Web Data Mining com R

Tamanho: px
Começar a partir da página:

Download "Web Data Mining com R"

Transcrição

1 Web Data Mining com R Fabrício J. Barth VAGAS Tecnologia e Faculdade BandTec Maio de 2014

2 Objetivo O objetivo desta palestra é apresentar conceitos sobre Web Data Mining, fluxo de trabalho e exemplos de tarefas de Web Data Mining utilizando o R. Web Data Mining com R Objetivo 2

3 Sumário Conceitos: web data mining, aprendizagem de máquina e a linguagem de programação R. Análise de mensagens do twitter usando algoritmos de agrupamento. Desenvolvimento de algoritmos anti-spam. Considerações finais. Referências. Web Data Mining com R Sumário 3

4 Conceitos 4

5 Web Data Mining A área de Web Data Mining tem como objetivo descobrir conhecimento útil a partir da estrutura dos hyperlinks da Web, conteúdo das páginas e log de utilização dos sites. Conceitos Web Data Mining 5

6 Descobrir conhecimento útil: Sintetizar informação: a partir de logs de servidores web, identificar qual é o caminho mais frequente de navegação dos usuários no site. a partir de notícias publicadas em veículos web, sumarizar os principais eventos do dia. Prescrever ações: a partir do histórico de candidaturas em vagas de um candidato, recomendar novas vagas para o mesmo. a partir de conteúdo previamente moderado, construir uma aplicação capaz de moderar conteúdo automaticamente. Conceitos Web Data Mining 6

7 Aprendizagem de máquina Aprendizagem Supervisionada Modelos preditivos Não supervisionada Modelos descritivos Classificação Regressão Sumarização Associação Agrupamento Conceitos Aprendizagem de máquina 7

8 Exemplo de dataset com classe Idade Miopia Astigmat. Lacrimej. Lentes jovem míope não reduzido nenhuma jovem míope não normal fraca jovem míope sim reduzido nenhuma jovem míope sim normal forte adulto míope não reduzido nenhuma Conceitos Exemplo de dataset com classe 8

9 Exemplo de modelo preditivo Conceitos Exemplo de modelo preditivo 9

10 Exemplos de aprendizagem não supervisionada Table 1: Exemplo de tabela com as transações dos usuários usuário categoria 1 categoria 2 categoria 3 categoriam user user user user usern Conceitos Exemplos de aprendizagem não supervisionada 10

11 Exemplo de identificação de grupos em redes sociais Conceitos Exemplo de identificação de grupos em redes sociais 11

12 Projeto R R Studio - É free É a linguagem de programação mais popular para análise de dados Script é melhor que clicar e arastar: É mais fácil de comunicar. Reproduzível. É necessário pensar mais sobre o problema. Existe uma quantia grande de pacotes disponíveis Conceitos Projeto R 12

13 Web Data Mining e dados não estruturados A área de Web Data Mining tem como objetivo descobrir conhecimento útil a partir da estrutura dos hyperlinks da Web, conteúdo das páginas e log de utilização dos sites. São todos dados não estruturados. Estes dados precisam ser pré-processados e convertidos em dados estruturados. Conceitos Web Data Mining e dados não estruturados 13

14 Análise de mensagens do twitter usando algoritmos de agrupamento 14

15 Componentes para uma solução... Fonte Coletor Pré-processamento dos documentos Agrupa documentos Agrupamentos de documentos Análise de mensagens do twitter usando algoritmos de agrupamento Componentes para uma solução... 15

16 Coletando dados do twitter com o R l i b r a r y ( t w i t t e R ) c r e d < OAuthFactory $new ( consumerkey= XXXX, c o n s u m e r S e c r e t= XXXX, requesturl= h t t p s : // a p i. t w i t t e r. com/ oauth / r e q u e s t token, accessurl= h t t p s : // a p i. t w i t t e r. com/ oauth / a c c e s s token, authurl= h t t p : // a p i. t w i t t e r. com/ oauth / a u t h o r i z e ) c r e d $ handshake ( ) r e g i s t e r T w i t t e r O A u t h ( c r e d ) dados < s e a r c h T w i t t e r ( e c o n o m i s t b r a s i l, n=250) d f < twlisttodf ( dados ) save ( df, f i l e =.. / data / e c o n o m i s t b r a s i l. rda ) Análise de mensagens do twitter usando algoritmos de agrupamento Coletando dados do twitter com o R 16

17 Formato de um documento... Esta disciplina tem como objetivo apresentar os principais conceitos da área de Inteligência Artificial, caracterizar as principais técnicas e métodos, e implementar alguns problemas clássicos desta área sob um ponto de vista introdutório. A estratégia de trabalho, o conteúdo ministrado e a forma dependerão dos projetos selecionados pelos alunos. Inicialmente, os alunos deverão trazer os seus Projetos de Conclusão de Curso, identificar intersecções entre o projeto e a disciplina, e propor atividades para a disciplina.... Análise de mensagens do twitter usando algoritmos de agrupamento Formato de um documento 17

18 Conjunto de Exemplos - Atributo/Valor Doc. apresent form tecnic caracteriz d d d d d d n Análise de mensagens do twitter usando algoritmos de agrupamento Conjunto de Exemplos - Atributo/Valor 18

19 Atributo/Valor usando vetores Como representar os documentos? di = (p i1, p i2,, pin) (1) Os atributos são as palavras que aparecem nos documentos. As palavras do texto precisam ser normalizadas: caixa baixa, remover acentuação, remover stop-words, aplicar algoritmos de steamming. Análise de mensagens do twitter usando algoritmos de agrupamento Atributo/Valor usando vetores 19

20 Remover stop-words Em todos os idiomas existem átomos (palavras) que não significam muito. Stop-words Esta disciplina tem como objetivo apresentar os principais conceitos da área de Inteligência Artificial, caracterizar as principais técnicas e métodos, e implementar alguns problemas clássicos desta área sob um ponto de vista introdutório. Análise de mensagens do twitter usando algoritmos de agrupamento Remover stop-words 20

21 Algoritmos de steamming Algumas palavras podem aparecer no texto de diversas maneiras: técnica, técnicas, implementar, implementação... Stemming - encontrar o radical da palavra e usar apenas o radical. Análise de mensagens do twitter usando algoritmos de agrupamento Algoritmos de steamming 21

22 Atributo/Valor usando vetores Já conhecemos os atributos. E os valores? Booleana - se a palavra aparece ou não no documento (1 ou 0) Por freqüência do termo - a freqüência com que a palavra aparece no documento (normalizada ou não) Ponderação tf-idf - o peso é proporcional ao número de ocorrências do termo no documento e inversamente proporcional ao número de documentos onde o termo aparece. Análise de mensagens do twitter usando algoritmos de agrupamento Atributo/Valor usando vetores 22

23 Por freqüência do termo (apresent,0.33) (form,0.33) (tecnic,0.33) (caracteriz,0.33) (projet,1.0) (introdutori,0.33) (objet,0.33) (inteligente,0.33) (conclusa,0.33) (selecion,0.33) (intersecco,0.33) (classic,0.33) (identific,0.33) (conceit,0.33) (trabalh,0.33) (disciplin,1.0) (traz,0.33) Análise de mensagens do twitter usando algoritmos de agrupamento Por freqüência do termo 23

24 Executando esta etapa no R Análise de mensagens do twitter usando algoritmos de agrupamento Executando esta etapa no R 24

