Capacidade de Processo Material Complementar
|
|
|
- Liliana de Figueiredo Almeida
- 8 Há anos
- Visualizações:
Transcrição
1 Capacidade de Processo Material Complementar Exemplo Pistões Anéis de pistão para motores de automóveis produzidos por processo de forja Objetivo: Controle estatístico para diâmetro interno dos anéis por cartas Xbarra-R Amostras de tamanho 5 5 amostras Planilha: BD_CQ_II / guia: pistoes Run Chart Stat > Quality Tools > Run Chart 1
2 Estatísticas Descritivas Média: mean diametro Amplitude Por amostra: describe c; range; by c1. Amplitude Média: Criar coluna item (1 a 5) unstack diametro de acordo a item rrow diametro_1 diametro_5 mean coluna com ranges Estatísticas Descritivas Média global: 74,001 Amplitude média: 0,03 Desvio-padrão do processo: 0,0099 R 0,03 σ= ˆ = d,36 Limites de Controles das Cartas Carta R: LIC = 0 LSC = 0,049 Carta X-barra: LIC = 73,988 LSC = 74,014 LIC = RD LIC = RD LIC = x AR LIC = x+ AR 3 4
3 Cartas de Controle Stat > Control Charts > Variable Charts for Sugroups > Xbar R Fração de Anéis Não-conformes Limites de Especificação: 74,000 ± 0,005 mm Fração de anéis não-conformes: p= P{ X< 73,950} + P{ X> 74, 050} cdf score; normal 74,001 0,0099. p = 0, partes por milhão (ppm) Capacidade do Processo Índice de Capacidade do Processo (C p ): C p LSE LIE = 6σ ˆ 74,05 73,95 = = 1,68 6(0, 0099) Porcentagem da faixa de especificação usada pelo sistema: C p 1 P= 100% C p ˆ 1 P= C 100% = 59,5% ˆp 3
4 Capacidade Processo Minitab Stat > Quality Tools > Capability Analysis > Normal PPM Total: número de partes por milhão cuja característica de interesse está fora dos limites de tolerância C p e Falhas Associadas (ppm defeituosas) 4
5 C p Valores Mínimos Recomendados Exemplo Garrafas Resistência a ruptura de garrafas de vidros de 1 litro de refrigerante Amostra: 100 garrafas Processo considerado como estável Planilha: BD_CQ_II / guia: garrafas Histograma Graph > Histogram > Simple 5
6 Estatísticas Descritivas Média das resistências: 64,06 Desvio-padrão das resistências: 3,0179 Capacidade do Processo: 64,06 ± 3(3,0179) = 64 ± 96 psi Se aproximadamente normal: 99,73% das garrafas romperão entre 168 e 360 Gráfico de Probabilidade Graph > Histogram > Simple σ= ˆ 84º percentil 50º percentil = 95,9 64,1= 31,80 Add > Percentile Line Se LIE = 00,71 % das garrafas romperiam abaixo desse limite Se os dados não provêm da distribuição suposta inferências podem apresentar erro sério 6
7 Índice de Capacidade do Processo Limites de Especificação: LIE = 00 (unilateral) Índice de Capacidade: Fração não-conforme: ppm ˆ 64,06 00 = = 0,67 3(3,0179) C pi Exercício 1 Suposições Importantes A característica de qualidade tem distribuição normal O processo está sob controle estatístico No caso de especificações bilaterais, a média do processo está centrada entre os limites de especificação superior e inferior 7
8 Razões de Capacidade Processo Descentrado C p não considera a centralização do processo Não é uma medida da capacidade real do processo É medida de sua capacidade potencial Exercício Intervalo de Confiança C p Cˆ p LSE LIE = 6S C p ( n 1) S = χ σ n 1 ( n 1) S i χ s χ σ χi = χα/,( n 1) eχs = χ(1 α/),( n 1) i 1 χs χ ( n 1) S σ ( n 1) S Cˆ χi ˆ χs p Cp Cp ( n 1) ( n 1) 8
9 Exemplo Processo: Especificações: LSE = 6 e LSI = 38 Amostra: 0 Estimativa Sigma do processo: 1,75 Índice Capacidade do Processo: C p Percentis: χi = 8,91 eχs = 3,85 ˆ 6 38 = =,9 6(1,75) Intervalo com 95% de confiança para o C p : 8,91 3, 85,9 C p,9 1,57 C p 3, Comentários Intervalo amplo (pouco informativo) S apresenta flutuação considerável em amostras pequenas ou mesmo moderadamente grandes Intervalos de confiança C p baseados em pequenas amostras serão amplos Processo deve estar sob controle estatístico para que C p tenha significado real Se o processo não está sob controle S e R/d podem ser muito diferentes Podem levar a valores diferentes de C p Exercício 3 9
