CONSTRUÇÃO DE BOMBA EÓLICA

Tamanho: px
Começar a partir da página:

Download "CONSTRUÇÃO DE BOMBA EÓLICA"

Transcrição

1 3 ANA CLÁUDIA MELO COSTA CLÁUDIO DA SILVA COSTA HIGOR BERLINI FERNANDES JOSIAS GARCIA DE FARIAS RA: RA: RA: RA: E.P.M. - 3ºA - noite -sala CONSTRUÇÃO DE BOMBA EÓLICA UNIVERSIDADE NOVE DE JULHO SÃO PAULO 2009/2º semestre

2 4 ANA CLÁUDIA MELO COSTA CLÁUDIO DA SILVA COSTA HIGOR BERLINI FERNANDES JOSIAS GARCIA DE FARIAS RA: RA: RA: RA: E.P.M. - 3ºA - noite -sala S.AM CONSTRUÇÃO DE BOMBA EÓLICA Trabalho de conclusão do projeto integrador realizado na disciplina de Física Geral e Experimental III, apresentado como exigência parcial para avaliação nesta disciplina do curso de Engenharia com habilitação em Produção Mecânica, da Universidade Nove de Julho. Orientador: Profº Wagner Marcelo Pommer. UNIVERSIDADE NOVE DE JULHO SÃO PAULO 2009/2º semestre

3 5 SUMÁRIO 1 Referencial teórico...p Energia eólica...p A fonte eólica...p Tipos de turbina eólicas...p Circulação global do vento...p Relação entre velocidade do vento e altura...p Componentes de um sistema eólico...p Regra gerais energia eólica...p.11 2 Concepção do projeto integrador...p.16 3 Características do projeto...p.16 4 Material utilizado...p 16 5 Memorial descritivo...p.17 6 Cálculos descritivos...p Legenda...p Dimensional...p Memorial de cálculos...p.22 7 Resultados e Discussões...p 23 8 Conclusão...p.24 9 Bibliografia...p Anexos...p.24

4 6 1- REFERENCIAL TÉORICO: 1.1- Energia Eólica: Energia eólica precisa ser armazenada para utilização quando a intensidade dos ventos não for suficiente para atender a demanda e, também, para aproveitar o excedente produzido quando a produção supera a demanda. Mas, também sabemos que a energia cinética dos ventos não pode ser armazenada, então deve ser feita sua conversão para outro tipo de energia armazenável. Assim, podemos dividir as formas de armazenamento indireto da energia eólica em dois grupos: as formas que armazenam a energia eólica convertida em energia mecânica e as formas que armazenam a energia eólica convertida em energia elétrica. A diferença entre as formas de armazenamento da energia eólica, mecânicos ou elétricos, é que na primeira (mecânico) são utilizados mecanismos que usam forças de natureza mecânica para realizar o armazenamento e, na segunda (elétrica), são usados o excedente da eletricidade gerada pela turbina para acionar os mecanismos de armazenamento. Os principais métodos de armazenamento indireto da energia eólica convertida em energia mecânica são: Bomba (hidráulica): este sistema de armazenamento da energia eólica é composto por uma bomba conectada ao eixo de saída da turbina. Quando a turbina atinge determinada velocidade de rotação aciona o mecanismo da bomba que eleva determinada quantidade de água para um reservatório situado a uma altura específica, armazenando assim, a energia eólica mecânica sob a forma de energia potencial da massa de

5 7 água. Quando necessário, a água é escoada e aciona uma turbina hidráulica para que a energia acumulada possa ser usada. Nesses casos, a turbina costuma ser instalada logo acima da fonte de captação de água (que pode ser um poço) e a água pode também, ser armazenada para simples consumo ao invés de gerar eletricidade. Compressor (mecânica): este tipo de armazenamento se refere à conversão da energia eólica mecânica em energia potencial armazenada sob a forma de ar comprimido ( atmosferas). A compressão é feita por um mecanismo que utiliza o movimento de rotação das pás da turbina para comprimir o ar. Após comprimido o ar pode ser armazenado em recipientes próprios ou mesmo em estruturas geológicas que se encontram vazias após terem seu gás natural exaurido (empresas americanas estudam a possibilidade de armazenar o ar comprimido na camada de arenito a 1000 m de profundidade que é extremamente poroso). O ar armazenado, então, pode ser utilizado para a geração de energia mecânica ou elétrica através de expansores. Calor (efeito joule): o armazenamento da energia eólica sob a forma de calor se dá pelo aquecimento mecânico da água através do movimento de pás dentro do recipiente de armazenamento (que é isolado termicamente). A resistência da água ao atrito ocasionado pelas pás em movimento faz com que ela se aqueça, transformando a energia eólica em energia térmica. O armazenamento da água é feito em recipiente térmico próprio e pode ser feito com a água na forma líquida (água quente) ou na forma gasosa (vapor).

6 8 Volante (mecânica): também chamado de Flywheell, ou ainda volante mecânico, seu funcionamento baseia-se na conversão da energia eólica em energia cinética do movimento de rotação do volante que poderá ser convertida, posteriormente, em qualquer outra forma de energia. As turbinas são, em princípio, instrumentos razoavelmente simples. O gerador é ligado através de um conjunto acionador a um rotor constituído de um cubo e duas ou três pás. O vento aciona o rotor que faz girar o gerador e produz eletricidade A fonte eólica: A quantidade de energia disponível no vento varia de acordo com as estações e as horas do dia. A topografia e a rugosidade do solo também têm grande influência na distribuição de freqüência de ocorrência de velocidade do vento em um local. Além disso, a quantidade de energia eólica extraível numa região depende das características de desempenho, altura de operação e espaçamento horizontal dos sistemas de conversão de energia eólica instalados Tipos de turbinas eólicas: Turbinas eólicas de eixo horizontal: podem ser de uma, duas, três, quatro pás ou multipás. A de uma pá requer um contrapeso para eliminar a vibração. As de duas pás são mais usadas por serem fortes, simples e mais baratas do que as de três pás. As de três pás, no entanto, distribui as tensões melhor quando a máquina gira durante as mudanças de direção do vento. As multipás não são muito usadas, pois são menos eficientes.

7 9 Figura1- Tipos de turbina eólica do eixo horizontal. Turbinas eólicas do eixo vertical: não são muito usadas, pois o aproveitamento do vento é menor. As mais comuns são três: SAVONIUS, DARRIEUS E MOLINETE. Figura 2- Tipos de turbina eólica do eixo vertical. A potência máxima extraída de uma turbina eólica é: P max. = 16/27. 1/2. P.A.V. < 0,593 No qual temos que:

8 10 P = densidade do ar (tabelado). A = área correspondente ao diâmetro da área varrida pelas pás V = velocidade do vento A potência máxima não ultrapassa 59,3% de eficiência. Este valor é também chamado de limite de BETZ e já foi provado cientificamente Circulação global do vento: Energia eólica é uma forma de energia solar. Os ventos aliviam a temperatura atmosférica e as diferenças de pressão causadas pelo aquecimento irregular da superfície da Terra. Enquanto o sol aquece o ar, água e terra de um lado da Terra, o outro lado é resfriado por radiação térmica para o espaço. Diariamente a rotação da Terra espalha esse ciclo de aquecimento e resfriamento sobre sua superfície. Mas, nem toda superfície da Terra responde ao aquecimento da mesma forma. Por exemplo, um oceano se aquecerá mais lentamente que as terras adjacentes porque água tem uma capacidade maior de "estocar" calor. Dessa diferente taxa de aquecimento e resfriamento são criadas enormes massas de ar com temperatura, mistura e características de massas de ar oceânicas ou terrestres, ou quentes e frias. A colisão destas duas massas de ar, quente e fria, geram os ventos da Terra Relação entre velocidade do vento e altura: A velocidade do vento em um determinado local aumenta drasticamente com a altura. A extensão pela qual a velocidade do vento

9 11 aumenta com a altura é governada por um fenômeno chamado "wind shear". Fricção entre ar mais lentos e mais rápidos conduz ao aquecimento, velocidade do vento mais baixa e muito menos energia de vento disponível perto do solo. Apresentamos abaixo uma figura que ilustra as diferentes áreas (urbana, subúrbios, ou ao nível do mar) e a relação entre suas alturas e velocidades de ventos. Figura 3- Relação entre diferentes áreas e velocidades do vento Componentes de um Sistema Eólico: Um sistema eólico é constituído por vários componentes que devem trabalhar em harmonia de forma a propiciar um maior rendimento final. Para efeito de estudo global da conversão eólica devem ser considerados os seguintes componentes: Vento: Disponibilidade energética do local destinado à instalação do sistema eólico. Rotor: Responsável por transformar a energia cinética do vento em energia mecânica de rotação.