25 Componentes para uma solução... Fonte Coletor Pré-processamento dos documentos Agrupa documentos Agrupamentos de documentos Análise de mensagens do twitter usando algoritmos de agrupamento Componentes para uma solução... 25

26 Algoritmos para Agrupamento 26

27 Definições de Algoritmos de Agrupamento O objetivo dos algoritmos de agrupamento é colocar os objetos similares em um mesmo grupo e objetos não similares em grupos diferentes. Normalmente, objetos são descritos e agrupados usando um conjunto de atributos e valores. Não existe nenhuma informação sobre a classe ou categoria dos objetos. Algoritmos para Agrupamento Definições de Algoritmos de Agrupamento 27

28 Algoritmos para Agrupamento - K-means K significa o número de agrupamentos (que deve ser informado à priori). Sequência de ações iterativas. A parada é baseada em algum critério de qualidade dos agrupamentos (por exemplo, similaridade média). Algoritmos para Agrupamento Algoritmos para Agrupamento - K-means 28

29 Algoritmo para Agrupamento - K-means (1) Objetos que devem ser agrupados (2) Sorteio dos pontos centrais dos agrupamentos (3) Atribuição dos objetos aos agrupamentos (4) Definição do centro do agrupamento Algoritmos para Agrupamento Algoritmo para Agrupamento - K-means 29

30 Algoritmo K-means A medida de distância pode ser a distância Euclidiana: x y = n (x i y i ) 2 (2) i=1 a função para computar o ponto central pode ser: µ = 1 M x C x (3) onde M é igual ao número de pontos no agrupamento C. Algoritmos para Agrupamento Algoritmo K-means 30

31 Algoritmos para Agrupamento 31

32 Como determinar o melhor k? A medida de distribuição dos pontos normalmente empregada é sum of squared errors. Algoritmos para Agrupamento Como determinar o melhor k? 32

33 Agrupamento de mensagens do twitter com o R Algoritmos para Agrupamento Agrupamento de mensagens do twitter com o R 33

34 Desenvolvimento de algoritmos anti-spam Algoritmos para Agrupamento Desenvolvimento de algoritmos anti-spam 34

35 Algoritmos para Agrupamento 35

36 Modelos preditivos para classificação Algoritmos para Agrupamento Modelos preditivos para classificação 36

37 Desenvolvimento de modelos preditivos para classificação Algoritmos para Agrupamento Desenvolvimento de modelos preditivos para classificação 37

38 Aprendizado de árvores de decisão Algoritmos para Agrupamento Aprendizado de árvores de decisão 38

39 Florestas de árvores de decisão Algoritmos para Agrupamento Florestas de árvores de decisão 39

40 Exemplo de classificação de Spam usando RandomForest Algoritmos para Agrupamento Exemplo de classificação de Spam usando RandomForest 40

41 Considerações finais Análise de mensagens do twitter Transformação de informação não-estruturada em estruturada. Uso do algoritmo k-means Este mesmo processo pode ser aplicado para outros problemas similares: análise de notícias, análise de patentes e artigos científicos. Algoritmos para Agrupamento Considerações finais 41

42 Desenvolvimento de algoritmos anti-spam Uso do algoritmo random forest. Como desenvolver e avaliar um modelo preditivo. Este mesmo processo pode ser aplicado para outros problemas similares, inclusive problemas de recomendação de itens. Algoritmos para Agrupamento Considerações finais 42

43 Material de consulta fbarth.net.br/materiais/docs/webminingrconalytics.pdf: link para os slides. tutorial apresentado no Mozilla Tech Day scripts em R para problemas de Aprendizagem de Máquina. Algoritmos para Agrupamento Material de consulta 43

44 Referências Bing Liu. Web Data Mining: exploring hyperlinks, contents, and usage data, Tom Mitchell. Machine Learning, Iah H. Witteh and Eibe Frank. Data Mining: Practical Machine Learning Tools and Techniques (Third Edition), Pang-Ning Tan, Michael Steinbach and Vipin Kumar. Introduction to Data Mining, Andrew Ng. Algoritmos para Agrupamento Referências 44

45 Andy and Matthew. Classification and regression by randomforest. R News, vol. 3, number 3, pages 18-22, Costa, H.; Merschmann, L. H. C.; Barth, F.; Benevenuto, F. Pollution, Bad-mouthing, and Local Marketing: The Underground of Location-based Social Networks. Information Sciences, RDataMining.com: Text Mining. Acessado em 14 de junho de Ingo Feinerer. Introduction to the tm Package: Text Mining in R. Acessado em 14 de junho de Algoritmos para Agrupamento Referências 45

46 Barth, F. J. Ferramentas para a detecção de grupos em Wikis. In: VII Simpósio Brasileiro de Sistemas Colaborativos, 2010, Belo Horizonte. Anais do VII Simpósio Brasileiro de Sistemas Colaborativos. IEEE Computer Society, v.ii. p Barth, F. J. ; Belderrain, M. C. R. ; Quadros, N. L. P. ; Ferreira, L. L. ; Timoszczuk, A. P.. Recuperação e mineração de informações para a área criminal. In: VI Encontro Nacional de Inteligência Artificial, 2007, Rio de Janeiro. Anais do XXVII Congresso da SBC, Algoritmos para Agrupamento Referências 46

Disciplina de Text Mining

Disciplina de Text Mining Disciplina de Text Mining Fabrício J. Barth fabricio.barth@gmail.com Pós Graduação em Big Data - Faculdade BandTec Novembro de 2015 Objetivo O objetivo deste curso é apresentar a área de Text Mining. Serão

Leia mais

Data, Text and Web Mining

Data, Text and Web Mining Data, Text and Web Mining Fabrício J. Barth TerraForum Consultores Junho de 2010 Objetivo Apresentar a importância do tema, os conceitos relacionados e alguns exemplos de aplicações. Data, Text and Web

Leia mais

Fabrício J. Barth. Apontador http://www.apontador.com.br http://www.apontador.com.br/institucional/ fabricio.barth@lbslocal.com

Fabrício J. Barth. Apontador http://www.apontador.com.br http://www.apontador.com.br/institucional/ fabricio.barth@lbslocal.com Uma Introdução à Mineração de Informações Fabrício J. Barth Apontador http://www.apontador.com.br http://www.apontador.com.br/institucional/ fabricio.barth@lbslocal.com Outubro de 2010 Objetivo Apresentar

Leia mais

Web Data mining com R: aprendizagem de máquina

Web Data mining com R: aprendizagem de máquina Web Data mining com R: aprendizagem de máquina Fabrício Jailson Barth Faculdade BandTec e VAGAS Tecnologia Junho de 2013 Sumário O que é Aprendizagem de Máquina? Hierarquia de aprendizado. Exemplos de

Leia mais

Hierarquia de modelos e Aprendizagem de Máquina

Hierarquia de modelos e Aprendizagem de Máquina Hierarquia de modelos e Aprendizagem de Máquina Fabrício Jailson Barth BandTec Maio de 2015 Sumário Introdução: hierarquia de modelos e aprendizagem de máquina. O que é Aprendizagem de Máquina? Hierarquia

Leia mais

Informações na era do Big Data

Informações na era do Big Data Uma Introdução à Mineração de Informações na era do Big Data Fabrício J. Barth VAGAS Tecnologia e Faculdades BandTec Setembro de 2012 Palestrante Fabrício J. Barth. Formado em Ciência da Computação pela