10 Teste de Hipóteses C p Exemplo motivador: Exigência contratual de que fornecedor demonstre a capacidade de seu processo Hipóteses: H o : C p = C p0 (ou o processo não é capaz) H 1 : C p > C p0 (ou o processo é capaz) Teste estatístico sob hipótese de normalidade: Estatística de teste: Cˆp Rejeita-se Ho se estiver acima de valor crítico C Cˆp Tabela de tamanhos amostrais e valores críticos (Kane, 1986) C p (alto): capacidade de um processo que aceitaríamos com probabilidade 1 α C p (baixo): capacidade de um processo que rejeitaríamos com probabilidade 1 β Exemplo de Uso da Tabela Fornecedor deve demonstrar que capacidade do processo supera C p = 1,33 Hipóteses: H o : C p = 1,33 H 1 : C p > 1,33 Estruturação do teste: C p (baixo)=1,33 P{detectar Cp<1,33} = 0,90 C p (alto)=1,66 P{julgado capaz c/ Cp<1,66} = 0,90 α e β = 0,10 10
11 Da tabela: Cp(alto) 1,66 C = = 1,5 Cp(baixo) 1, 33 n= 70 e 1,10 Cp (baixo) = Determinação valor crítico do teste: C= 1,10 C p (baixo) = 1,46 Para demonstrar capacidade, fornecedor deve tomar amostra de 70 itens e C p amostral deve ser maior que 1,46. Exercício 4 Análise de Capacidade Cartas de Controle Não são necessárias especificações para estimar parâmetros e estabelecer a estabilidade do processo Gráficos Xbarra e R permitem analisar Variabilidade instantânea: capacidade do processo a curto prazo Variabilidade ao longo do tempo: capacidade do processo a longo prazo Auxiliam bastante quando os dados sobre capacidade são coletados em períodos de tempo diferentes 11
12 Dados garrafas tomados como 0 amostras (n=5) Carta R: LC = 77,3 LSC = D4 R = 163,49 LIC = D3 R = 0 Carta Xbarra: LC = 64,06 LSC = x + A R = 308,66 LIC = x A R = 19,46 Criar coluna para amostras: Calc > Make Patterned Data > Simple Set of Numbers Gráfico de controle Xbar-R Gráficos revelam controle estatístico 1
13 Estimativas dos parâmetros do processo: Especificação unilateral: LIE: 00 Índice unilateral da capacidade do processo: Processo sob controle, mas operando em nível inadequado Comentários Gráfico de controle pode ser usado como dispositivo de monitoramento ou diário de bordo para mostrar efeito de modificações É inseguro analisar capacidade de processos fora de controle Limites de Especificação sobre Componentes 13
14 Fixação de Limites de Especificação Estudo da capacidade de processo para fixar especificações sobre componentes que interagem Importante em montagens complexas Importante para evitar empilhamento de tolerâncias Combinações Lineares Dimensão de um item é combinação linear de dimensões de componentes Dimensão de montagem final Y = a 1 X 1 + a X a n X n X i são independentes com distribuição normal: Y ~ N(µ Y,σ Y ) n n Y = ai i e Y = ai i i= 1 i= 1 µ µ σ σ Se µ i e σ i são conhecidos pode-se determinar a fração de itens montados que escapa às especificações Exemplo Montagem Final Comprimento final de montagem: Y = X 1 + X + X 3 + X 4 Comprimentos de componentes (polegadas): Independentes (máquinas diferentes) Distribuição comprimento componentes X 1 ~ N(,0; 0,0004) X ~ N(4,5; 0,0009) X 3 ~ N(3,0; 0,0004) X 4 ~ N(,5; 0,0001) Especificação sistema montado: 1,00 ± 0,10 14
15 Média e variância montagem final: Y µ = 1,0 e σ = 0,0018 Y Fração da montagem final dentro dos limites de especificação: { Y } P 11, 90 1,10 = 0, ,7% das montagens em cadeia estão dentro dos limites de especificação Exemplo Montagem Determinação dos limites de especificação componentes para que satisfação limites montagem Comprimento final de montagem: Y = X 1 + X + X 3 Comprimentos de componentes (polegadas): Independentes (máquinas diferentes) X 1, X e X 3 : distribuição normal com médias µ 1 = 1,00, µ = 3,00 e µ 3 =,00, respectivamente Quer-se C p = 1,5 para a montagem final C p equivale a cerca de 7 ppm de defeituosos Limites naturais de tolerância para 7 ppm: Desvio-padrão da montagem final σ Desvio-padrão dos componentes Supondo-os iguais Y µ ± 4,49 σ Y 0,06 = = 0, 0314 σy 0, ,49 σ Y Y ( 0, 0314) σ = = = 0,
16 Se σ 0,00006 para cada componente, então os limites naturais de tolerância para a montagem final estarão dentro dos limites de especificação tais que C p = 1,50 X :1± 3 0,00006= 1,00± 0,03 1 X :3± 3 0,00006= 3,00± 0,03 X :± 3 0,00006 =,00± 0,03 3 Exercício 5 Referências 16