10 12 Transmissão e Caixa Multiplicadora: Responsável por transmitir a energia mecânica entregue pelo eixo do rotor até a carga. Alguns geradores não utilizam este componente; neste caso, o eixo do rotor é acoplado diretamente à carga. Gerador Elétrico: Responsável pela conversão da energia mecânica em energia elétrica. Mecanismo de Controle: Responsável pela orientação do rotor, controle de velocidade, controle da carga, etc. Torre: Responsável por sustentar e posicionar o rotor na altura conveniente. Sistema de Armazenamento: Responsável por armazenar a energia para produção de energia firme a partir de uma fonte intermitente. Transformador: Responsável pelo acoplamento elétrico entre o aerogerador e a rede elétrica. Acessórios: São os componentes periféricos.

11 13 Figura 4- Bomba eólica com acionamento hidráulico. A energia eólica pode ser convertida em energia útil por dois tipos de sistemas bem distintos, um de construção simples, o moinho de vento, que a humanidade utiliza já há anos para produzir energia mecânica, e o outro, o aerogerador, que serve para produção de eletricidade e para o qual a experiência atual é muito limitada, mas que, em contrapartida, atraí muito interesse para o futuro. Até a década de 30, os cataventos eram muito populares entre os agricultores norte-americanos, essencialmente para o bombeamento de água. O bombeamento d'água foi uma das primeiras aplicações da energia eólica convertida. Basicamente, um sistema de bombeamento é constituído por rotor eólico, bomba hidráulica, transmissão e dispositivo de controle.

12 14 Figura 5- Alavanca de Arquimedes. Descreve-se a seguir o processo de determinação do potencial eólico para bombeamento Regras gerais da energia eólica Existe uma regra que dá a potência gerada pelos cata-ventos e turbinas de vento. É importante ressaltar que esta regra é teórica e na prática, não conseguimos converter toda essa potência (teórica) em potência útil. A taxa de conversão é de aproximadamente de 59%, quando o sistema funciona de maneira otimizada. Tentaremos apresentar de uma forma sucinta a demonstração desta fórmula: Potência é igual ao trabalho (Energia) dividido pelo tempo:

13 15 O trabalho realizado pelo vento que neste caso é igual a sua energia cinética é:,então:, mas como, temos: No qual é a densidade do ar, V é a velocidade do vento e A é a área varrida pelas hélices do rotor. Talvez seja esta a fórmula mais importante para se conhecer o aproveitamento da energia eólica. Como exemplo: Um vento passa de 10km/hora para 11 km/hora (aumento de 10% ) a potência se eleva em 33%, o que mostra como é importante a escolha de um lugar com vento mais velozes para o melhor aproveitamento da energia eólica. Outro exemplo é sobre a área varrida pelo rotor. Com um hélice de 3 m de diâmetro e um vento de 32 km/hora teríamos uma potência de 1000 W; se dobrarmos o diâmetro da hélice para 6 m e mantivermos o vento em 32 km/hora a potência irá para 4000 W. Isto ocorre pois a área varia com o quadrado do raio, ou seja, dobrando-se a área do rotor aumentamos a potência em quatro vezes.

14 16 Figura 6- Hélice de uma turbina de vento. O potencial eólico "P" disponível do vento, é obtida pela equação (1): P/A = Potencial eólico (W/m 2 ); k = Valor tabelado; V = Velocidade do vento (m/s). Onde "k" é um valor tabelado a ser empregado no cálculo do potencial eólico para diferentes unidades de P, A e V. A equação (1) fornece o potencial energético do vento. Porém, apenas uma fração desse potencial poderá ser realmente convertido em trabalho útil por um cata-vento por exemplo. Através de pesquisas realizadas por Betz, chegou-se à conclusão que o catavento ideal consegue captar apenas 59,3% da potência disponível do vento. Essa porcentagem da potência do vento, que é possível ser captada por um motor eólico, tem sido denominada de "coeficiente de potência máxima

15 17 (Cp)". Segundo estudos desenvolvidos, o valor de 0,593 para "Cp" não levam em conta as perdas aerodinâmicas no rotor, as variações da velocidade nos vários pontos da área de captação, o tipo de rotor e outras variáveis. Assim, na prática, o coeficiente "Cp" geralmente não ultrapassa o valor 0,3. A avaliação das potencialidades para utilização de motores eólicos, a partir dos dados dos ventos nos locais em estudo, pode ser realizada através da equação (2): A determinação do potencial eólico fornece informações necessárias ao planejamento e utilização dessa fonte natural de energia de uma forma racional. Deve-se saber o quanto de energia está disponível e até que ponto pode ser convertido em energia mecânica ou elétrica. A conversão subseqüente em potência de bombeamento resulta numa redução de potência disponível que depende das eficiências da transmissão e da bomba. Numa primeira estimativa, para sistemas eólicos de bombeamento d'água, esses efeitos levam à seguinte regra prática: a Potência Hidráulica média de saída, num dado local com uma determinada velocidade média do vento é calculado pela equação (3): P hidr - Potência hidráulica (W);

16 18 A - Área da pá (m 2 ); V - Velocidade eólica média (m/s). Após a determinação da potência hidráulica verificou-se a vazão de água bombeada, contra altura manométrica. Este cálculo é fundamental para determinação do tipo e tamanho do sistema. É dado pela equação (4): Q m - Vazão (m 3 /h); P hidr - Potência hidráulica (W); a - Densidade da água (1000 kg/m 3 ); g - Aceleração da gravidade (9,8 m/s 2 ); H m - Altura manométrica (m). 2- CONCEPÇÃO DO PROJETO INTEGRADOR: Este trabalho objetiva a elaboração de um projeto envolvendo a concepção e construção de uma bomba eólica.

17 19 3- CARACTERÍSTICAS DO PROJETO: O projeto consiste em transformar energia eólica, a partir de um ventilador padrão que foi fornecido pela Instituição (UNINOVE), em energia mecânica. O aparato deve elevar até uma altura (h), certa massa de água contida em um recipiente retangular transparente. 4- MATERIAL UTILZADO: 01 Hélice; 01 Suporte plástico da hélice; 02 Base da haste (Alumínio); 01 Haste trefilado (aço); 01 Excêntrico (aço inox); 01 Bomba de ar; 01 Suporte da bomba; 01 Mangueira pneumática (8mm); 02 Conexões; 01 Válvula reguladora; 01 Recipiente com tampa (vidro e acrílico). 01 Tubo transparente (38,8mm). 5- MEMORIAL DESCRITIVO: Colocamos em pratica nossa primeira idéia, pensamos em partir do principio de que podíamos vencer a pressão atmosférica usando como

18 20 referencia a pistola de pintura, que usa o ar em alta velocidade eliminando o vácuo existente dentro do tubo fazendo com que suba o liquido existente dentro do recipiente,no dia 17/09/2009 fizemos um funil de cuprino que foi acoplado na frente do ventilador captando o ar fornecido por ele,porem não obtivemos sucesso porque o ar não foi captado cem por cento pelo funil perdemos o ar que passava pelas laterais das hélices e saia pela parte traseira do ventilador. Figura 7- Primeiro protótipo. Em seguida 22/09/2009 usamos um dínamo, não dando certo novamente por que este não satisfazia a nossa necessidade, a quantidade de ar que mandava através das mangueiras era insuficiente para criar força necessária para impulsionar o volume contido dentro do recipiente,outro fator negativo foram as hélices com poucas pás e muito pesadas portanto outro insucesso. (sem figura).