Leia mais

Web Data Mining com R: design de projetos para criação de modelos preditivos

Web Data Mining com R: design de projetos para criação de modelos preditivos Web Data Mining com R: design de projetos para criação de modelos preditivos Fabrício Jailson Barth Faculdade BandTec e VAGAS Tecnologia Junho de 2013 Sumário e Objetivos Etapas em estudos preditivos Escolha

Leia mais

Algoritmos Indutores de Árvores de

Algoritmos Indutores de Árvores de Algoritmos Indutores de Árvores de Decisão Fabrício J. Barth Sistemas Inteligentes Análise e Desenvolvimento de Sistemas Faculdades de Tecnologia Bandeirantes Abril de 2013 Problema: Diagnóstico para uso

Leia mais

servidores Web com RapidMiner

servidores Web com RapidMiner Mineração de regras de associação em servidores Web com RapidMiner Fabrício J. Barth fabricio.barth@gmail.com Resumo Este texto apresenta o uso da ferramenta RapidMiner na mineração de regras de associação

Leia mais

Algoritmos de Agrupamento - Aprendizado Não Supervisionado. Fabrício Jailson Barth

Algoritmos de Agrupamento - Aprendizado Não Supervisionado. Fabrício Jailson Barth Algoritmos de Agrupamento - Aprendizado Não Supervisionado Fabrício Jailson Barth Abril de 2013 Sumário Introdução e Definições Aplicações Algoritmos de Agrupamento Agrupamento Plano Agrupamento Hierárquico

Leia mais

MINERAÇÃO DE DADOS APLICADA. Pedro Henrique Bragioni Las Casas pedro.lascasas@dcc.ufmg.br

MINERAÇÃO DE DADOS APLICADA. Pedro Henrique Bragioni Las Casas pedro.lascasas@dcc.ufmg.br MINERAÇÃO DE DADOS APLICADA Pedro Henrique Bragioni Las Casas pedro.lascasas@dcc.ufmg.br Processo Weka uma Ferramenta Livre para Data Mining O que é Weka? Weka é um Software livre do tipo open source para

Leia mais

Prof. Msc. Paulo Muniz de Ávila

Prof. Msc. Paulo Muniz de Ávila Prof. Msc. Paulo Muniz de Ávila O que é Data Mining? Mineração de dados (descoberta de conhecimento em bases de dados): Extração de informação interessante (não-trivial, implícita, previamente desconhecida

Leia mais

DWARF DATAMINER: UMA FERRAMENTA GENÉRICA PARA MINERAÇÃO DE DADOS

DWARF DATAMINER: UMA FERRAMENTA GENÉRICA PARA MINERAÇÃO DE DADOS DWARF DATAMINER: UMA FERRAMENTA GENÉRICA PARA MINERAÇÃO DE DADOS Tácio Dias Palhão Mendes Bacharelando em Sistemas de Informação Bolsista de Iniciação Científica da FAPEMIG taciomendes@yahoo.com.br Prof.

Leia mais

Aprendizagem de Máquina

Aprendizagem de Máquina Aprendizagem de Máquina Professor: Rosalvo Ferreira de Oliveira Neto Disciplina: Inteligência Artificial Tópicos 1. Definições 2. Tipos de aprendizagem 3. Paradigmas de aprendizagem 4. Modos de aprendizagem

Leia mais

Data Mining. Origem do Data Mining 24/05/2012. Data Mining. Prof Luiz Antonio do Nascimento

Data Mining. Origem do Data Mining 24/05/2012. Data Mining. Prof Luiz Antonio do Nascimento Data Mining Prof Luiz Antonio do Nascimento Data Mining Ferramenta utilizada para análise de dados para gerar, automaticamente, uma hipótese sobre padrões e anomalias identificadas para poder prever um

Leia mais

Tarefas e Técnicas de Mineração de Dados TAREFAS E TÉCNICAS DE MINERAÇÃO DE DADOS

Tarefas e Técnicas de Mineração de Dados TAREFAS E TÉCNICAS DE MINERAÇÃO DE DADOS Tarefas e Técnicas de Mineração de Dados TAREFAS E TÉCNICAS DE MINERAÇÃO DE DADOS Sumário Conceitos / Autores chave... 3 1. Introdução... 3 2. Tarefas desempenhadas por Técnicas de 4 Mineração de Dados...

Leia mais

Processamento de dados [no R] Fabrício Jailson Barth

Processamento de dados [no R] Fabrício Jailson Barth Processamento de dados [no R] Fabrício Jailson Barth Março de 2013 Sumário Projeto R O que são dados? Raw data versus dado tratado. Representação de dados no R. Processamento de dados [no R] Sumário 2

Leia mais

Experimentos de Mineração de Dados em R Disciplina do curso de Pós-Graduação da UTFPR

Experimentos de Mineração de Dados em R Disciplina do curso de Pós-Graduação da UTFPR Experimentos de Mineração de Dados em R Disciplina do curso de Pós-Graduação da UTFPR Paulo Carvalho Diniz Junior CPGEI / UTFPR Avenida Sete de Setembro, 3165 Curitiba-PR - CEP 80.230-910 E-mail: paulo.carvalho.diniz@gmail.com

Leia mais

Data Mining II Modelos Preditivos

Data Mining II Modelos Preditivos Data Mining II Modelos Preditivos Prof. Doutor Victor Lobo Mestre André Melo Mestrado em Estatística e Gestão de Informação Objectivo desta disciplina Fazer previsões a partir de dados. Conhecer os principais

Leia mais

Tópicos Especiais: INTELIGÊNCIA DE NEGÓCIOS II. Mineração de Dados. Sylvio Barbon Junior barbon@uel.br. 26 de junho de 2015 DC-UEL Sylvio Barbon Jr 1

Tópicos Especiais: INTELIGÊNCIA DE NEGÓCIOS II. Mineração de Dados. Sylvio Barbon Junior barbon@uel.br. 26 de junho de 2015 DC-UEL Sylvio Barbon Jr 1 Tópicos Especiais: INTELIGÊNCIA DE NEGÓCIOS II Mineração de Dados Sylvio Barbon Junior barbon@uel.br 26 de junho de 2015 DC-UEL Sylvio Barbon Jr 1 Sumário Etapa I Etapa II Inteligência de Negócios Visão

Leia mais

Mineração de Dados. Prof. Júlio Cesar Nievola Especialização em Inteligência Computacional PPGIA - PUCPR

Mineração de Dados. Prof. Júlio Cesar Nievola Especialização em Inteligência Computacional PPGIA - PUCPR Mineração de Dados PPGIA - PUCPR Agenda 1. Histórico 2. Definições e Características 3. Processo e Tarefas de DM 4. Pré-Processamento 5. Representação do Conhecimento 6. Principais Tarefas 7. Procedimentos

Leia mais

04/03/2013. Gerenciamento de Dados e Informação. Recuperação de Dado X Informação. Histórico

04/03/2013. Gerenciamento de Dados e Informação. Recuperação de Dado X Informação. Histórico Recuperação de Dado X Informação Gerenciamento de Dados e Informação Fernando Fonseca Ana Carolina Robson Fidalgo Comparação (matching) Recuperação de Dados Exata Recuperação de Informação Aproximada Dados

