociclistas Francisco Wender P. dos Reis 1, Kelson Rômulo T. Aires 1 1 Departamento de Computação Laboratório de Inteligência

Leia mais

Relatório Iniciação Científica

Relatório Iniciação Científica Relatório Iniciação Científica Ambientes Para Ensaios Computacionais no Ensino de Neurocomputação e Reconhecimento de Padrões Bolsa: Programa Ensinar com Pesquisa-Pró-Reitoria de Graduação Departamento:

Leia mais

Data Mining Software Weka. Software Weka. Software Weka 30/10/2012

Data Mining Software Weka. Software Weka. Software Weka 30/10/2012 Data Mining Software Weka Prof. Luiz Antonio do Nascimento Software Weka Ferramenta para mineração de dados. Weka é um Software livre desenvolvido em Java. Weka é um É um pássaro típico da Nova Zelândia.

Leia mais

Predição do Valor Econômico de uma Oportunidade Exploratória de Petróleo

Predição do Valor Econômico de uma Oportunidade Exploratória de Petróleo Predição do Valor Econômico de uma Oportunidade Exploratória de Petróleo Trabalho de Mestrado Marcos A. Affonso 1 (Aluno), Leila Andrade 2 (Orientador), Kate Revoredo 3 (Coorientador) Programa de pós-graduação

Leia mais

PROTÓTIPO DE SOFTWARE PARA APRENDIZAGEM DE REDES NEURAIS ARTIFICIAIS

PROTÓTIPO DE SOFTWARE PARA APRENDIZAGEM DE REDES NEURAIS ARTIFICIAIS Anais do XXXIV COBENGE. Passo Fundo: Ed. Universidade de Passo Fundo, Setembro de 2006. ISBN 85-7515-371-4 PROTÓTIPO DE SOFTWARE PARA APRENDIZAGEM DE REDES NEURAIS ARTIFICIAIS Rejane de Barros Araújo rdebarros_2000@yahoo.com.br

Leia mais

MINERAÇÃO DE DADOS EDUCACIONAIS: UM ESTUDO DE CASO APLICADO AO PROCESSO SELETIVO DO IFSULDEMINAS CÂMPUS MUZAMBINHO

MINERAÇÃO DE DADOS EDUCACIONAIS: UM ESTUDO DE CASO APLICADO AO PROCESSO SELETIVO DO IFSULDEMINAS CÂMPUS MUZAMBINHO MINERAÇÃO DE DADOS EDUCACIONAIS: UM ESTUDO DE CASO APLICADO AO PROCESSO SELETIVO DO IFSULDEMINAS CÂMPUS MUZAMBINHO Fernanda Delizete Madeira 1 ; Aracele Garcia de Oliveira Fassbinder 2 INTRODUÇÃO Data

Leia mais

Aula 02: Conceitos Fundamentais

Aula 02: Conceitos Fundamentais Aula 02: Conceitos Fundamentais Profa. Ms. Rosângela da Silva Nunes 1 de 26 Roteiro 1. Por que mineração de dados 2. O que é Mineração de dados 3. Processo 4. Que tipo de dados podem ser minerados 5. Que

Leia mais

Um IDS utilizando SNMP e Lógica Difusa

Um IDS utilizando SNMP e Lógica Difusa Grupo de Trabalho em Segurança GTS2007 Um IDS utilizando SNMP e Lógica Difusa Apresentador: Émerson Virti Autores: Émerson Virti, Liane Tarouco Índice 1. Motivação 2. Conceitos 3. IDS Proposto 4. Testes

Leia mais

AVALIAÇÃO DE TÉCNICAS DE FILTRAGEM COLABORATIVA

AVALIAÇÃO DE TÉCNICAS DE FILTRAGEM COLABORATIVA UNIVERSIDADE FEDERAL DE PERNAMBUCO GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO CENTRO DE INFORMÁTICA AVALIAÇÃO DE TÉCNICAS DE FILTRAGEM COLABORATIVA PARA SISTEMAS DE RECOMENDAÇÃO PROPOSTA DE TRABALHO DE GRADUAÇÃO

Leia mais

Laboratório de Mídias Sociais

Laboratório de Mídias Sociais Laboratório de Mídias Sociais Aula 02 Análise Textual de Mídias Sociais parte I Prof. Dalton Martins dmartins@gmail.com Gestão da Informação Universidade Federal de Goiás O que é Análise Textual? Análise