17 Bibliografia Recomendada Montgomery, D. C. (LTC) Introdução ao Controle Estatístico de Qualidade Costa, A. F. B., Epprecht, E. K., Carpinetti, L. C. R. (Atlas) Controle Estatístico de Qualidade 17
Capacidade de Processo
Roteiro Capacidade de Processo 1. Limites de Especificação 2. Índices de Capacidade do Processo 3. Alarmes vs. Itens Não Conformes 4. Limites de Especificação sobre Componentes 5. Referências Capacidade
Controle Estatístico de Qualidade. Capítulo 7 (montgomery)
Controle Estatístico de Qualidade Capítulo 7 (montgomery) Capacidade do Processo Introdução Cartas de Controle Instrumento de monitoramento e detecção de desvios na estabilidade do processo Considerando
Controle Estatístico de Qualidade. Capítulo 5 (montgomery)
Controle Estatístico de Qualidade Capítulo 5 (montgomery) Gráficos de Controle para Variáveis Relembrando Dois objetivos do CEP: Manter o processo operando em condição estável durante maior parte do tempo;
2)Para o exercício anterior e usando os limites de controle e estimativas revistas para este processo, determine se este está estável. Justifique.
ª LISTA DE ESTATÍSTICA (apresentar os cálculos com 4 casas decimais) )Em uma fábrica de produtos de higiene foram medidos os pesos de sabonetes em amostras de tamanho cinco. Supõe-se que o peso dos sabonetes
Especialização em Métodos Estatísticos Computacionais
Avaliação de Sistemas de Medição Roteiro 1. Características de um Sistema de Medição 2. Avaliação do Erro Sistemático 3. Repetitividade e Reprodutibilidade 4. Adequabilidade de Sistema de Medição 5. Aplicação
Análise da : -Estabilidade e - Capacidade/Capabilidade de Processos
Análise da : -Estabilidade e - Capacidade/Capabilidade de Processos Prof. Diego Por que medir a estabilidade e capacidade/capabilidade? Principais erros dos gestores SOB CONTROLE 1 Tratar uma causa comum
Avaliação de Sistemas de Medição
Roteiro Avaliação de Sistemas de Medição 1. Características de um Sistema de Medição 2. Avaliação do Erro Sistemático 3. Repetitividade e Reprodutibilidade 4. Adequabilidade de Sistema de Medição 5. Aplicação
Disciplina: Gestão da Qualidade
Disciplina: Gestão da Qualidade As Sete Ferramentas da Qualidade: Cartas de Controle Prof. Fernando Porto Introdução As cartas de controle, conhecidas originalmente como gráficos de Shewhart ou gráficos
CE219 - Controle Estatístico de Qualidade
CE219 - Controle Estatístico de Qualidade Cesar Augusto Taconeli 20 de abril, 2018 Cesar Augusto Taconeli CE219 - Controle Estatístico de Qualidade 20 de abril, 2018 1 / 25 Aula 5 - Análise da capacidade
Morgana Pizzolato, Dr a. Aula 04 Introdução ao CEP DPS1037 SISTEMAS DA QUALIDADE II ENGENHARIA DE PRODUÇÃO CT/UFSM
Morgana Pizzolato, Dr a. Aula 04 Introdução ao CEP DPS1037 SISTEMAS DA QUALIDADE II ENGENHARIA DE PRODUÇÃO CT/UFSM Cronograma parcial DPS1037 Data Aula Conteúdo 10/ago 1 Introdução à Engenharia da Qualidade
Morgana Pizzolato, Dr a. Aula 05 Introdução ao CEP DPS1037 SISTEMAS DA QUALIDADE II ENGENHARIA DE PRODUÇÃO CT/UFSM
Morgana Pizzolato, Dr a. Aula 05 Introdução ao CEP DPS1037 SISTEMAS DA QUALIDADE II ENGENHARIA DE PRODUÇÃO CT/UFSM TÓPICOS DESTA AULA Teorema do Limite Central (TLC) Introdução ao Controle Estatístico
Inferência. 1 Estimativa pontual de uma média 2 Estimativa intervalar de uma média. Renata Souza
Inferência 1 Estimativa pontual de uma média 2 Estimativa intervalar de uma média Renata Souza Aspectos Gerais A estatística descritiva tem por objetivo resumir ou descrever características importantes
Gráficos de Controle (X, R, S, CUSUM e EWMA) Jean Carlos Teixeira de Araujo
Gráficos de Controle (X, R, S, CUSUM e EWMA) Jean Carlos Teixeira de Araujo [email protected] 1 Agenda Introdução; Gráficos X e R; Gráficos X e S; Gráfico CUSUM; Gráfico EWMA; Exemplos utilizando a ferramenta
Qualidade na empresa. Fundamentos de CEP. Gráfico por variáveis. Capacidade do processo. Gráficos por atributos. Processos.