Leia mais

TI, Big Data e Recrutamento & Seleção

TI, Big Data e Recrutamento & Seleção Objetivo TI, e Recrutamento & Seleção Fabrício J. Barth Mostrar o impacto da tecnologia da informação (TI) e do Big Data no processo de recrutamento & seleção (R&S). 2 Sumário O processo de R&S sem suporte

Leia mais

Aprendizado de classificadores das ementas da Jurisprudência do Tribunal Regional do Trabalho da 2ª. Região - SP

Aprendizado de classificadores das ementas da Jurisprudência do Tribunal Regional do Trabalho da 2ª. Região - SP Aprendizado de classificadores das ementas da Jurisprudência do Tribunal Regional do Trabalho da 2ª. Região - SP Thiago Ferauche, Maurício Amaral de Almeida Laboratório de Pesquisa em Ciência de Serviços

Leia mais

Extração de Árvores de Decisão com a Ferramenta de Data Mining Weka

Extração de Árvores de Decisão com a Ferramenta de Data Mining Weka Extração de Árvores de Decisão com a Ferramenta de Data Mining Weka 1 Introdução A mineração de dados (data mining) pode ser definida como o processo automático de descoberta de conhecimento em bases de

Leia mais

textos documentos semi-estruturado

textos documentos semi-estruturado 1 Mineração de Textos Os estudos em Aprendizado de Máquina normalmente trabalham com dados estruturados Entretanto, uma grande quantidade de informação é armazenada em textos, que são dados semiestruturados

Leia mais

Contexto de Big Data, Ciência de Dados e KDD

Contexto de Big Data, Ciência de Dados e KDD Contexto de Big Data, Ciência de Dados e KDD Fabrício J. Barth! Disciplina de Modelagem Descritiva e Preditiva! Pós-Graduação em Big Data e Analytics 100 10 quantidade de informações Sempre houve:!! Produção

Leia mais

PROCESSAMENTO TEXTUAL EM PÁGINAS DA WEB

PROCESSAMENTO TEXTUAL EM PÁGINAS DA WEB PROCESSAMENTO TEXTUAL EM PÁGINAS DA WEB Aluno: Pedro Lazéra Cardoso Orientador: Eduardo Sany Laber Antecedentes Na primeira fase da Iniciação Científica, o aluno deu continuidade ao projeto que estava

Leia mais

Aplicação de técnicas de Mineração de Dados para descoberta de padrões na Web Motivações:

Aplicação de técnicas de Mineração de Dados para descoberta de padrões na Web Motivações: Aplicação de técnicas de Mineração de Dados para descoberta de padrões na Web Motivações: Encontrar informação relevante Gerar conhecimento a partir da informação disponível na Web Personalizar a informação

Leia mais

Aprendizagem de Máquina

Aprendizagem de Máquina Aprendizagem de Máquina Alessandro L. Koerich Programa de Pós-Graduação em Informática Pontifícia Universidade Católica do Paraná (PUCPR) Horários Aulas Sala [quinta-feira, 7:30 12:00] Atendimento Segunda

Leia mais

ADM041 / EPR806 Sistemas de Informação

ADM041 / EPR806 Sistemas de Informação ADM041 / EPR806 Sistemas de Informação UNIFEI Universidade Federal de Itajubá Prof. Dr. Alexandre Ferreira de Pinho 1 Sistemas de Apoio à Decisão (SAD) Tipos de SAD Orientados por modelos: Criação de diferentes

Leia mais

Extração de conteúdo em páginas da web

Extração de conteúdo em páginas da web Departamento de Informática Extração de conteúdo em páginas da web Aluno: Pedro Lazéra Cardoso Orientador: Eduardo Sany Laber Antecedentes Na primeira fase da Iniciação Científica, foi realizado um estudo

Leia mais

Otimização de Recuperação de Informação usando Algoritmos Genéticos

Otimização de Recuperação de Informação usando Algoritmos Genéticos Otimização de Recuperação de Informação usando Algoritmos Genéticos Neide de Oliveira Gomes, M. Sc., nog@inpi.gov.br Prof. Marco Aurélio C. Pacheco, PhD Programa de Doutorado na área de Métodos de Apoio

Leia mais

Extração Automática de Palavras-chave de Textos da Língua Portuguesa

Extração Automática de Palavras-chave de Textos da Língua Portuguesa Extração Automática de Palavras-chave de Textos da Língua Portuguesa Maria Abadia Lacerda Dias, Marcelo de Gomensoro Malheiros Centro Universitário UNIVATES Lajeado RS Brasil {mald,mgm}@univates.br Abstract.

Leia mais

Utilização de Técnicas de Mineração de Dados como Auxílio na Detecção de Cartéis em Licitações Carlos Vinícius Sarmento Silva Célia Ghedini Ralha

Utilização de Técnicas de Mineração de Dados como Auxílio na Detecção de Cartéis em Licitações Carlos Vinícius Sarmento Silva Célia Ghedini Ralha WCGE II Workshop de Computação Aplicada em Governo Eletrônico Utilização de Técnicas de Mineração de Dados como Auxílio na Detecção de Cartéis em Licitações Carlos Vinícius Sarmento Silva Célia Ghedini

Leia mais

Laboratório de Mídias Sociais

Laboratório de Mídias Sociais Laboratório de Mídias Sociais Aula 02 Análise Textual de Mídias Sociais parte I Prof. Dalton Martins dmartins@gmail.com Gestão da Informação Universidade Federal de Goiás O que é Análise Textual? Análise

Leia mais

INTELIGÊNCIA ARTIFICIAL Data Mining (DM): um pouco de prática. (1) Data Mining Conceitos apresentados por

INTELIGÊNCIA ARTIFICIAL Data Mining (DM): um pouco de prática. (1) Data Mining Conceitos apresentados por INTELIGÊNCIA ARTIFICIAL Data Mining (DM): um pouco de prática (1) Data Mining Conceitos apresentados por 1 2 (2) ANÁLISE DE AGRUPAMENTOS Conceitos apresentados por. 3 LEMBRE-SE que PROBLEMA em IA Uma busca

Leia mais

UTILIZANDO O SOFTWARE WEKA

UTILIZANDO O SOFTWARE WEKA UTILIZANDO O SOFTWARE WEKA O que é 2 Weka: software livre para mineração de dados Desenvolvido por um grupo de pesquisadores Universidade de Waikato, Nova Zelândia Também é um pássaro típico da Nova Zelândia

Leia mais

Análise de Sentimentos e Mineração de Links em uma Rede de Co-ocorrência de Hashtags

Análise de Sentimentos e Mineração de Links em uma Rede de Co-ocorrência de Hashtags Universidade Federal de Pernambuco Graduação em Ciência da Computação 2012.2 Análise de Sentimentos e Mineração de Links em uma Rede de Co-ocorrência de Hashtags Proposta de Trabalho de Graduação Aluno:

Leia mais

Mineração de Dados: Introdução e Aplicações

Mineração de Dados: Introdução e Aplicações Mineração de Dados: Introdução e Aplicações Luiz Henrique de Campos Merschmann Departamento de Computação Universidade Federal de Ouro Preto luizhenrique@iceb.ufop.br Apresentação Luiz Merschmann Engenheiro

Leia mais

Aprendizagem de Máquina. Ivan Medeiros Monteiro

Aprendizagem de Máquina. Ivan Medeiros Monteiro Aprendizagem de Máquina Ivan Medeiros Monteiro Definindo aprendizagem Dizemos que um sistema aprende se o mesmo é capaz de melhorar o seu desempenho a partir de suas experiências anteriores. O aprendizado