Leia mais

Análise de Técnicas Computacionais para Classificação de Emoções

Análise de Técnicas Computacionais para Classificação de Emoções Análise de Técnicas Computacionais para Classificação de Emoções Fabiano Alves, Eduardo Silva e Adilmar Coelho Dantas Faculdade de Computação Universidade Federal de Uberlândia, UFU Uberlândia, Brasil

Leia mais

Protótipo de um Sistema Móvel para a Extração de. Características em Fragmentos de Imagem de Tecido. Cólico

Protótipo de um Sistema Móvel para a Extração de. Características em Fragmentos de Imagem de Tecido. Cólico Protótipo de um Sistema Móvel para a Extração de Características em Fragmentos de Imagem de Tecido Cólico Application Prototype for Mobile Devices to Features Extraction in Image Fragments Colic Tissue

Leia mais

INF 1771 Inteligência Artificial

INF 1771 Inteligência Artificial Edirlei Soares de Lima INF 1771 Inteligência Artificial Aula 12 Aprendizado de Máquina Agentes Vistos Anteriormente Agentes baseados em busca: Busca cega Busca heurística Busca local

Leia mais

Paralelização do algoritmo SPRINT usando MyGrid

Paralelização do algoritmo SPRINT usando MyGrid Paralelização do algoritmo SPRINT usando MyGrid Juliana Carvalho, Ricardo Rebouças e Vasco Furtado Universidade de Fortaleza UNIFOR juliana@edu.unifor.br ricardo@sspds.ce.gov.br vasco@unifor.br 1. Introdução

Leia mais

Hierarquia de modelos e Aprendizagem de Máquina

Hierarquia de modelos e Aprendizagem de Máquina Hierarquia de modelos e Aprendizagem de Máquina Fabrício Jailson Barth BandTec Maio de 2015 Sumário Introdução: hierarquia de modelos e aprendizagem de máquina. O que é Aprendizagem de Máquina? Hierarquia

Leia mais

MARACATU. A component search tool. Especificação, Projeto e Implementação de uma Arquitetura para um Engenho de Busca de Componentes

MARACATU. A component search tool. Especificação, Projeto e Implementação de uma Arquitetura para um Engenho de Busca de Componentes MARACATU A component search tool Especificação, Projeto e Implementação de uma Arquitetura para um Engenho de Busca de Componentes Vinicius Cardoso Garcia July 29, 2005 Agenda Introdução Especificação

Leia mais

DIBSet: Um Detector de Intrusão por Anomalias Baseado em Séries Temporais

DIBSet: Um Detector de Intrusão por Anomalias Baseado em Séries Temporais VIII Simpósio Brasileiro em Segurança da Informação e de Sistemas Computacionais DIBSet: Um Detector de Intrusão por Anomalias Baseado em Séries Temporais Universidade Federal de Santa Maria Centro de

Leia mais

17/10/2012. dados? Processo. Doutorado em Engenharia de Produção Michel J. Anzanello. Doutorado EP - 2. Doutorado EP - 3.

17/10/2012. dados? Processo. Doutorado em Engenharia de Produção Michel J. Anzanello. Doutorado EP - 2. Doutorado EP - 3. Definição de Data Mining (DM) Mineração de Dados (Data Mining) Doutorado em Engenharia de Produção Michel J. Anzanello Processo de explorar grandes quantidades de dados à procura de padrões consistentes

Leia mais

Padronização de Processos: BI e KDD

Padronização de Processos: BI e KDD 47 Padronização de Processos: BI e KDD Nara Martini Bigolin Departamento da Tecnologia da Informação -Universidade Federal de Santa Maria 98400-000 Frederico Westphalen RS Brazil nara.bigolin@ufsm.br Abstract:

Leia mais

Aplicações Práticas com Redes Neurais Artificiais em Java

Aplicações Práticas com Redes Neurais Artificiais em Java com em Java Luiz D Amore e Mauro Schneider JustJava 2009 17 de Setembro de 2009 Palestrantes Luiz Angelo D Amore luiz.damore@metodista.br Mauro Ulisses Schneider mauro.schneider@metodista.br http://blog.mauros.org