Roteiro da apresentação 1 Controle de Qualidade Lupércio França Bessegato 2 3 4 UFMG Especialização em Estatística Setembro/2008 5 6 7 8 Gráfico de Controle de Shewhart Hipóteses do gráfico de controle
DISTRIBUIÇÕES DE PROBABILIDADE CONJUNTAS DISTRIBUIÇÕES CONJUNTAS ROTEIRO DISTRIBUIÇÃO CONJUNTA
ROTEIRO DISTRIBUIÇÕES DE PROBABILIDADE CONJUNTAS 1. Distribuições conjuntas 2. Independência 3. Confiabilidade 4. Combinações lineares de variáveis aleatórias 5. Referências DISTRIBUIÇÃO CONJUNTA Em muitos
Avaliação de Sistemas de Medição
Avaliação de Sistemas de Medição Roteiro. Características de um Sistema de Medição. Avaliação do Erro Sistemático. Repetitividade e Reprodutibilidade 4. Adequabilidade de Sistema de Medição 5. Aplicação
Gráfico de Controle por Atributos
Gráfico de Controle por Atributos Roteiro 1. Gráfico de np. Gráfico de p 3. Gráfico de C 4. Gráfico de u 5. Referências Gráficos de Controle por Atributos São usados em processos que: Produz itens defeituosos
ENGENHARIA DA QUALIDADE A ENG AULA 4 CARTAS DE CONTROLE PARA VARIÁVEIS
ENGENHAIA DA QUALIDADE A ENG 09008 AULA 4 CATAS DE CONTOLE PAA VAIÁVEIS POFESSOES: CALA SCHWENGBE TEN CATEN Tópicos desta aula Cartas de Controle para Variáveis Tipo 1: Tipo : Tipo 3: X X X ~ e e S e Tipo
Controle de Qualidade
Outras técnicas Controle de Qualidade Lupércio França Bessegato Especialização em Estatística Roteiro da apresentação 1 2 3 4 5 6 7 do Processo do Processo de produzir itens de acordo com as especificações
Intervalos de Confiança
Intervalos de Confiança Jorge M. V. Capela, Marisa V. Capela, Instituto de Química - UNESP Araraquara, SP [email protected] Araraquara, SP - 2016 1 2 Teorema do Limite Central Se amostras de tamanho n
Controlo Estatístico do Processo
Controlo Estatístico do Processo Gestão da Produção II LEM-24/25 Paulo Peças CEP Os processos produtivos apresentam sempre um dado nível de variabilidade como resultado apenas da sua aleatoriedade intrínseca.
Probabilidade e Estatística, 2009/1
Probabilidade e Estatística, 2009/1 CCT - UDESC Prof. Fernando Deeke Sasse Problemas Resolvidos - Intervalos de Confiança 1. s dados relativos a cargas de falha sobre amostras de um tipo de aço fornecem
1 Teoria da Decisão Estatística
1 Teoria da Decisão Estatística 1.1 Teste de Hipótese É uma metodologia estatística que permite tomar decisão sobre uma ou mais populações baseando no conhecimento de informações da amostra. Ao tentarmos
3 Modelo Matemático Definições Iniciais. Denote-se, em geral, o desvio-padrão do processo por σ = γσ 0, sendo σ 0 o
Modelo Matemático 57 3 Modelo Matemático Este trabalho analisa o efeito da imprecisão na estimativa do desvio-padrão do processo sobre o desempenho do gráfico de S e sobre os índices de capacidade do processo.