19 21 Em 20/11/2009 outra tentativa usamos um pistão pneumático adaptado com excêntrico na extremidade da haste que por sua vez e encaixado em uma engrenagem de menor diâmetro (10mm) que faz parte com outro diâmetro (40mm), maior porem estas engrenagens deveriam estar invertidas para que pudéssemos ganhar em velocidade de giro tentamos inverte-las sem sucesso, o suporte não suportava o tamanho da engrenagem maior, limamos para encaixá-la, o suporte ficou muito fraco não resistindo e acabou quebrando. Figura 8- Segundo protótipo. Figura 9- Segundo protótipo adaptado. Finalmente conseguimos, fazer algumas adaptações importantes ao projeto,trocamos o pistão pneumático pela bomba, aumentamos o excêntrico,criamos uma válvula reguladora de pressão aumentamos o raio das hélices que deu ganho de potencia pela captação de mais ar pelas hélices, consequentemente tivemos ganho natural de volume na bomba pneumática o suficiente para manter a força constante criando uma pressão estável dentro do recipiente capaz de elevar a coluna de água através de um tubo colocado dentro do recipiente sobre saindo alguns

20 22 centímetros acima desta cuba, portanto em 24/11/2009 obtivemos sucesso em nosso experimento. Figura 9- Protótipo definitivo. 6- CÁLCULOS DESCRITIVOS: 6.1- Legenda:

21 23 Ǿ = diâmetro H e h = altura l = comprimento e profundidade b = base V = volume H man = altura manométrica H tubo = altura máxima ρ = densidade g = gravidade v = velocidade A = área F = força P = pressão 6.2- Dimensional: Hélice

22 24 Ǿ = 400 mm rh = 200 mm rh = 0,20 m Tubo transparente - cilindro Ǿ = 38,8 mm H tubo = 700 mm H man = 90 mm H tubo = 0,70 m H man = 0,09 m H tubo - man = 0,61 m A = 2.π. r. h + π. r 2 A = 87, m 2 Bomba de Ar Ǿ = 34 mm r = 17 mm h = 49 mm Ǿ EXC = 7 cm rv = 0,07 m ρ ar = 1,2 kg/m 3 g = 9,8 m 2 /s v = 80 rpm v = 40 rps (rotações por segundo) Recipiente de vidro b = 304 mm

23 25 h = 200 mm l = 151 mm ρ H2O = 1,00 g/cm 3 ρ H2O = 997,0479 kg/m Memorial de cálculos (aplicação fórmulas físicas e matemáticas): Bomba de Ar cilindro A = 2.π. r. h + π. r 2 A = 11, m 2 V = π. r 2. h V = 44, m 3 Recipiente de vidro retângulo A = b.h A = 60, m 3 V = b.l. h V = 9, m 3 Equação de Bernoulli P 1 = H tubo-man. ρ H2O. g + ρ H2O. H man. g

24 26 P 1 = 14, kg. m/ m 2.s 2 - P 1 = 14, N/m 2 ou P 1 = 14, Pa F 1 = P 1 F 1 = 0, N A cil F 1. rv = F 2. rh F 2 = F 1. rv F 2 = 0, N Rh Portanto F 1 > F 2 7- RESULTADOS E DISCUSSÕES: Com a análise dos cálculos foi possível determinar que a água subirá pelo tubo cilindríco, pois a força exercida em F 1 é menor que em F 2. Nos ensaios realizados foi considerado a altura máxima de 0,70 m em relação a velocidade de 40 rotações por segundo, isto significa que houve a possibilidade de se elevar a água no tubo a um altura de 0,50 m. 8- CONCLUSÃO:

25 27 A partir da combinação da força do vento acionando hélices, através de uma combinação mecânica, concluímos que do principio da transformação de energia eólica em energia mecânica fizemos elevar uma coluna de água através de um tubo plástico satisfazendo em parte o objetivo com estes resultados alcançados, também levamos em conta as perdas durante o processo as quais influenciaram diretamente no resultado final que ficou dentro do esperado. 9- REFERÊNCIAS BIBLIOGRAFICAS: HALLIDAY, D. E.; RESNICK, R. Fundamentos de Física, 4. ed., v.2,., Rio de Janeiro: Livros Técnicos e Científicos Editora, NETO, P. A. B. Energia Eólica. UFLA/FAEPE, Lavras SEARS, F. W. E; ZEMANSKY, M. W. Física, 2. ed., v.1, Brasilia: Universidade de Brasília, 1973.

26 10- ANEXOS: 28

Geração de energia elétrica

Geração de energia elétrica Geração de energia elétrica Capítulo 5 Sistemas eólicos de geração de energia elétrica Lineu Belico dos Reis O vento, movimento do ar na atmosfera terrestre, é principalmente gerado pelo maior aquecimento

Leia mais

Turbina eólica: conceitos

Turbina eólica: conceitos Turbina eólica: conceitos Introdução A turbina eólica, ou aerogerador, é uma máquina eólica que absorve parte da potência cinética do vento através de um rotor aerodinâmico, convertendo em potência mecânica

Leia mais

MÁQUINAS HIDRÁULICAS AULA 15 TURBINAS A VAPOR PROF.: KAIO DUTRA

MÁQUINAS HIDRÁULICAS AULA 15 TURBINAS A VAPOR PROF.: KAIO DUTRA MÁQUINAS HIDRÁULICAS AULA 15 TURBINAS A VAPOR PROF.: KAIO DUTRA Usinas Termoelétricas As turbinas a vapor são máquinas que utilizam a elevada energia cinética da massa de vapor expandido em trabalho de

Leia mais

Fontes Renováveis Não-Convencionais Parte I

Fontes Renováveis Não-Convencionais Parte I Fontes Renováveis Não-Convencionais Parte I Prof. Antonio Simões Costa Labspot - EEL A. Simões Costa (Labspot - EEL) Fontes Renováveis 1 / 24 Desenvolvimento Histórico da Energia Eólica (1) Primeira turbina

Leia mais

INTRODUÇÃ.D 2.1 Escalas de movimento do ar, 7 2.2 As radiações solar e terrestre como causas do vento, 7 2.3 Movimento do ar causado pelas forças do g

INTRODUÇÃ.D 2.1 Escalas de movimento do ar, 7 2.2 As radiações solar e terrestre como causas do vento, 7 2.3 Movimento do ar causado pelas forças do g INTRODUÇÃ.D 2.1 Escalas de movimento do ar, 7 2.2 As radiações solar e terrestre como causas do vento, 7 2.3 Movimento do ar causado pelas forças do gradiente de pressão atmosférica, 9 2.4 A força de Coriolis,

Leia mais

Variação na Curva do Sistema

Variação na Curva do Sistema Variação na Curva do Sistema Envelhecimento da Tubulação Variação dos níveis de Sucção e Recalque ou variação de Hg MOTIVAÇÕES: Universidade Federal de Juiz de Fora - UFJF Associação de Bombas Inexistência

Leia mais

LISTA DE EXERCÍCIOS FENÔMENOS DE TRANSPORTE - ESTÁTICA DOS FLUIDOS -

LISTA DE EXERCÍCIOS FENÔMENOS DE TRANSPORTE - ESTÁTICA DOS FLUIDOS - LISTA DE EXERCÍCIOS FENÔMENOS DE TRANSPORTE - ESTÁTICA DOS FLUIDOS - 1) Um reservatório de água possui formato cilíndrico com altura de 20m e diâmetro de 5m. Qual a pressão efetiva no fundo do reservatório

Leia mais

Bombas & Instalações de Bombeamento

Bombas & Instalações de Bombeamento 1. Definições 2. Grandezas envolvidas no cálculo das bombas 3. Cálculos da altura manométrica e potência de acionamento das bombas 4. Curvas 5. Cavitação 6. Arranjo de bombas Definições : as máquinas hidráulicas

Leia mais

Fenômenos de Transporte I Lista de Exercícios Conservação de Massa e Energia

Fenômenos de Transporte I Lista de Exercícios Conservação de Massa e Energia Fenômenos de Transporte I Lista de Exercícios Conservação de Massa e Energia Exercícios Teóricos Formulário: Equação de Conservação: Acúmulo = Entrada - Saída + Geração - Perdas Vazão Volumétrica: Q v.