Leia mais

Gestão do Conhecimento: Extração de Informações do Banco de Dados de um Supermercado

Gestão do Conhecimento: Extração de Informações do Banco de Dados de um Supermercado Gestão do Conhecimento: Extração de Informações do Banco de Dados de um Supermercado Alessandro Ferreira Brito 1, Rodrigo Augusto R. S. Baluz 1, Jean Carlo Galvão Mourão 1, Francisco das Chagas Rocha 2

Leia mais

Extração de Conhecimento & Mineração de Dados

Extração de Conhecimento & Mineração de Dados Extração de Conhecimento & Mineração de Dados Nesta apresentação é dada uma breve introdução à Extração de Conhecimento e Mineração de Dados José Augusto Baranauskas Departamento de Física e Matemática

Leia mais

CLIPPING. Thiago A. S. Pardo

CLIPPING. Thiago A. S. Pardo CLIPPING Thiago A. S. Pardo 19/10/2012 DEFINIÇÕES DEFINIÇÃO Verbo clip, do inglês cortar/recortar Seleção de notícias e artigos retirados de jornais, revistas, sites e demais veículos de imprensa, como

Leia mais

KDD UMA VISAL GERAL DO PROCESSO

KDD UMA VISAL GERAL DO PROCESSO KDD UMA VISAL GERAL DO PROCESSO por Fernando Sarturi Prass 1 1.Introdução O aumento das transações comerciais por meio eletrônico, em especial as feitas via Internet, possibilitou as empresas armazenar

Leia mais

Mineração de dados em triagem de risco de saúde

Mineração de dados em triagem de risco de saúde Mineração de dados em triagem de risco de saúde Thales Vaz Maciel 1 ; Vinicius Rosa Seus 2 ; Karina dos Santos Machado 3 ; Eduardo Nunes Borges 4 1234 Centro de Ciências Computacionais, Fundação Universidade

Leia mais

Data Mining: Ferramenta JAVA

Data Mining: Ferramenta JAVA Data Mining: Ferramenta JAVA JAVA para Data Mining Weka 3: Data Mining Software em Java http://www.cs.waikato.ac.nz/ml/weka/ Coleção de algoritmos para as tarefas de data mining; Free software. WEKA: JAVA

Leia mais

IMPLEMENTAÇÃO DE UM ALGORITMO DE PADRÕES DE SEQUÊNCIA PARA DESCOBERTA DE ASSOCIAÇÕES ENTRE PRODUTOS DE UMA BASE DE DADOS REAL

IMPLEMENTAÇÃO DE UM ALGORITMO DE PADRÕES DE SEQUÊNCIA PARA DESCOBERTA DE ASSOCIAÇÕES ENTRE PRODUTOS DE UMA BASE DE DADOS REAL Universidade Federal de Ouro Preto - UFOP Instituto de Ciências Exatas e Biológicas - ICEB Departamento de Computação - DECOM IMPLEMENTAÇÃO DE UM ALGORITMO DE PADRÕES DE SEQUÊNCIA PARA DESCOBERTA DE ASSOCIAÇÕES

Leia mais

SISTEMAS DE APRENDIZADO PARA A IDENTIFICAÇÃO DO NÚMERO DE CAROÇOS DO FRUTO PEQUI LEARNING SYSTEMS FOR IDENTIFICATION OF PEQUI FRUIT SEEDS NUMBER

SISTEMAS DE APRENDIZADO PARA A IDENTIFICAÇÃO DO NÚMERO DE CAROÇOS DO FRUTO PEQUI LEARNING SYSTEMS FOR IDENTIFICATION OF PEQUI FRUIT SEEDS NUMBER SISTEMAS DE APRENDIZADO PARA A IDENTIFICAÇÃO DO NÚMERO DE CAROÇOS DO FRUTO PEQUI Fernando Luiz de Oliveira 1 Thereza Patrícia. P. Padilha 1 Conceição A. Previero 2 Leandro Maciel Almeida 1 RESUMO O processo

Leia mais

Estudo e Análise da Base de Dados do Portal Corporativo da Sexta Região da Polícia Militar com vista à aplicação de Técnicas de Mineração de Dados1

Estudo e Análise da Base de Dados do Portal Corporativo da Sexta Região da Polícia Militar com vista à aplicação de Técnicas de Mineração de Dados1 Estudo e Análise da Base de Dados do Portal Corporativo da Sexta Região da Polícia Militar com vista à aplicação de Técnicas de Mineração de Dados1 Rafaela Giroto, 10º módulo de Ciência da Computação,

Leia mais

Unidade III PLANEJAMENTO ESTRATÉGICO DE. Prof. Daniel Arthur Gennari Junior

Unidade III PLANEJAMENTO ESTRATÉGICO DE. Prof. Daniel Arthur Gennari Junior Unidade III PLANEJAMENTO ESTRATÉGICO DE TECNOLOGIA DA INFORMAÇÃO Prof. Daniel Arthur Gennari Junior Sobre esta aula Gestão do conhecimento e inteligência Corporativa Conceitos fundamentais Aplicações do

Leia mais

Extensão do WEKA para Métodos de Agrupamento com Restrição de Contigüidade

Extensão do WEKA para Métodos de Agrupamento com Restrição de Contigüidade Extensão do WEKA para Métodos de Agrupamento com Restrição de Contigüidade Carlos Eduardo R. de Mello, Geraldo Zimbrão da Silva, Jano M. de Souza Programa de Engenharia de Sistemas e Computação Universidade

Leia mais

Configuração do Mac Mail para Exchange. Configuração do aplicativo Mail do Mac OS X para o novo sistema de e-mail da UTAD

Configuração do Mac Mail para Exchange. Configuração do aplicativo Mail do Mac OS X para o novo sistema de e-mail da UTAD Configuração do aplicativo Mail do Mac OS X para o novo sistema de e-mail da UTAD Equipa de Sistemas SIC UTAD Julho 2010 Índice de conteúdos Notas iniciais...1 Adicionar a conta...2 Informações Gerais...4

Leia mais

Data Mining: Conceitos e Técnicas

Data Mining: Conceitos e Técnicas Data Mining: Conceitos e Técnicas DM, DW e OLAP Data Warehousing e OLAP para Data Mining O que é data warehouse? De data warehousing para data mining Data Warehousing e OLAP para Data Mining Data Warehouse:

Leia mais

USANDO O ROUNDCUBE WEBMAIL

USANDO O ROUNDCUBE WEBMAIL USANDO O ROUNDCUBE WEBMAIL ATENÇÃO! Para utilizar este tutorial não se esqueça: Onde estiver escrito seusite.com.br substitua pelo ENDEREÇO do seu site (domínio). Ex.: Se o endereço do seu site é casadecarnessilva.net

Leia mais

Observatório da Web: Uma Plataforma para Monitoramento de Eventos em Tempo Real. Gisele L. Pappa glpappa@dcc.ufmg.br Outubro/2013

Observatório da Web: Uma Plataforma para Monitoramento de Eventos em Tempo Real. Gisele L. Pappa glpappa@dcc.ufmg.br Outubro/2013 Observatório da Web: Uma Plataforma para Monitoramento de Eventos em Tempo Real Gisele L. Pappa glpappa@dcc.ufmg.br Outubro/2013 Observatório da Web Transforma, em tempo real, grandes volumes de dados