DISTRIBUIÇÃO NORMAL DISTRIBUIÇÕES DE PROBABILIDADE CONJUNTAS ROTEIRO DISTRIBUIÇÃO NORMAL
ROTEIRO DISTRIBUIÇÕES DE PROBABILIDADE CONJUNTAS 1. Distribuições conjuntas 2. Independência 3. Confiabilidade 4. Combinações lineares de variáveis aleatórias 5. Referências DISTRIBUIÇÃO NORMAL Definição:
Controle Estatístico de Processo
Prof. Edson Marcos Leal Soares Ramos, Dr. Profa. Silvia dos Santos de Almeida, Dra. Profa. Adrilayne dos Reis Araújo, M.Sc. Belém 2012 Índice 1 Gráficos de Controle Para Variáveis 2 1.1 Gráficos de Controle
CE219 - Controle Estatístico de Qualidade
CE219 - Controle Estatístico de Qualidade Cesar Augusto Taconeli 30 de maio, 2017 Cesar Augusto Taconeli CE219 - Controle Estatístico de Qualidade 30 de maio, 2017 1 / 24 Aula 1 - Introdução Cesar Augusto
DISTRIBUIÇÕES DE PROBABILIDADE CONJUNTAS DISTRIBUIÇÕES CONJUNTAS ROTEIRO DISTRIBUIÇÃO CONJUNTA. Estatística Aplicada à Engenharia
ROTEIRO DISTRIBUIÇÕES DE PROBABILIDADE CONJUNTAS 1. Distribuições conjuntas 2. Independência 3. Confiabilidade 4. Combinações lineares de variáveis aleatórias 5. Referências Estatística Aplicada à Engenharia
Controle Estatístico da Qualidade
Controle Estatístico da ESQUEMA DO CAPÍTULO 15.1 MELHORIA E ESTATÍSTICA DA QUALIDADE 15.2 CONTROLE ESTATÍSTICO DA QUALIDADE 15.3 CONTROLE ESTATÍSTICO DE PROCESSO 15.4 INTRODUÇÃO AOS GRÁFICOS DE CONTROLE
Testes de Hipóteses. Ricardo Ehlers Departamento de Matemática Aplicada e Estatística Universidade de São Paulo
Testes de Hipóteses Ricardo Ehlers [email protected] Departamento de Matemática Aplicada e Estatística Universidade de São Paulo Introdução e notação Em geral, intervalos de confiança são a forma mais
Módulo 5 Capacidade do processo, etapas para implantação do CEP e as ferramentas utilizadas em conjunto com o CEP
Módulo 5 Capacidade do processo, etapas para implantação do CEP e as ferramentas utilizadas em conjunto com o CEP Capacidade do processo Após verificar se um processo está estável, sob controle estatístico
CEP: Controle Estatístico de Processo
CEP: Controle Estatístico de Processo CEP: Controle Estatístico de Processos CEP (SPC Statistical Process Control) é uma técnica estatística para verificar a qualidade de um produto, durante o processo
Probabilidade e Estatística. Estimação de Parâmetros Intervalo de Confiança
Probabilidade e Estatística Prof. Dr. Narciso Gonçalves da Silva http://páginapessoal.utfpr.edu.br/ngsilva Estimação de Parâmetros Intervalo de Confiança Introdução A inferência estatística é o processo
ESTIMAÇÃO DE PARÂMETROS
ESTIMAÇÃO DE PARÂMETROS Um dos principais objetivos da estatística inferencial consiste em estimar os valores de parâmetros populacionais desconhecidos (estimação de parâmetros) utilizando dados amostrais.