Leia mais

Sistema elétrico. Geração Transmissão Transformação

Sistema elétrico. Geração Transmissão Transformação Sistema elétrico O sistema elétrico está formado pelo conjunto de estruturas e obras civis responsáveis por enviar energia elétrica aos consumidores O sistema elétrico está dividido em 3 partes principais

Leia mais

Termodinâmica Aplicada I Lista de exercícios 1ª Lei para Volume de Controle

Termodinâmica Aplicada I Lista de exercícios 1ª Lei para Volume de Controle Termodinâmica Aplicada I Lista de exercícios 1ª Lei para Volume de Controle 1. Água evapora no interior do tubo de uma caldeira que opera a 100 kpa. A velocidade do escoamento de líquido saturado que alimenta

Leia mais

Título da Pesquisa: Palavras-chave: Campus: Tipo Bolsa Financiador Bolsista (as): Professor Orientador: Área de Conhecimento: Resumo

Título da Pesquisa:  Palavras-chave: Campus: Tipo Bolsa Financiador Bolsista (as): Professor Orientador: Área de Conhecimento: Resumo Título da Pesquisa: Estudo Sobre energia solar e suas aplicações á inclusão social da população de baixa renda e ao programa Luz Para Todos. Palavras-chave: Energia solar, Aquecedor solar, Painel fotovoltaico

Leia mais

Capítulo 4 - Medição de rotação, torque e potência

Capítulo 4 - Medição de rotação, torque e potência Capítulo 5 - Medição de rotação, torque e potência 5.1 - Medição de rotação Os instrumentos usados para medir a velocidade angular de eixos rotativos são chamados tacômetros. Existem basicamente três tipos

Leia mais

SISTEMAS HIDRÁULICOS E PNEUMÁTICOS.

SISTEMAS HIDRÁULICOS E PNEUMÁTICOS. SISTEMAS HIDRÁULICOS E PNEUMÁTICOS. FUNDAMENTOS DE HIDROSTÁTICA Hidrostática é o ramo da Física que estuda a força exercida por e sobre líquidos em repouso. Este nome faz referência ao primeiro fluido

Leia mais

física caderno de prova instruções informações gerais 13/12/2009 boa prova! 2ª fase exame discursivo

física caderno de prova instruções informações gerais 13/12/2009 boa prova! 2ª fase exame discursivo 2ª fase exame discursivo 13/12/2009 física caderno de prova Este caderno, com dezesseis páginas numeradas sequencialmente, contém dez questões de Física. Não abra o caderno antes de receber autorização.

Leia mais

Apostila de Física 31 Hidrostática

Apostila de Física 31 Hidrostática Apostila de Física 31 Hidrostática 1.0 Definições 1.1 Conceito de Pressão Pressão Relação entre a intensidade da força que atua perpendicularmente e a área que ela se distribui. Uma força exerce maior

Leia mais

Pressão INSTRUMENTAÇÃO E CONTROLE. Unidades usuais de pressão. Conversão de Unidades de Pressão. Tipos de pressão. Quanto a referência utilizada

Pressão INSTRUMENTAÇÃO E CONTROLE. Unidades usuais de pressão. Conversão de Unidades de Pressão. Tipos de pressão. Quanto a referência utilizada Pressão É a razão entre a força exercida sobre uma superfície e a área desta superfície. INSTRUMENTAÇÃO E CONTROLE Medidores de pressão Unidades SI P: pressão em N/m 2 = Pa = Pascal F: força normal (ortogonal)

Leia mais

ATUADORES PNEUMÁTICOS

ATUADORES PNEUMÁTICOS ATUADORES PNEUMÁTICOS 1 - INTRODUÇÃO Os atuadores pneumáticos são componentes que transformam a energia do ar comprimido em energia mecânica, isto é, são elementos que realizam trabalho. Eles podem ser

Leia mais

Laboratório de Física I. Experiência 3 Determinação do coeficiente de viscosidade de líquidos. 26 de janeiro de 2016

Laboratório de Física I. Experiência 3 Determinação do coeficiente de viscosidade de líquidos. 26 de janeiro de 2016 4310256 Laboratório de Física I Experiência 3 Determinação do coeficiente de viscosidade de líquidos 1 o semestre de 2016 26 de janeiro de 2016 3. Determinação do coeficiente de viscosidade de líquidos

Leia mais

Sistemas Geotérmicos no Brasil Desafios e Oportunidades Edison Tito Guimarães Datum 24/02/2016 - Rio de Janeiro

Sistemas Geotérmicos no Brasil Desafios e Oportunidades Edison Tito Guimarães Datum 24/02/2016 - Rio de Janeiro Projeto Demonstrativo para o Gerenciamento Integrado no Setor de Chillers Sistemas Geotérmicos no Brasil Desafios e Oportunidades Edison Tito Guimarães Datum 24/02/2016 - Rio de Janeiro Execução Implementação

Leia mais

UNIVERSIDADE FEDERAL DE GOIÁS ESCOLA DE AGRONOMIA E ENGENHARIA DE ALIMENTOS SETOR DE ENGENHARIA RURAL. Prof. Adão Wagner Pêgo Evangelista

UNIVERSIDADE FEDERAL DE GOIÁS ESCOLA DE AGRONOMIA E ENGENHARIA DE ALIMENTOS SETOR DE ENGENHARIA RURAL. Prof. Adão Wagner Pêgo Evangelista UNIVERSIDADE FEDERAL DE GOIÁS ESCOLA DE AGRONOMIA E ENGENHARIA DE ALIMENTOS SETOR DE ENGENHARIA RURAL CARNEIRO HIDRÁULICO Prof. Adão Wagner Pêgo Evangelista I - INTRODUÇÃO O carneiro hidráulico, também

Leia mais

Física 2 - Termodinâmica

Física 2 - Termodinâmica Física 2 - Termodinâmica Calor e Temperatura Criostatos de He 3-272.85 C Termodinâmica Energia Térmica Temperatura, Calor, Entropia... Máquinas Térmicas : Refrigeradores, ar-condicionados,... Física Térmica

Leia mais

1) Determine o peso de um reservatório de óleo que possui uma massa de 825 kg.

1) Determine o peso de um reservatório de óleo que possui uma massa de 825 kg. PONTÍFICIA UNIVERSIDADE CATÓLICA DE GOIÁS PRÓ-REITORIA DE GRADUAÇÃO ESCOLA DE ENGENHARIA Disciplina: Fenômenos de Transporte Professor: M. Sc. Felipe Corrêa Veloso dos Santos Lista de exercício pré-avaliação

Leia mais

DEPARTAMENTO DE ENERGIA LABORATÓRIO DE MECÂNICA DOS FLUIDOS MEDIDAS DE PRESSÃO

DEPARTAMENTO DE ENERGIA LABORATÓRIO DE MECÂNICA DOS FLUIDOS MEDIDAS DE PRESSÃO Nome: unesp DEPRTMENTO DE ENERGI Turma: LBORTÓRIO DE MECÂNIC DOS FLUIDOS MEDIDS DE PRESSÃO - OBJETIVO Consolidar o conceito de pressão conhecendo os diversos instrumentos de medida. - INTRODUÇÃO TEÓRIC..