Leia mais

Complemento II Noções Introdutória em Redes Neurais

Complemento II Noções Introdutória em Redes Neurais Complemento II Noções Introdutória em Redes Neurais Esse documento é parte integrante do material fornecido pela WEB para a 2ª edição do livro Data Mining: Conceitos, técnicas, algoritmos, orientações

Leia mais

MONITORAMENTO ON-LINE DE PROCESSOS DE USINAGEM VIA MEDIÇÃO DE VIBRAÇÕES

MONITORAMENTO ON-LINE DE PROCESSOS DE USINAGEM VIA MEDIÇÃO DE VIBRAÇÕES 16º POSMEC Universidade Federal de Uberlândia Faculdade de Engenharia Mecânica MONITORAMENTO ON-LINE DE PROCESSOS DE USINAGEM VIA MEDIÇÃO DE VIBRAÇÕES Tatiana Meola Universidade Federal de Uberlândia tatiana.meola@gmail.com

Leia mais

UNIVERSIDADE FEDERAL DE SANTA CATARINA

UNIVERSIDADE FEDERAL DE SANTA CATARINA UNIVERSIDADE FEDERAL DE SANTA CATARINA CIÊNCIAS DA COMPUTAÇÃO MÁQUINAS DE COMITÊ APLICADAS À FILTRAGEM DE SPAM Monografia submetida à UNIVERSIDADE FEDERAL DE SANTA CATARINA para a obtenção do grau de BACHAREL

Leia mais

UMA ABORDAGEM DE PODA PARA MÁQUINAS DE APRENDIZADO EXTREMO VIA ALGORITMOS GENÉTICOS

UMA ABORDAGEM DE PODA PARA MÁQUINAS DE APRENDIZADO EXTREMO VIA ALGORITMOS GENÉTICOS UMA ABORDAGEM DE PODA PARA MÁQUINAS DE APRENDIZADO EXTREMO VIA ALGORITMOS GENÉTICOS Alisson S. C. Alencar, Ajalmar R. da Rocha Neto Departamento de Computação, Instituto Federal do Ceará (IFCE). Programa

Leia mais

TÍTULO: PROPOSTA DE METODOLOGIA BASEADA EM REDES NEURAIS ARTIFICIAIS MLP PARA A PROTEÇÃO DIFERENCIAL DE TRANSFORMADORES DE POTÊNCIA

TÍTULO: PROPOSTA DE METODOLOGIA BASEADA EM REDES NEURAIS ARTIFICIAIS MLP PARA A PROTEÇÃO DIFERENCIAL DE TRANSFORMADORES DE POTÊNCIA TÍTULO: PROPOSTA DE METODOLOGIA BASEADA EM REDES NEURAIS ARTIFICIAIS MLP PARA A PROTEÇÃO DIFERENCIAL DE TRANSFORMADORES DE POTÊNCIA CATEGORIA: CONCLUÍDO ÁREA: ENGENHARIAS E ARQUITETURA SUBÁREA: ENGENHARIAS

Leia mais

Renato Maia Silva. Redes Neurais Artificiais aplicadas à Detecção de Intrusão em Redes TCP/IP. Dissertação de Mestrado

Renato Maia Silva. Redes Neurais Artificiais aplicadas à Detecção de Intrusão em Redes TCP/IP. Dissertação de Mestrado Renato Maia Silva Redes Neurais Artificiais aplicadas à Detecção de Intrusão em Redes TCP/IP Dissertação de Mestrado Dissertação apresentada como requisito parcial para obtenção do grau de Mestre pelo

Leia mais

Introdução a Datamining (previsão e agrupamento)

Introdução a Datamining (previsão e agrupamento) Introdução a Datamining (previsão e agrupamento) Victor Lobo Mestrado em Estatística e Gestão de Informação E o que fazer depois de ter os dados organizados? Ideias base Aprender com o passado Inferir

Leia mais

8 Bibliografia. ACEAUME, E. et al. On The Formal Specification of Group Membership Services. INRIA, 1995, 15 p. Relatório Técnico TR95-1534.

8 Bibliografia. ACEAUME, E. et al. On The Formal Specification of Group Membership Services. INRIA, 1995, 15 p. Relatório Técnico TR95-1534. Bibliografia 88 8 Bibliografia ACEAUME, E. et al. On The Formal Specification of Group Membership Services. INRIA, 1995, 15 p. Relatório Técnico TR95-1534. AMBRIOLA, V.; TORTORA, G. Advances in Software

Leia mais