Inferência. 1 Estimativa pontual de uma média 2 Estimativa intervalar de uma média. Renata Souza
Inferência 1 Estimativa pontual de uma média 2 Estimativa intervalar de uma média Renata Souza Aspectos Gerais A estatística descritiva tem por objetivo resumir ou descrever características importantes
Capítulo 4 Inferência Estatística
Capítulo 4 Inferência Estatística Slide 1 Resenha Intervalo de Confiança para uma proporção Intervalo de Confiança para o valor médio de uma variável aleatória Intervalo de Confiança para a diferença de
TOMADA DE DECISÃO PARA UMA AMOSTRA. Estatística Aplicada à Engenharia 1
TOMADA DE DECISÃO PARA UMA AMOSTRA Estatística Aplicada à Engenharia 1 ROTEIRO 1. Teste de hipóteses; 2. Inferência sobre a média de uma população (variância conhecida); 3. Inferência sobre a média de
AULA 07 Inferência a Partir de Duas Amostras
1 AULA 07 Inferência a Partir de Duas Amostras Ernesto F. L. Amaral 10 de setembro de 2012 Faculdade de Filosofia e Ciências Humanas (FAFICH) Universidade Federal de Minas Gerais (UFMG) Fonte: Triola,
Introdução à Bioestatística Turma Nutrição
Universidade Federal de Minas Gerais Instituto de Ciências Exatas Departamento de Estatística Introdução à Bioestatística Turma Nutrição Aula 8: Intervalos de Confiança para Média e Proporção Distribuição
Gráfico de Controle por Variáveis
Principais Gráficos de Variáveis Gráfico de Controle por Variáveis Gráfico de Média X Gráfico de Ampitude R Gráfico de Variância S 2 Gráfico de Desvio-padrão S Construção dos Gráficos de Controle X e R
Bioestatística CE001 Prof. Fernando de Pol Mayer Departamento de Estatística DEST Exercícios: inferência Nome: GABARITO
Bioestatística CE001 Prof. Fernando de Pol Mayer Departamento de Estatística DEST Exercícios: inferência Nome: GABARITO GRR: Observação: em todos os problemas que envolvem teste de hipótese, é necessário
CONTROLE ESTATÍSTICO DE PROCESSOS
Ferramentas da Qualidade CONTROLE ESTATÍSTICO DE PROCESSOS CONTROLE ESTATÍSTICO DE PROCESSOS (3/4) Gráficos de controle Gráfico de controle de variáveis Gráfico de controle de atributos Gráficos de Controle
CE219 - Controle Estatístico de Qualidade
CE219 - Controle Estatístico de Qualidade Cesar Augusto Taconeli 30 de maio, 2017 Cesar Augusto Taconeli CE219 - Controle Estatístico de Qualidade 30 de maio, 2017 1 / 47 Aula 3 - Métodos e filosofia do
TESTE DE HIPÓTESE. Introdução
TESTE DE HIPÓTESE Introdução O teste de hipótese estatística objetiva decidir se uma afirmação sobre uma população, usualmente um parâmetro desta, é, ou não, apoiada pela evidência obtida dos dados amostrais.
Tomada de Decisão para uma Única Amostra
Tomada de Decisão para uma Única Amostra Testes de Hipóteses Teste de Hipóteses Procedimento de tomada de decisão sobre hipóteses envolvendo a população Aspecto bastante útil da Inferência Estatística:
Professora Ana Hermínia Andrade. Período
Estimação intervalar Professora Ana Hermínia Andrade Universidade Federal do Amazonas Faculdade de Estudos Sociais Departamento de Economia e Análise Período 2017.1 Estimação Intervalar Vimos que como
Controle Estatístico do Processo (CEP)
Controle Estatístico do Processo (CEP) CONTROLE ESTATÍSTICO DO PROCESSO É UM MÉTODO QUE PERMITE CONTROLAR CONTÍNUAMENTE AS CARACTERÍSTICAS CHAVES DE UM PRODUTO E PROCESSO, VISANDO A SUA MELHORIA. ORIGEM
Inferência Estatistica
Inferência Estatistica Ricardo Ehlers [email protected] Departamento de Matemática Aplicada e Estatística Universidade de São Paulo Modelos e Inferência Um modelo é uma simplificação da realidade (e alguns
7. Testes de Hipóteses
7. Testes de Hipóteses Suponha que você é o encarregado de regular o engarrafamento automatizado de leite numa determinada agroindústria. Sabe-se que as máquinas foram reguladas para engarrafar em média,
Obtenção dos projetos ótimos de gráficos de X utilizando o Matlab. Robson Silva Rossi 1 FEMEC
Obtenção dos projetos ótimos de gráficos de X utilizando o Matlab. Robson Silva Rossi 1 FEMEC [email protected] Aurélia Aparecida de Araújo Rodrigues 2 FAMAT [email protected] Resumo Foi