Leia mais

maior lucro menores custos

maior lucro menores custos maior lucro menores custos aumente os lucros da sua empresa através da eficiência energética O setor industrial é responsável por 43% do consumo anual de energia em nosso país. Dentro deste setor, onde

Leia mais

Dimensionamento de um sistema fotovoltaico. Fontes alternativas de energia - dimensionamento de um sistema fotovoltaico 1

Dimensionamento de um sistema fotovoltaico. Fontes alternativas de energia - dimensionamento de um sistema fotovoltaico 1 Dimensionamento de um sistema fotovoltaico Fontes alternativas de energia - dimensionamento de um sistema fotovoltaico 1 Sistemas fotovoltaicos Geralmente são utilizado em zonas afastadas da rede de distribuição

Leia mais

Apostila de Física 12 Leis da Termodinâmica

Apostila de Física 12 Leis da Termodinâmica Apostila de Física 12 Leis da Termodinâmica 1.0 Definições Termodinâmica estuda as relações entre as quantidades de calor trocadas e os trabalhos realizados num processo físico, envolvendo um/um sistema

Leia mais

Hidráulica Geral (ESA024A)

Hidráulica Geral (ESA024A) Departamento de Engenharia Sanitária e Ambiental Hidráulica Geral (ESA04A) º semestre 011 Terças de 10 às 1 h Quintas de 08 às 10h Análise dos Sistemas de Recalque Objetivos -Analisar as condições de funcionamento

Leia mais

Definição Pressão exercida por fluídos Teorema de Stevin Pressão atmosférica Vasos comunicantes Princípio de Pascal Aplicação prensa hidráulica

Definição Pressão exercida por fluídos Teorema de Stevin Pressão atmosférica Vasos comunicantes Princípio de Pascal Aplicação prensa hidráulica Definição Pressão exercida por fluídos Teorema de Stevin Pressão atmosférica Vasos comunicantes Princípio de Pascal Aplicação prensa hidráulica PRESSÃO Suponhamos que sobre uma superfície plana de área

Leia mais

Com relação aos projetos de instalações hidrossanitárias, julgue o item a seguir.

Com relação aos projetos de instalações hidrossanitárias, julgue o item a seguir. 57.(CREA-RJ/CONSULPLAN/0) Uma bomba centrífuga de 0HP, vazão de 40L/s e 30m de altura manométrica está funcionando com 750rpm. Ao ser alterada, a velocidade para 450 rpm, a nova vazão será de: A) 35,5L/s

Leia mais

Vestibular Nacional Unicamp 1998. 2 ª Fase - 13 de Janeiro de 1998. Física

Vestibular Nacional Unicamp 1998. 2 ª Fase - 13 de Janeiro de 1998. Física Vestibular Nacional Unicamp 1998 2 ª Fase - 13 de Janeiro de 1998 Física 1 FÍSICA Atenção: Escreva a resolução COMPLETA de cada questão nos espaços reservados para as mesmas. Adote a aceleração da gravidade

Leia mais

Aula 6 Fontes Convencionais Geração Hidráulica

Aula 6 Fontes Convencionais Geração Hidráulica PEA 3100 Energia, Meio Ambiente e Sustentabilidade Aula 6 Fontes Convencionais Geração Hidráulica Conceitos básicos A usina hidrelétrica Tipologia Energia hidráulica no Brasil slide 1 / 35 Geração hidrelétrica

Leia mais

1º exemplo : Um exemplo prático para a determinação da vazão em cursos d'água

1º exemplo : Um exemplo prático para a determinação da vazão em cursos d'água 185 Curso Básico de Mecânica dos Fluidos A partir deste ponto, procuramos mostrar através de 2 exemplos práticos a interligação da nossa disciplina com disciplinas profissionalizantes da Engenharia, além

Leia mais

Aula 16 assíncrona Conteúdo:

Aula 16 assíncrona Conteúdo: Aula 16 assíncrona Conteúdo: Fontes alternativas de energia: eólica e nuclear. Fontes alternativas de energia: Solar e biogás Habilidade: Valorizar os progressos da química e suas aplicações como agentes

Leia mais

Objetivos da disciplina:

Objetivos da disciplina: Aplicar e utilizar princípios de metrologia em calibração de instrumentos e malhas de controle. Objetivos da disciplina: Aplicar e utilizar princípios de metrologia calibração de instrumentos e malhas

Leia mais

Segunda Lei da Termodinâmica

Segunda Lei da Termodinâmica Segunda Lei da Termodinâmica (Análise restrita a um ciclo) Da observação experimental, sabe-se que se um dado ciclo termodinâmico proposto não viola a primeira lei, não está assegurado que este ciclo possa

Leia mais

DISTRIBUIÇÕES DE VENTOS EXTREMOS. Função Densidade de Probabilidade para Ventos Extremos Tipo I (Gumbel) exp

DISTRIBUIÇÕES DE VENTOS EXTREMOS. Função Densidade de Probabilidade para Ventos Extremos Tipo I (Gumbel) exp II. DISTRIBUIÇÕES DE VENTOS EXTREMOS A seguir, são apresentadas as distribuições de probabilidade utilizadas no desenvolvimento dos mapas de ventos extremos para o Rio Grande do Sul, conforme descrito

Leia mais

Introdução aos sistemas pneumáticos

Introdução aos sistemas pneumáticos PNEUMÁTICA O termo pneumática refere-se ao estudo e aplicação do ar comprimido. Produção Os principais tipos de compressores pneumáticos são o compressor volumétrico e o compressor dinâmico. Símbolo do

Leia mais

A forma geral de uma equação de estado é: p = f ( T,

A forma geral de uma equação de estado é: p = f ( T, Aula: 01 Temática: O Gás Ideal Em nossa primeira aula, estudaremos o estado mais simples da matéria, o gás, que é capaz de encher qualquer recipiente que o contenha. Iniciaremos por uma descrição idealizada

Leia mais

NÚCLEO DE ENGENHARIA DE ÁGUA E SOLO

NÚCLEO DE ENGENHARIA DE ÁGUA E SOLO UNIVERSIDADE FEDERAL DO RECÔNCAVO DA BAHIA Centro de Ciências Agrárias, Biológicas e Ambientais NÚCLEO DE ENGENHARIA DE ÁGUA E SOLO Vital Pedro da Silva Paz vpspaz@ufba.br Francisco A. C. Pereira pereiras@ufba.br

Leia mais

Curso de Certificação de Projetista de Térmica- REH

Curso de Certificação de Projetista de Térmica- REH Nome: TODAS AS RESPOSTAS DEVERÃO SER JUSTIFICADAS Grupo 1 (7,5 valores) Considere as peças desenhadas anexas correspondentes ao projeto de uma moradia a construir no concelho de Alcochete, a uma altitude

Leia mais

LISTA DE EXERCÍCIOS Trabalho, Calor e Primeira Lei da Termodinâmica para Sistemas

LISTA DE EXERCÍCIOS Trabalho, Calor e Primeira Lei da Termodinâmica para Sistemas - 1 - LISTA DE EXERCÍCIOS Trabalho, Calor e Primeira Lei da Termodinâmica para Sistemas 1. Um aquecedor de ambientes a vapor, localizado em um quarto, é alimentado com vapor saturado de água a 115 kpa.

Leia mais

Tecnologia em Automação Industrial Mecânica dos Fluidos Lista 03 página 1/5

Tecnologia em Automação Industrial Mecânica dos Fluidos Lista 03 página 1/5 Curso de Tecnologia em utomação Industrial Disciplina de Mecânica dos Fluidos prof. Lin Lista de exercícios nº 3 (Estática/manometria) 1. Determine a pressão exercida sobre um mergulhador a 30 m abaixo

Leia mais

UNIVERSIDADE FEDERAL DO PARANÁ SETOR DE TECNOLOGIA DEPARTAMENTO DE ENGENHARIA MECÂNICA TM-364 MÁQUINAS TÉRMICAS I. Máquinas Térmicas I

UNIVERSIDADE FEDERAL DO PARANÁ SETOR DE TECNOLOGIA DEPARTAMENTO DE ENGENHARIA MECÂNICA TM-364 MÁQUINAS TÉRMICAS I. Máquinas Térmicas I Eu tenho três filhos e nenhum dinheiro... Porque eu não posso ter nenhum filho e três dinheiros? - Homer J. Simpson UNIVERSIDADE FEDERAL DO PARANÁ SETOR DE TECNOLOGIA DEPARTAMENTO DE ENGENHARIA MECÂNICA

Leia mais

Módulo 08 - Mecanismos de Troca de Calor

Módulo 08 - Mecanismos de Troca de Calor Módulo 08 - Mecanismos de Troca de Calor CONCEITOS FUNDAMENTAIS Vamos iniciar este capítulo conceituando o que significa calor, que tecnicamente tem um significado muito diferente do que usamos no cotidiano.