Leia mais

Clustering - agrupamento. Baseado no capítulo 8 de. Introduction to Data Mining

Clustering - agrupamento. Baseado no capítulo 8 de. Introduction to Data Mining Clustering - agrupamento Baseado no capítulo 8 de Introduction to Data Mining de Tan, Steinbach, Kumar Clustering - agrupamento 1 O que é Clustering? Encontar grupos de objectos tal que os objectos dentro

Leia mais

Curso Superior de Tecnologia em Banco de Dados Disciplina: Projeto de Banco de Dados Relacional II Prof.: Fernando Hadad Zaidan

Curso Superior de Tecnologia em Banco de Dados Disciplina: Projeto de Banco de Dados Relacional II Prof.: Fernando Hadad Zaidan Faculdade INED Curso Superior de Tecnologia em Banco de Dados Disciplina: Projeto de Banco de Dados Relacional II Prof.: Fernando Hadad Zaidan 1 Unidade 4.5 2 1 BI BUSINESS INTELLIGENCE BI CARLOS BARBIERI

Leia mais

Pós-Graduação em Engenharia Elétrica Inteligência Artificial

Pós-Graduação em Engenharia Elétrica Inteligência Artificial Pós-Graduação em Engenharia Elétrica Inteligência Artificial João Marques Salomão Rodrigo Varejão Andreão Inteligência Artificial Definição (Fonte: AAAI ): "the scientific understanding of the mechanisms

Leia mais

5º PRÊMIO CHICO RIBEIRO DE INFORMAÇÃO DE CUSTOS E QUALIDADE DO GASTO NO SETOR PÚBLICO 2015 CATEGORIA: PROFISSIONAIS

5º PRÊMIO CHICO RIBEIRO DE INFORMAÇÃO DE CUSTOS E QUALIDADE DO GASTO NO SETOR PÚBLICO 2015 CATEGORIA: PROFISSIONAIS 5º PRÊMIO CHICO RIBEIRO DE INFORMAÇÃO DE CUSTOS E QUALIDADE DO GASTO NO SETOR PÚBLICO 2015 CATEGORIA: PROFISSIONAIS TEMA: TEMA 3 ABORDAGEM TECNOLÓGICA (TI) USO DE MINERAÇÃO DE DADOS E TEXTOS PARA CÁLCULO

Leia mais

4. Que tipos de padrões podem ser minerados. 5. Critérios de classificação de sistemas de Data Mining. 6. Tópicos importantes de estudo em Data Mining

4. Que tipos de padrões podem ser minerados. 5. Critérios de classificação de sistemas de Data Mining. 6. Tópicos importantes de estudo em Data Mining Curso de Data Mining - Aula 1 1. Como surgiu 2. O que é 3. Em que tipo de dados pode ser aplicado 4. Que tipos de padrões podem ser minerados 5. Critérios de classificação de sistemas de Data Mining 6.

Leia mais

Sumário. Mineração de Dados aplicada à Gestão de Negócios. 1) Mineração de Dados

Sumário. Mineração de Dados aplicada à Gestão de Negócios. 1) Mineração de Dados Aula 1 Introdução -Mineração de Dados Prof. Dr. Sylvio Barbon Junior barbon@uel.br Sumário 1) Mineração de Dados 1) Atividades Relacionadas; 2) Desafios; 3) Exemplos de aplicativos; 4) Últimos assuntos;

Leia mais

FERRAMENTAS DE COLABORAÇÃO CORPORATIVA

FERRAMENTAS DE COLABORAÇÃO CORPORATIVA FERRAMENTAS DE COLABORAÇÃO CORPORATIVA Manual de Utilização Google Grupos Sumário (Clique sobre a opção desejada para ir direto à página correspondente) Utilização do Google Grupos Introdução... 3 Página

Leia mais

Aplicação de Técnicas de Mineração de Dados no Processo de Aprendizagem na Educação a Distância

Aplicação de Técnicas de Mineração de Dados no Processo de Aprendizagem na Educação a Distância Aplicação de Técnicas de Mineração de Dados no Processo de Aprendizagem na Educação a Distância Maxwel Macedo Dias 1, Luiz Alberto da Silva Filho 2, Adriano Del Pino Lino 1, Eloi Luiz Favero 2, Edson Marcos

Leia mais

Universidade Federal de Santa Catarina. Text Mining. Data Mining INE5644

Universidade Federal de Santa Catarina. Text Mining. Data Mining INE5644 Universidade Federal de Santa Catarina Text Mining Data Mining INE5644 Augusto Fredigo Hack Luis Felipe Nunes Matheus Hoffmann Silva Thiago Thalison Firmino de Lima Florianópolis, 19 de outrubro de 2013

Leia mais

Sistema Tutor Inteligente baseado em Agentes. Pedagógicas da Universidade Aberta do Piauí. Prof. Dr. Vinicius Ponte Machado

Sistema Tutor Inteligente baseado em Agentes. Pedagógicas da Universidade Aberta do Piauí. Prof. Dr. Vinicius Ponte Machado Sistema Tutor Inteligente baseado em Agentes na Plataforma MOODLE para Apoio às Atividades Pedagógicas da Universidade Aberta do Piauí Prof. Dr. Vinicius Ponte Machado Parnaíba, 14 de Novembro de 2012

Leia mais

Gestão da Informação. Gestão da Informação. AULA 3 Data Mining

Gestão da Informação. Gestão da Informação. AULA 3 Data Mining Gestão da Informação AULA 3 Data Mining Prof. Edilberto M. Silva Gestão da Informação Agenda Unidade I - DM (Data Mining) Definição Objetivos Exemplos de Uso Técnicas Tarefas Unidade II DM Prático Exemplo

Leia mais

Programação Web Prof. Wladimir

Programação Web Prof. Wladimir Programação Web Prof. Wladimir Linguagem de Script e PHP @wre2008 1 Sumário Introdução; PHP: Introdução. Enviando dados para o servidor HTTP; PHP: Instalação; Formato básico de um programa PHP; Manipulação

Leia mais

VERIFICAÇÃO DA APRENDIZAGEM DE UNIVERSITÁRIOS QUE USARAM UM SOFTWARE EDUCATIVO SOBRE LÓGICA

VERIFICAÇÃO DA APRENDIZAGEM DE UNIVERSITÁRIOS QUE USARAM UM SOFTWARE EDUCATIVO SOBRE LÓGICA VERIFICAÇÃO DA APRENDIZAGEM DE UNIVERSITÁRIOS QUE USARAM UM SOFTWARE EDUCATIVO SOBRE LÓGICA Resumo Elaine Pasqualini 1 - FATEC-OURINHOS Sílvia H. de Oliveira Santos 2 - FATEC-OURINHOS Viviane de F. Bartholo

Leia mais

Universidade Tecnológica Federal do Paraná UTFPR Programa de Pós-Graduação em Computação Aplicada Disciplina de Mineração de Dados

Universidade Tecnológica Federal do Paraná UTFPR Programa de Pós-Graduação em Computação Aplicada Disciplina de Mineração de Dados Universidade Tecnológica Federal do Paraná UTFPR Programa de Pós-Graduação em Computação Aplicada Disciplina de Mineração de Dados Prof. Celso Kaestner Poker Hand Data Set Aluno: Joyce Schaidt Versão:

Leia mais

Clustering: K-means and Aglomerative

Clustering: K-means and Aglomerative Universidade Federal de Pernambuco UFPE Centro de Informática Cin Pós-graduação em Ciência da Computação U F P E Clustering: K-means and Aglomerative Equipe: Hugo, Jeandro, Rhudney e Tiago Professores:

Leia mais

Organizaçãoe Recuperação de Informação GSI521. Prof. Rodrigo Sanches Miani FACOM/UFU

Organizaçãoe Recuperação de Informação GSI521. Prof. Rodrigo Sanches Miani FACOM/UFU Organizaçãoe Recuperação de Informação GSI521 Prof. Rodrigo Sanches Miani FACOM/UFU Introdução Organização e Recuperação de Informação(GSI521) Tópicos Recuperação de informação (RI); Breve histórico; O

Leia mais

Ferramentas Livres de Armazenamento e Mineração de Dados

Ferramentas Livres de Armazenamento e Mineração de Dados Ferramentas Livres de Armazenamento e Mineração de Dados JasperBI, Pentaho, Weka 09/2009 Eng. Pablo Jorge Madril pmadril@summa.com.br Summa Technologies www.summa.com.br Eng. Pablo Jorge Madril pmadril@summa.com.br

Leia mais

Marcelo K. Albertini. 17 de Abril de 2014

Marcelo K. Albertini. 17 de Abril de 2014 Introdução a Mineração de Dados Marcelo K. Albertini 17 de Abril de 2014 2/1 Organização do curso Prof. Marcelo Keese Albertini Sala: Bloco 1A - sala 1A230 Horário de atendimento: Sexta-feira 14h-17h ou

Leia mais

UNIVERSIDADE FEDERAL DE SANTA CATARINA GRADUAÇÃO EM SISTEMAS DE INFORMAÇÃO DEPARTAMENTO DE INFORMÁTICA E ESTATÍSTICA DATA MINING EM VÍDEOS

UNIVERSIDADE FEDERAL DE SANTA CATARINA GRADUAÇÃO EM SISTEMAS DE INFORMAÇÃO DEPARTAMENTO DE INFORMÁTICA E ESTATÍSTICA DATA MINING EM VÍDEOS UNIVERSIDADE FEDERAL DE SANTA CATARINA GRADUAÇÃO EM SISTEMAS DE INFORMAÇÃO DEPARTAMENTO DE INFORMÁTICA E ESTATÍSTICA DATA MINING EM VÍDEOS VINICIUS DA SILVEIRA SEGALIN FLORIANÓPOLIS OUTUBRO/2013 Sumário

Leia mais

Agrupamento de dados

Agrupamento de dados Organização e Recuperação de Informação: Agrupamento de dados Marcelo K. A. Faculdade de Computação - UFU Agrupamento de dados / 7 Overview Agrupamento: introdução Agrupamento em ORI 3 K-médias 4 Avaliação

Leia mais

Documento de Requisitos Sistema WEB GEDAI

Documento de Requisitos Sistema WEB GEDAI Universidade Federal de São Carlos Centro de Ciências Exatas e de Tecnologia Departamento de Computação GEDAI-Grupo de Estudo e Desenvolvimento em Automação Industrial Documento de Requisitos Sistema WEB

Leia mais

O Processo de KDD. Data Mining SUMÁRIO - AULA1. O processo de KDD. Interpretação e Avaliação. Seleção e Pré-processamento. Consolidação de dados

O Processo de KDD. Data Mining SUMÁRIO - AULA1. O processo de KDD. Interpretação e Avaliação. Seleção e Pré-processamento. Consolidação de dados SUMÁRIO - AULA1 O Processo de KDD O processo de KDD Interpretação e Avaliação Consolidação de dados Seleção e Pré-processamento Warehouse Data Mining Dados Preparados p(x)=0.02 Padrões & Modelos Conhecimento

Leia mais

Considerações sobre Conhecimento Incerto e Redes Bayesianas

Considerações sobre Conhecimento Incerto e Redes Bayesianas Considerações sobre Conhecimento Incerto e Redes Bayesianas Felipe S. Gurgel 1, Maiquel de Brito 1 1 Universidade Federal de Santa Catarina - UFSC Departamento de Automação e Sistemas - DAS UFSC/CTC/DAS

Leia mais

APLICAÇÃO DE MINERAÇÃO DE DADOS PARA O LEVANTAMENTO DE PERFIS: ESTUDO DE CASO EM UMA INSTITUIÇÃO DE ENSINO SUPERIOR PRIVADA

APLICAÇÃO DE MINERAÇÃO DE DADOS PARA O LEVANTAMENTO DE PERFIS: ESTUDO DE CASO EM UMA INSTITUIÇÃO DE ENSINO SUPERIOR PRIVADA APLICAÇÃO DE MINERAÇÃO DE DADOS PARA O LEVANTAMENTO DE PERFIS: ESTUDO DE CASO EM UMA INSTITUIÇÃO DE ENSINO SUPERIOR PRIVADA Lizianne Priscila Marques SOUTO 1 1 Faculdade de Ciências Sociais e Aplicadas

Leia mais

Manual UNICURITIBA VIRTUAL para Professores

Manual UNICURITIBA VIRTUAL para Professores Manual UNICURITIBA VIRTUAL para Professores 1 2 2015 Sumário 1 Texto introdutório... 3 2 Como Acessar o UNICURITIBA VIRTUAL... 3 3 Tela inicial após login... 3 3.1) Foto do perfil... 4 3.2) Campo de busca...

Leia mais

Grupo de Banco de Dados da UFSC

Grupo de Banco de Dados da UFSC Grupo de Banco de Dados da UFSC (GBD / UFSC) Oportunidades de Pesquisa e TCCs 2010 / 2 Objetivo GBD/UFSC Pesquisa e desenvolvimento de soluções para problemas de gerenciamento de dados LISA Laboratório

Leia mais

Manual de utilização Anti-Spam: Usuário. Anti-Spam: Usuário v.1.0

Manual de utilização Anti-Spam: Usuário. Anti-Spam: Usuário v.1.0 Manual de utilização Anti-Spam: Usuário Anti-Spam: Usuário v.1.0 ÍNDICE Contents 1. INTRODUÇÃO... 3 2. ACESSANDO A QUARENTENA... 4 3. CRIANDO A CAIXA DE QUARENTENA MANUALMENTE.... 5 4. CAIXA DE QUARENTENA...

Leia mais

AVALIAÇÃO COMPARATIVA DE ALGORITMOS PARA SISTEMAS DE RECOMENDAÇÃO EM MÚLTIPLOS DOMÍNIOS: MODELOS INTERPRETÁVEIS APLICADOS A DADOS EDUCACIONAIS

AVALIAÇÃO COMPARATIVA DE ALGORITMOS PARA SISTEMAS DE RECOMENDAÇÃO EM MÚLTIPLOS DOMÍNIOS: MODELOS INTERPRETÁVEIS APLICADOS A DADOS EDUCACIONAIS AVALIAÇÃO COMPARATIVA DE ALGORITMOS PARA SISTEMAS DE RECOMENDAÇÃO EM MÚLTIPLOS DOMÍNIOS: MODELOS INTERPRETÁVEIS APLICADOS A DADOS EDUCACIONAIS Hugo Marques Casarini Faculdade de Engenharia de Computação

Leia mais

Data Mining com a Ferramenta Weka

Data Mining com a Ferramenta Weka Data Mining com a Ferramenta Weka Eduardo Corrêa Gonçalves Escola Nacional de Ciências Estatísticas (IBGE/ENCE) Rua André Cavalcanti, 106, Centro 20.231-050 Rio de Janeiro RJ eduardo.correa@ibge.gov.br

Leia mais

Classificação de páginas da Internet utilizando redes neurais artificiais.