Cap. 8 - Intervalos Estatísticos para uma Única Amostra
Intervalos Estatísticos para ESQUEMA DO CAPÍTULO 8.1 INTRODUÇÃO 8.2 INTERVALO DE CONFIANÇA PARA A MÉDIA DE UMA DISTRIBUIÇÃO NORMAL, VARIÂNCIA CONHECIDA 8.3 INTERVALO DE CONFIANÇA PARA A MÉDIA DE UMA DISTRIBUIÇÃO
7- Controle Estatístico de Processos CEP - Controle Estatístico de Processos
CEP - Controle Estatístico de Processos Pedro Paulo Balestrassi www.iem.efei.br/pedro 35-3629-1161 1 Tipo de Gráfico Dados do tipo variáveis ou atributo? Variável Atributo Alto ou Baixo Volume Não Tamanho
Teste de hipótese. Prof. Tiago Viana Flor de Santana
INFERÊNCIA ESTATÍSTICA Teste de hipótese Prof. Tiago Viana Flor de Santana www.uel.br/pessoal/tiagodesantana/ [email protected] sala 07 Universidade Estadual de Londrina UEL Departamento de Estatística
Inferência Estatística:
Universidade Federal de Minas Gerais Instituto de Ciências Exatas Departamento de Estatística Inferência Estatística: Princípios de Bioestatística decidindo na presença de incerteza Aula 8: Intervalos
DISTRIBUIÇÃO NORMAL CÁLCULO DE Z. m.a.perissinotto DIN - 1
DISTRIBUIÇÃO NORMAL m.a.perissinotto DIN - 1 Seu aspecto gráfico é semelhante a um sino e, para sua construção, são necessários dois parâmetros: µ ( média ) e s ( desvio padrão ). A curva teórica é simétrica
Lista Estimação Pontual Estatística Aplicada à Engenharia de Produção Prof. Michel H. Montoril
Exercício 1. (Kokoska, 2013) Estudos indicam que residências canadenses desperdiçam, aproximadamente, de 389 a 513 quilowatts-hora de eletricidade por ano. Esse desperdício é causado por aparelhos eletrônicos
X 2. (σ 2 + µ 2 ) = 1 n (nσ 2 + nµ 2 ) = σ 2 + µ 2. µ = 0 E(T ) = σ 2
Estatística II (GET00182) Turma A1 Prova 1 20/10/2017 2/2017 NOME: GABARITO 1. Seja X 1, X 2,, X n uma amostra aleatória simples de uma população X com média µ e variância σ 2. (a) Mostre que, se µ = 0,
ANÁLISE DA CAPACIDADE DE UM PROCESSO: UM ESTUDO DE CASO BASEADO NOS INDICADORES CP E CPK
ANÁLISE DA CAPACIDADE DE UM PROCESSO: UM ESTUDO DE CASO BASEADO NOS INDICADORES CP E CPK Josenildo Brito de Oliveira (UFCG) [email protected] RICARDO ROMUALDO SOUTO (UFCG) [email protected]
Fernando de Pol Mayer
Fernando de Pol Mayer Laboratório de Estatística e Geoinformação (LEG) Departamento de Estatística (DEST) Universidade Federal do Paraná (UFPR) Este conteúdo está disponível por meio da Licença Creative
Controle Estatístico de Processo
PRO 2712 CONTROLE DA QUALIDADE 1 Controle Estatístico de Processo PRO 2712 CONTROLE DA QUALIDADE 2 O QUE É UM PROCESSO? conjunto de atividades executadas com um certo objetivo ou finalidade conjunto de
FOLHA 3 - Inferência
Instituto Politécnico de Leiria Escola Superior de Tecnologia e Gestão Componente Prática de Estatística Aplicada Contabilidade e Finanças FOLHA 3 - Inferência 1. O conteúdo (em litros) de garrafas de
DISTRIBUIÇÃO NORMAL. Para facilitar o trabalho do cálculo da área sob a curva, podemos escrever a fórmula acima da seguinte forma:
DISTRIBUIÇÃO NORMAL m.a.perissinotto DIN - 1 Seu aspecto gráfico é semelhante a um sino e, para sua construção, são necessários dois parâmetros: µ ( média ) e s ( desvio padrão ). A curva teórica é simétrica
Teste de hipóteses. Tiago Viana Flor de Santana
ESTATÍSTICA BÁSICA Teste de hipóteses Tiago Viana Flor de Santana www.uel.br/pessoal/tiagodesantana/ [email protected] sala 07 Curso: MATEMÁTICA Universidade Estadual de Londrina UEL Departamento de
Intervalos de confiança
Intervalos de confiança Cristian Villegas [email protected] Outubro de 2013 Apostila de Estatística (Cristian Villegas) 1 Estimação dos Parâmetros Estimação é o nome técnico para o processo que consiste em
Inspeção de Qualidade
Inspeção de Qualidade Roteiro 1. Inspeção para Aceitação 2. Planos de Amostragem Simples 3. Determinação Plano de Amostragem 4. Inspeção Retificadora 5. Plano de Amostragem Dupla 6. Referências Inspeção
Gráficos de Controle