Leia mais

Suponha que a velocidade de propagação v de uma onda sonora dependa somente da pressão P e da massa específica do meio µ, de acordo com a expressão:

Suponha que a velocidade de propagação v de uma onda sonora dependa somente da pressão P e da massa específica do meio µ, de acordo com a expressão: PROVA DE FÍSICA DO VESTIBULAR 96/97 DO INSTITUTO MILITAR DE ENGENHARIA (03/12/96) 1 a Questão: Valor : 1,0 Suponha que a velocidade de propagação v de uma onda sonora dependa somente da pressão P e da

Leia mais

v = velocidade média, m/s; a = aceleração média do corpo, m/s 2 ;

v = velocidade média, m/s; a = aceleração média do corpo, m/s 2 ; 1. Cinemática Universidade Estadual do Norte Fluminense Darcy Ribeiro Centro de Ciências e Tecnologias Agropecuárias - Laboratório de Engenharia Agrícola EAG 0304 Mecânica Aplicada Prof. Ricardo Ferreira

Leia mais

1.3.1 Princípios Gerais.

1.3.1 Princípios Gerais. 1.3 HIDRODINÂMICA UNIVERSIDADE FEDERAL DE GOIÁS ESCOLA DE AGRONOMIA E ENGENHARIA DE ALIMENTOS SETOR DE ENGENHARIA RURAL 1.3.1 Princípios Gerais. Prof. Adão Wagner Pêgo Evangelista 1 - NOÇÕES DE HIDRÁULICA

Leia mais

1) Cálculo do tempo de subida do objeto: V y. = V 0y. + γt s 0 = 4 10t s. t s. = 0,4s. 2) Cálculo do tempo total de vôo : t total.

1) Cálculo do tempo de subida do objeto: V y. = V 0y. + γt s 0 = 4 10t s. t s. = 0,4s. 2) Cálculo do tempo total de vôo : t total. 46 e FÍSICA No interior de um ônibus que trafega em uma estrada retilínea e horizontal, com velocidade constante de 90 km/h, um passageiro sentado lança verticalmente para cima um pequeno objeto com velocidade

Leia mais

Sexta aula de mecânica dos fluidos para engenharia química (ME5330) 23/03/2010

Sexta aula de mecânica dos fluidos para engenharia química (ME5330) 23/03/2010 Sexta aula de mecânica dos fluidos para engenharia química (ME5330) 23/03/2010 PLANEJAMENTO DA SEXTA AULA Ver quem fez Ver quem acertou Tirar as dúvidas Determinação da CCI pelo inversor de frequência

Leia mais

PREPARO DE GRÃOS DE SOJA PARA EXTRAÇÃO

PREPARO DE GRÃOS DE SOJA PARA EXTRAÇÃO PREPARO DE GRÃOS DE SOJA PARA EXTRAÇÃO Eng. Luiz Carlos Masiero L.C.Masiero Engenharia Industrial Jaú, SP Resumo: Se apresentam neste trabalho as considerações básicas do processo de preparação de grãos

Leia mais

Ar de combustão. Água condensada. Balanço da energia. Câmara de mistura. Convecção. Combustível. Curva de aquecimento

Ar de combustão. Água condensada. Balanço da energia. Câmara de mistura. Convecção. Combustível. Curva de aquecimento Ar de combustão O ar de combustão contém 21% de oxigênio, que é necessário para qualquer combustão. Além disso, 78% de nitrogênio está incorporado no ar. São requeridos aproximadamente 10 metros cúbicos

Leia mais

URE Sistemas de Ar Comprimido. URE - Sistemas de Ar Comprimido. 1

URE Sistemas de Ar Comprimido. URE - Sistemas de Ar Comprimido. 1 URE Sistemas de Ar Comprimido URE - Sistemas de Ar Comprimido. 1 Aplicação do ar comprimido (I) O ar comprimido é utilizado atualmente em larga escala nos mais diversos processos porque apresenta inúmeras

Leia mais

PRINCIPAIS TIPOS DE FUNDAÇÕES

PRINCIPAIS TIPOS DE FUNDAÇÕES PRINCIPAIS TIPOS DE FUNDAÇÕES CLASSIFICAÇÃO DAS FUNDAÇÕES -fundações superficiais (diretas, rasas); e - fundações profundas. D D 2B ou D 3m - fundação superficial D>2B e D >3m - fundação profunda B FUNDAÇÕES

Leia mais

ENERGIA. (dependentes da luz solar) como produtores de energia e, portanto, a base de toda a cadeia alimentar.

ENERGIA. (dependentes da luz solar) como produtores de energia e, portanto, a base de toda a cadeia alimentar. Luz Solar ENERGIA Sabemos que o Sol é a fonte de toda energia luminosa responsável pela existência da vida na Terra. As mais diversas formas de energia são, de alguma maneira, originadas pela influência

Leia mais

AULA A 1 INTRODUÇÃ INTR O ODUÇÃ E PERDA D A DE CARGA Profa Pr. C e C cília cília de de Castr o Castr o Bolina.

AULA A 1 INTRODUÇÃ INTR O ODUÇÃ E PERDA D A DE CARGA Profa Pr. C e C cília cília de de Castr o Castr o Bolina. AULA 1 INTRODUÇÃO E PERDA DE CARGA Profa. Cecília de Castro Bolina. Introdução Hidráulica É uma palavra que vem do grego e é a união de hydra = água, e aulos = condução/tubo é, portanto, uma parte da física

Leia mais

I TORNEIO DE INTEGRAÇÃO CIENTÍFICA TIC

I TORNEIO DE INTEGRAÇÃO CIENTÍFICA TIC I TORNEIO DE INTEGRAÇÃO CIENTÍFICA TIC EDITAL DO DESAFIO ÁREA: RECURSOS HÍDRICOS TEMA: BOMBEAMENTO ALTERNATIVO DE ÁGUA Maceió 2012 1- Introdução Diante da preocupação atual com a preservação do meio ambiente,

Leia mais

O que é energia solar?

O que é energia solar? ENERGIA SOLAR Renováveis O sol, o vento, a água e a biomassa são as fontes mais promissoras de energia hoje. O mundo não precisa investir em mais usinas a carvão e deve investir em alternativas para os

Leia mais

Universidade Federal do Pampa UNIPAMPA. Ondas Sonoras. Prof. Luis Gomez

Universidade Federal do Pampa UNIPAMPA. Ondas Sonoras. Prof. Luis Gomez Universidade Federal do Pampa UNIPAMPA Ondas Sonoras Prof. Luis Gomez SUMÁRIO Introdução Ondas sonoras. Características de som Velocidade do som Ondas sonoras em propagação Interferência Potencia, intensidade

Leia mais

Exercícios Gases e Termodinâmica

Exercícios Gases e Termodinâmica Exercícios Gases e Termodinâmica 1-O gás carbônico produzido na reação de um comprimido efervescente com água foi seco e recolhido àpressão de 1 atm e temperatura de 300K, ocupando um volume de 4 L. Se

Leia mais

ESTUDO COMPARATIVO ENTRE LÂMPADAS FLUORESCENTES E LED APLICADO NO IFC CAMPUS LUZERNA

ESTUDO COMPARATIVO ENTRE LÂMPADAS FLUORESCENTES E LED APLICADO NO IFC CAMPUS LUZERNA ESTUDO COMPARATIVO ENTRE LÂMPADAS FLUORESCENTES E LED APLICADO NO IFC CAMPUS LUZERNA Autores: Marina PADILHA, Felipe JUNG, Ernande RODRIGUES Identificação autores: Estudante de Graduação de Engenharia

Leia mais

Iluminação de Interiores com baixo custo ambiental e econômico

Iluminação de Interiores com baixo custo ambiental e econômico Iluminação de Interiores com baixo custo ambiental e econômico 1 Introdução 1.1 Problema Analisado 1.1.1 A Iluminação de Interiores e as tecnologias de desenvolvimento limpo Uma parte apreciável do consumo

Leia mais

UNIVERSIDADE DE SÃO PAULO DEPARTAMENTO DE GEOGRAFIA Disciplina: FLG 0253 - CLIMATOLOGIA I

UNIVERSIDADE DE SÃO PAULO DEPARTAMENTO DE GEOGRAFIA Disciplina: FLG 0253 - CLIMATOLOGIA I UNIVERSIDADE DE SÃO PAULO DEPARTAMENTO DE GEOGRAFIA Disciplina: FLG 0253 - CLIMATOLOGIA I 1. Objetivos da disciplina: 1.1 Fornecer os meios básicos de utilização dos subsídios meteorológicos à análise

Leia mais

FONTEDEHERON * I. Introdução. Umbelina G. Piubéli Sérgio Luiz Pibéli Departamento de Física UFMS Campo Grande MS. Resumo

FONTEDEHERON * I. Introdução. Umbelina G. Piubéli Sérgio Luiz Pibéli Departamento de Física UFMS Campo Grande MS. Resumo FONTEDEHERON * Umbelina G. Piubéli Sérgio Luiz Pibéli Departamento de Física UFMS Campo Grande MS Resumo A fonte de Heron parece desafiar a lei da conservação da energia. E- xistem diversas versões de

Leia mais

Ondas. Ondas termo genérico com relação ao meio marinho, vários mecanismos de formação.