Classificação de páginas da Internet utilizando redes neurais artificiais. Classificação de páginas da Internet utilizando redes neurais artificiais. Genilto Dallo Departamento de Ciência da Computação (DECOMP) Universidade Estadual do Centro-Oeste (UNICENTRO) Guarapuava, PR

Leia mais

Apostila Moodle 2.5 EnsineOnline

Apostila Moodle 2.5 EnsineOnline Sumário Apresentação... 6 Menu administração... 7 Usuários... 7 Cadastrar um usuário... 7 Ação em lote sobre os usuários:... 9 Campos de perfil de usuários:... 13 Criando e trabalhando com Grupos... 15

Leia mais

Questões sobre Web Mining e Web Warehousing

Questões sobre Web Mining e Web Warehousing Curso de Data Warehousing PUC-Rio TecBD Prof. Rubens Melo Tendências Web Warehousing e Web Mining Questões sobre Web Mining e Web Warehousing Quais são as características da plataforma WEB Quais os tipos

Leia mais

Silvano Nogueira Buback. Utilizando aprendizado de máquina para construção de uma ferramenta de apoio a moderação de comentários

Silvano Nogueira Buback. Utilizando aprendizado de máquina para construção de uma ferramenta de apoio a moderação de comentários Silvano Nogueira Buback Utilizando aprendizado de máquina para construção de uma ferramenta de apoio a moderação de comentários Dissertação de mestrado Dissertação apresentada como requisito parcial para

Leia mais

DESENVOLVIMENTO DE UMA FERRAMENTA DE COLETA E ARMAZENAMENTO DE DADOS DISPONÍVEIS EM REDES SOCIAIS

DESENVOLVIMENTO DE UMA FERRAMENTA DE COLETA E ARMAZENAMENTO DE DADOS DISPONÍVEIS EM REDES SOCIAIS DESENVOLVIMENTO DE UMA FERRAMENTA DE COLETA E ARMAZENAMENTO DE DADOS DISPONÍVEIS EM REDES SOCIAIS Bruno Edgar Führ, Evandro Franzen 1 Resumo: O crescimento da internet na última década fez dela a maior

Leia mais

III WTR do POP-BA III Workshop de Tecnologias de Redes Ponto de Presença da RNP na Bahia Instrutor: Italo Valcy Monitor: Marcio Bouças

III WTR do POP-BA III Workshop de Tecnologias de Redes Ponto de Presença da RNP na Bahia Instrutor: Italo Valcy Monitor: Marcio Bouças III WTR do POP-BA III Workshop de Tecnologias de Redes Ponto de Presença da RNP na Bahia Instrutor: Italo Valcy Monitor: Marcio Bouças Cenário: A máquina curso-monitoramento possui os softwares de gerencia

Leia mais

Universidade do Algarve Faculdade de Ciências e Tecnologia Licenciatura em Informática Ramo Tecnológico

Universidade do Algarve Faculdade de Ciências e Tecnologia Licenciatura em Informática Ramo Tecnológico Universidade do Algarve Faculdade de Ciências e Tecnologia Licenciatura em Informática Ramo Tecnológico Técnicas de clustering Relatório Discentes: Ricardo Seromenho, N.º 23842 Docente: Prof.º Doutor Patrício

Leia mais

Arquivo Digital de Trabalhos Práticos de Alunos

Arquivo Digital de Trabalhos Práticos de Alunos Arquivo Digital de Trabalhos Práticos de Alunos Projecto Integrado Engenharia de Linguagens Eduardo Ribeiro Miguel Nunes Objectivos Criação de uma interface Web para incorporação de Objectos Digitais;

Leia mais

Introdução. Capítulo 1

Introdução. Capítulo 1 Capítulo 1 Introdução Em computação, muitos problemas são resolvidos por meio da escrita de um algoritmo que especifica, passo a passo, como resolver um problema. No entanto, não é fácil escrever um programa

Leia mais

Análise e visualização de dados utilizando redes neurais artificiais auto-organizáveis

Análise e visualização de dados utilizando redes neurais artificiais auto-organizáveis Análise e visualização de dados utilizando redes neurais artificiais auto-organizáveis Adriano Lima de Sá Faculdade de Computação Universidade Federal de Uberlândia 20 de junho de 2014 Adriano L. Sá (UFU)

Leia mais

Classificação Automática de Usuários de uma Rede Social utilizando Algoritmos Não-Supervisionados

Classificação Automática de Usuários de uma Rede Social utilizando Algoritmos Não-Supervisionados Classificação Automática de Usuários de uma Rede Social utilizando Algoritmos Não-Supervisionados Vinicius P. Machado 1, Bruno V. A. de Lima 1, Sanches W. I. Araújo 1 1 Departamento de Informática e Estatística

Leia mais

XIII Encontro de Iniciação Científica IX Mostra de Pós-graduação 06 a 11 de outubro de 2008 BIODIVERSIDADE TECNOLOGIA DESENVOLVIMENTO

XIII Encontro de Iniciação Científica IX Mostra de Pós-graduação 06 a 11 de outubro de 2008 BIODIVERSIDADE TECNOLOGIA DESENVOLVIMENTO XIII Encontro de Iniciação Científica IX Mostra de Pós-graduação 06 a 11 de outubro de 2008 BIODIVERSIDADE TECNOLOGIA DESENVOLVIMENTO EPE0147 UTILIZAÇÃO DA MINERAÇÃO DE DADOS EM UMA AVALIAÇÃO INSTITUCIONAL

Leia mais

Evento: 14ª Semana Acadêmica Organização: Curso Superior de Tecnologia em Análise e Desenvolvimento de Sistemas. Período: 22/Abril a 26/Abril de 2013

Evento: 14ª Semana Acadêmica Organização: Curso Superior de Tecnologia em Análise e Desenvolvimento de Sistemas. Período: 22/Abril a 26/Abril de 2013 14 a SEMANA ACADÊMICA DE Evento: 14ª Semana Acadêmica Organização: Curso Superior de Tecnologia em Análise e Desenvolvimento de Sistemas Período: 22/Abril a 26/Abril de 2013 Local: Associação de Ensino

Leia mais

Conceitos de Mineração de Dados na Web

Conceitos de Mineração de Dados na Web Capítulo 2 Conceitos de Mineração de Dados na Web Rafael Santos Resumo Já não é mais possível apresentar a Web como uma novidade, comentando sobre suas características básicas sua pervasividade e ubiqüidade

Leia mais

Uso de Informações Lingüísticas na etapa de pré-processamento em Mineração de Textos

Uso de Informações Lingüísticas na etapa de pré-processamento em Mineração de Textos UNIVERSIDADE DO VALE DO RIO DOS SINOS CIÊNCIAS EXATAS E TECNOLÓGICAS PROGRAMA INTERDISCIPLINAR DE PÓS-GRADUAÇÃO EM COMPUTAÇÃO APLICADA PIPCA Uso de Informações Lingüísticas na etapa de pré-processamento

Leia mais