Gráficos de Controle CE219 - Controle Estatístico de Qualidade Prof. Cesar Taconeli [email protected] Prof. Walmes Zeviani [email protected] Laboratório de Estatística e Geoinformação Departamento de Estatística
AULA 05 Teste de Hipótese
1 AULA 05 Teste de Hipótese Ernesto F. L. Amaral 03 de setembro de 2012 Faculdade de Filosofia e Ciências Humanas (FAFICH) Universidade Federal de Minas Gerais (UFMG) Fonte: Triola, Mario F. 2008. Introdução
DISTRIBUIÇÃO AMOSTRAL E ESTIMAÇÃO PONTUAL INTRODUÇÃO ROTEIRO POPULAÇÃO E AMOSTRA. Estatística Aplicada à Engenharia
ROTEIRO 1. Introdução; DISTRIBUIÇÃO AMOSTRAL E ESTIMAÇÃO PONTUAL. Teorema Central do Limite; 3. Conceitos de estimação pontual; 4. Métodos de estimação pontual; 5. Referências. 1 POPULAÇÃO E AMOSTRA População:
ANÁLISE DE RESULTADOS
ANÁLISE DE RESULTADOS Conteúdo 2 1. Planejamento de Experimentos 2. Introdução Medidas de Desempenho Análise Estatística dos Resultados Comparação de Resultados Procedimento para análise de resultados
4 Capabilidade de Processos
4 Capabilidade de Processos Cp, Cpk 4.1. INTRODUÇÃO AO CONTROLE ESTATÍSTICO DE PROCESSO (CEP) Na natureza não existem dois exemplares exatamente iguais da mesma coisa. Há alguma variabilidade em toda parte,
ESTIMAÇÃO POR INTERVALO DE CONFIANÇA. Profª Sheila Oro 1
ESTIMAÇÃO POR INTERVALO DE CONFIANÇA Profª Sheila Oro 1 DEFINIÇÃO Um itervalo de confiança (ou estimativa intervalar) é uma faixa (ou um intervalo) de valores usada para se estimar o verdadeiro valor de
Inferência a partir de duas amostras
Inferência a partir de duas amostras Inferência a partir de duas amostras. Inferência sobre duas médias: amostras dependentes. Inferência sobre duas médias: amostras grandes e independêntes 3. Comparação
PODER DO TESTE. Poder do Teste e Tamanho de Amostra para Testes de Hipóteses
PODER DO TESTE Poder do Teste e Tamanho de Amostra para Testes de Hipóteses 1 Tipos de erro num teste estatístico Realidade (desconhecida) Decisão do teste aceita H rejeita H H verdadeira decisão correta
Inferência Estatística
Inferência Estatística Estimação Intervalar Média e Proporção Estimação Pontual x Estimação Intervalar Exemplo Inicial: Um estudo pretende estimar o valor de µ, a renda média familiar dos alunos da UFMG.
Estatística 1. Resumo Teórico
Estatística 1 Resumo Teórico Conceitos do Curso 1. Tipos de Variáveis e Representações Gráficas a. Tipos de Variáveis b. Distribuição de Frequências c. Histograma 2. Estatística Descritiva Medidas Estatísticas
Professora Ana Hermínia Andrade. Universidade Federal do Amazonas Faculdade de Estudos Sociais Departamento de Economia e Análise. Período 2017.
Professora Ana Hermínia Andrade Universidade Federal do Amazonas Faculdade de Estudos Sociais Departamento de Economia e Análise Período 2017.1 Distribuições Amostrais O intuito de fazer uma amostragem
Estatística Aplicada Prof. Simões Distribuição Normal de Probabilidades. Exercícios (Estatística Aplicada à Administração, W. J. Stevenson, pg.
Estatística Aplicada Prof. Simões Distribuição Normal de Probabilidades Exercícios (Estatística Aplicada à Administração, W. J. Stevenson, pg. 150) 1. Trace uma curva normal e sombreie a área desejada,
MAE Introdução à Probabilidade e à Estatística II. Lista de Exercícios 5-1 sem de Profa. Lígia Henriques-Rodrigues
MAE0229 - Introdução à Probabilidade e à Estatística II Lista de Exercícios 5-1 sem de 2018 Classe Profa. Lígia Henriques-Rodrigues 1. Um fabricante de fibra têxtil está investigando um novo fio de cortina,
Lista 5. Prof. Erica Castilho Rodrigues Disciplina: Introdução à Estatística e Probabilidae. 06 de Maio. Data de entrega: a denir
Lista 5 Prof. Erica Castilho Rodrigues Disciplina: Introdução à Estatística e Probabilidae 06 de Maio Data de entrega: a denir 1. Uma amostra de 20 operários de uma companhia apresentou os seguintes salários
Intervalos Estatísticos para uma única Amostra - parte I
Intervalos Estatísticos para uma única Amostra - parte I Intervalo de confiança para média 14 de Janeiro Objetivos Ao final deste capítulo você deve ser capaz de: Construir intervalos de confiança para