Ondas. Ondas termo genérico com relação ao meio marinho, vários mecanismos de formação. Ondas Ondas termo genérico com relação ao meio marinho, vários mecanismos de formação. Tipos de ondas: capilares e de gravidade (de vento, de longo período e maré astronômica) Ondas de gravidade Formadas

Leia mais

Gerador Eólico de 24kW

Gerador Eólico de 24kW Anais do XVI Encontro de Iniciação Científica e Pós-Graduação do ITA XVI ENCITA / 2010 Instituto Tecnológico de Aeronáutica, São José dos Campos, SP, Brasil, 20 de outubro de 2010 Gerador Eólico de 24kW

Leia mais

BALANÇO ENERGÉTICO NUM SISTEMA TERMODINÂMICO

BALANÇO ENERGÉTICO NUM SISTEMA TERMODINÂMICO BALANÇO ENERGÉTICO NUM SISTEMA TERMODINÂMICO O que se pretende Determinar experimentalmente qual dos seguintes processos é o mais eficaz para arrefecer água à temperatura ambiente: Processo A com água

Leia mais

RESPOSTA: C. a) só a I. b) só a II. c) só a III. d) mais de uma. e) N.d.a. RESPOSTA: C

RESPOSTA: C. a) só a I. b) só a II. c) só a III. d) mais de uma. e) N.d.a. RESPOSTA: C 1. (ITA - 1969) Usando L para comprimento, T para tempo e M para massa, as dimensões de energia e quantidade de movimento linear correspondem a: Energia Quantidade de Movimento a) M L T -1... M 2 L T -2

Leia mais

Máquinas motrizes com a finalidade de transformar a maior parte da energia de escoamento contínuo da água que atravessa em trabalho mecânico.

Máquinas motrizes com a finalidade de transformar a maior parte da energia de escoamento contínuo da água que atravessa em trabalho mecânico. Máquinas motrizes com a finalidade de transformar a maior parte da energia de escoamento contínuo da água que atravessa em trabalho mecânico. Primeira máquina motriz hidráulica: Rodas d água (Virtruvio,

Leia mais

ENERGIA TÉRMICA: A Energia Térmica de um corpo é a energia cinética de suas moléculas e corresponde à sua temperatura.

ENERGIA TÉRMICA: A Energia Térmica de um corpo é a energia cinética de suas moléculas e corresponde à sua temperatura. CALOR 1 ENERGIA: É a capacidade de se realizar um trabalho. Ela se apresenta sob várias formas: cinética (de movimento), gravitacional, elástica (de molas), elétrica, térmica, radiante e outras. Mede-se

Leia mais

3 CLASSIFICAÇÃO DOS SISTEMAS. 3.1 Sistema Direto

3 CLASSIFICAÇÃO DOS SISTEMAS. 3.1 Sistema Direto 3 CLASSIFICAÇÃO DOS SISTEMAS 3.1 Sistema Direto No sistema direto, as peças de utilização do edifício estão ligadas diretamente aos elementos que constituem o abastecimento, ou seja, a instalação é a própria

Leia mais

Fontes Alternativas de Energia

Fontes Alternativas de Energia UDESC Universidade do Estado de Santa Catarina Departamento de Química DQM Curso de Engenharia de Produção e Sistemas Fontes Alternativas de Energia DEPS Departamento de Engenharia de Produção e Sistemas

Leia mais

14/01/2010 CONSERVAÇÃO DE ENERGIA ELÉTRICA CAP. 3 ESTUDOS DE CASOS CAP.3 ESTUDO DE CASOS CAP.3 ESTUDO DE CASOS. Mário C.G. Ramos

14/01/2010 CONSERVAÇÃO DE ENERGIA ELÉTRICA CAP. 3 ESTUDOS DE CASOS CAP.3 ESTUDO DE CASOS CAP.3 ESTUDO DE CASOS. Mário C.G. Ramos CONSERVAÇÃO DE ENERGIA ELÉTRICA CAP. 3 ESTUDOS DE CASOS Mário C.G. Ramos 1 CAP.3 ESTUDO DE CASOS Caso nº 1: Seleção de um motor elétrico adequado à potência mecânica exigida por um equipamento. A curva

Leia mais

2. TRANSFERÊNCIA OU TRANSFORMAÇÃO DE ENERGIA

2. TRANSFERÊNCIA OU TRANSFORMAÇÃO DE ENERGIA Física: 1º ano Jair Júnior Nota de aula (7/11/014) 1. ENERGIA Um dos princípios básicos da Física diz que a energia pode ser transformada ou transferida, mas nunca criada ou destruída. Então, o que é energia?

Leia mais

EME610 - Sistemas Hidropneumáticos Hidráulica 2

EME610 - Sistemas Hidropneumáticos Hidráulica 2 UNIFEI EME610 - Sistemas Hidropneumáticos Hidráulica 2 Elevador/Macaco hidráulico (Hydraulic Jack) Aula 02 Prof. José Hamilton Chaves Gorgulho Júnior Elevador/Macaco hidráulico (Hydraulic Jack) Elevador/Macaco

Leia mais

Objetivos da segunda aula da unidade 6. Introduzir a classificação da perda de carga em uma instalação hidráulica.

Objetivos da segunda aula da unidade 6. Introduzir a classificação da perda de carga em uma instalação hidráulica. 370 Unidade 6 - Cálculo de Perda de Carga Objetivos da segunda aula da unidade 6 Introduzir a classificação da perda de carga em uma instalação hidráulica. Caracterizar as condições para ocorrer à perda

Leia mais

Apresentação. Sistema de Recirculação Existem 2 sistemas de recirculação das esferas: Interno e Externo.

Apresentação. Sistema de Recirculação Existem 2 sistemas de recirculação das esferas: Interno e Externo. Apresentação A Bressane indústria Mecânica Ltda., fabrica dois tipos de Fusos de Esferas: Fusos Laminados e Fusos Retificados, com maior precisão de passo e tolerâncias mais apuradas. Realiza serviços

Leia mais

Apostila 2. Capitulo 8. Energia: O universo em movimento. Página 244

Apostila 2. Capitulo 8. Energia: O universo em movimento. Página 244 Apostila 2 Não é possív el exibir esta imagem no momento. Página 244 Capitulo 8 Energia: O universo em movimento LHC acelerador de partículas Utilizado para o estudo da energia. Definição? Não se define

Leia mais

LISTA DE EXERCÍCIOS - PRA FENÔMENOS DE TRANSPORTE

LISTA DE EXERCÍCIOS - PRA FENÔMENOS DE TRANSPORTE LISTA DE EXERCÍCIOS - PRA FENÔMENOS DE TRANSPORTE A - Viscosidade 1. (Exercício 1.1, pág. 11, Brunetti) A viscosidade cinemática ν de um óleo é de 0,028 m 2 /s e o seu peso específico relativo r é de 0,85.

Leia mais

recuperador de calor insert

recuperador de calor insert recuperador de calor insert O Recuperador de Calor é uma câmara de combustão em ferro fundido fechada, com porta em vidro cerâmico. Ao contrário da lareira aberta tradicional, onde 90% do calor simplesmente

Leia mais

DESENVOLVIMENTO DE UM PROTÓTIPO DE VEICULO AUTOSSUETENTAVEL. Jackson de Godoi Batista. Renato Franco de Camargo. Universidade São Francisco

DESENVOLVIMENTO DE UM PROTÓTIPO DE VEICULO AUTOSSUETENTAVEL. Jackson de Godoi Batista. Renato Franco de Camargo. Universidade São Francisco DESENVOLVIMENTO DE UM PROTÓTIPO DE VEICULO AUTOSSUETENTAVEL Jackson de Godoi Batista Renato Franco de Camargo Universidade São Francisco jacksongb@hotmail.com Resumo: A frota de carros a combustão que

Leia mais

Resistência térmica de contato

Resistência térmica de contato Experiência 5: estudo dos processos de transferência de calor na interface entre dois sólidos pedaço de porta de geladeira. o que observar:!"como é a área de contato entre as superfícies sólidas constante,

Leia mais

TT 25.002 09/05-1 REDUTORES TRANSMOTÉCNICA 1

TT 25.002 09/05-1 REDUTORES TRANSMOTÉCNICA 1 TT 25.002 09/05-1 REDUTORES TRANSMOTÉCNICA 1 Índice 1. Características Gerais 3 2. Formas Construtivas 4 3. Designação Erro! Indicador não definido. 4.1 STC 5 4.2 STF 6 4.3 STM 7 5. Seleção 8 5.1 Tabelas

Leia mais

Objetivos da sétima aula da unidade 5: Simular a experiência do medidor de vazão tipo tubo de Venturi

Objetivos da sétima aula da unidade 5: Simular a experiência do medidor de vazão tipo tubo de Venturi 319 Curso Básico de Mecânica dos Fluidos Objetivos da sétima aula da unidade 5: Simular a experiência do medidor de vazão tipo tubo de Venturi Propor a experiência do medidor tipo - tubo de Venturi 5.13.

Leia mais

Operação de rebitagem e montagem

Operação de rebitagem e montagem Operação de rebitagem e montagem O que são rebites? Tipos de rebites Prof. Fernando 1 E agora? Um mecânico tem duas tarefas: consertar uma panela cujo cabo caiu e unir duas barras chatas para fechar uma

Leia mais

FURADEIRAS COM BASE MAGNÉTICA

FURADEIRAS COM BASE MAGNÉTICA FURADEIRAS COM BASE MAGNÉTICA BASES MAGNÉTICAS BROCAS ANULARES 1 2 Você conhece as brocas A n u l a r e s? 3 Também chamadas de brocas copo ou brocas fresa, possuem enorme capacidade de corte! Devido ao

Leia mais

AULA PRÁTICA 10 BOMBA de PISTÂO ACIONADA POR RODA D`ÁGUA

AULA PRÁTICA 10 BOMBA de PISTÂO ACIONADA POR RODA D`ÁGUA 1!" AULA PRÁTICA 10 BOMBA de PISTÂO ACIONADA POR RODA D`ÁGUA Este conjunto é formado por uma máquina motriz (roda) que aciona uma bomba alternativa (de pistão). É de muita utilidade em sítios, fazendas

Leia mais

SOLDAGEM DOS METAIS CAPÍTULO 4 FÍSICA DO ARCO ARCO ELÉTRICO

SOLDAGEM DOS METAIS CAPÍTULO 4 FÍSICA DO ARCO ARCO ELÉTRICO 22 CAPÍTULO 4 FÍSICA DO ARCO ARCO ELÉTRICO 23 FÍSICA DO ARCO ELÉTRICO DEFINIÇÃO Um arco elétrico pode ser definido como um feixe de descargas elétricas formadas entre dois eletrodos e mantidas pela formação

Leia mais

Equação de Bernoulli. Vamos considerar um fluido com densidade ρ constante, em escoamento estacionário em uma tubulação sem derivações (Fig.18).

Equação de Bernoulli. Vamos considerar um fluido com densidade ρ constante, em escoamento estacionário em uma tubulação sem derivações (Fig.18). Equação de ernoulli Vamos considerar um fluido com densidade ρ constante, em escoamento estacionário em uma tubulação sem derivações (Fig.8). Sejam duas porções de fluido, ambas com volume V e massa ρv,

Leia mais

e a parcela não linear ser a resposta do sistema não linear com memória finita. Isto é, a

e a parcela não linear ser a resposta do sistema não linear com memória finita. Isto é, a 189 Comparando-se as figuras anteriores, Figura 5.15 a Figura 5.18, nota-se que existe uma correlação entre os valores das funções auto densidade espectrais lineares e não lineares. Esta correlação é devida

Leia mais

FUNÇÕES MATEMÁTICAS NÚMERO : PI() SENO E COSSENO: SEN() E COS()

FUNÇÕES MATEMÁTICAS NÚMERO : PI() SENO E COSSENO: SEN() E COS() FUNÇÕES MATEMÁTICAS FUNÇÕES MATEMÁTICAS O Excel possui uma série de funções matemáticas em sua biblioteca. Para utilizar uma função, sempre devem ser utilizados os parêntesis, mesmo que estes fiquem vazios.

Leia mais

Bancada de Estudos de Vaso de Pressão

Bancada de Estudos de Vaso de Pressão Ministério da Educação Universidade Federal do Rio Grande do Sul Escola de Engenharia Departamento de Engenharia Mecânica Bancada de Estudos de Vaso de Pressão Relatório de Trabalho de Conclusão apresentado

Leia mais

6. Conceito e dimensionamento do tronco em uma residência

6. Conceito e dimensionamento do tronco em uma residência AULA 7 6. Conceito e dimensionamento do tronco em uma residência Vamos pegar como primeiro exemplo uma residência térrea abastecida por um único reservatório superior. Esse reservatório vai atender um

Leia mais

Geração de Energia Elétrica

Geração de Energia Elétrica Geração de Energia Elétrica Geração Termoelétrica a Gás Joinville, 02 de Maio de 2012 Escopo dos Tópicos Abordados Conceitos básicos de termodinâmica; Centrais Térmicas a Gás: Descrição de Componentes

Leia mais

Mecânica dos Fluidos Aplicado MFA - AULA 07 Arrasto e Sustentação

Mecânica dos Fluidos Aplicado MFA - AULA 07 Arrasto e Sustentação Mecânica dos Fluidos Aplicado MFA - AULA 07 Arrasto e Sustentação Nessa seção iremos observar a interferência de objetos durante o escoamento, causando o que conhecemos por arrasto e porque a sustentação

Leia mais

Transferência de energia sob a forma de calor

Transferência de energia sob a forma de calor Transferência de energia sob a forma de calor As diferentes formas de transferência de energia sob a forma de calor têm em comum ocorrerem sómente quando existe uma diferença de temperatura entre os sistemas

Leia mais

Mecânica Geral. Aula 04 Carregamento, Vínculo e Momento de uma força

Mecânica Geral. Aula 04 Carregamento, Vínculo e Momento de uma força Aula 04 Carregamento, Vínculo e Momento de uma força 1 - INTRODUÇÃO A Mecânica é uma ciência física aplicada que trata dos estudos das forças e dos movimentos. A Mecânica descreve e prediz as condições

Leia mais

Lubrificação II. O supervisor de uma área da indústria constatou. Conceito de sistema de perda total. Almotolia

Lubrificação II. O supervisor de uma área da indústria constatou. Conceito de sistema de perda total. Almotolia A U A UL LA Lubrificação II Introdução O supervisor de uma área da indústria constatou que algumas máquinas apresentavam ruídos e superaquecimento. O mecânico de manutenção desmontou as máquinas e constatou

Leia mais

Redutores de Velocidade Aplicando Corretamente

Redutores de Velocidade Aplicando Corretamente Redutores de Velocidade Aplicando Corretamente Amauri Dellallibera Cestari S/A 2005 Redutores, por quê precisamos deles? Existem aplicações nas mais diversas áreas de nossa vida cotidiana Principais grupos

Leia mais

Plantas de Classificação de Áreas 25/03/2012 140

Plantas de Classificação de Áreas 25/03/2012 140 Plantas de Classificação de Áreas 25/03/2012 140 Normas para elaboração de plantas de classificação de áreas 25/03/2012 141 Legenda para plantas de classificação de áreas 25/03/2012 142 Etapas para elaboração

Leia mais