NOTA DE AULA PROF. JOSÉ GOMES RIBEIRO FILHO CIRCUITOS ELÉTRICOS

Tamanho: px
Começar a partir da página:

Download "NOTA DE AULA PROF. JOSÉ GOMES RIBEIRO FILHO CIRCUITOS ELÉTRICOS"

Transcrição

1 NOTA DE AULA PROF. JOSÉ GOMES RIBEIRO FILHO CIRCUITOS ELÉTRICOS 1 INTRODUÇÃO Os circuitos elétricos são a corrente sanguínea no equipamento do cientista e do engenheiro. Neste capítulo estudaremos os circuitos mais simples e veremos processos para analisá los. Limitaremos nosso estudo ao caso em que o sentido da corrente é contínuo segundo uma direção os circuitos de corrente contínua (CC). Os circuitos em que o sentido da corrente oscila para frente e para trás, chamados circuitos de corrente alternada (CA), não serão abordados nesse Capítulo. 2 FORÇA ELETROMOTRIZ E CIRCUITOS Para que um condutor possua uma corrente estacionária, ele deve ser parte de uma trajetória fechada ou circuito completo. Explicaremos a seguir a razão disso. Quando um campo elétrico E 1 é aplicado no interior de um condutor isolado com resistividade ρ que não seja parte de um circuito completo, uma corrente começa a fluir com uma densidade de corrente J = E 1 /ρ (Figura 1a). Em decorrência disso, uma carga positiva se acumula rapidamente em uma das extremidades e uma carga negativa se acumula na outra extremidade (Figura 1b). Por sua vez, essas cargas produzem um campo elétrico E 2 em sentido oposto ao de E 1, fazendo diminuir o campo elétrico e, portanto, a corrente. Em uma fração de segundo acumulam se cargas nas extremidades do condutor de tal modo que o campo elétrico resultante E E 1 E 2 0 no interior do condutor. Então, também J = 0 e a corrente para de fluir. Logo, é impossível haver uma corrente estacionaria em tal circuito incompleto. FIGURA 1 (a) Quando um campo elétrico E 1 é aplicado no interior de um condutor que não faz parte de um circuito completo, uma corrente começa a fluir pelo menos temporariamente, (a) b) Essa corrente produz um acúmulo de cargas nas extremidades do condutor criando um campo elétrico E 2 em sentido oposto ao de E 1. O campo resultante E E1 E2 é menor e a corrente diminui. Depois de um tempo muito curto, o módulo de E 2 torna se igual ao módulo de E 1, de (b) modo que o campo resultante E é igual a zero; a corrente para de fluir completamente. Para sabermos como manter uma corrente estacionária em um circuito completo, lembremos um fato básico sobre diferença de potencial: quando uma carga q percorre um circuito completo e retorna ao seu ponto de partida, a energia potencial no final da trajetória é igual à energia potencial no início da trajetória. Conforme descrito no Capítulo anterior, existe sempre diminuição da energia potencial quando as cargas se movem através de um material condutor normal com resistência. Portanto, deve existir alguma parte do circuito na qual a energia potencial aumenta. O problema é semelhante ao de uma fonte de água ornamental que recicla sua água. No topo da fonte, a água jorra através de aberturas, descendo os declives em sua trajetória (movendo se no sentido da diminuição da energia potencial gravitacional), sendo coletada em um recipiente na base da fonte. A seguir, uma bomba eleva a água novamente para o topo da fonte (aumentando a energia potencial) para iniciar um novo ciclo. Se não houvesse a bomba, a água simplesmente fluiria para o recipiente na base, onde permaneceria em repouso. FORÇA ELETROMOTRIZ Em algum ponto de um circuito elétrico, deve existir um dispositivo que desempenhe um papel semelhante ao da bomba na fonte de água. Nesse dispositivo, a carga se desloca "para cima", de uma energia potencial mais baixa para uma mais elevada, embora a força eletrostática tente empurrá la de uma energia potencial mais elevada para uma mais baixa. O sentido da corrente elétrica nesse dispositivo é do potencial mais baixo para o mais elevado, sentido exatamente oposto ao que ocorre em um condutor comum. O agente que faz a corrente fluir do potencial mais baixo para o mais elevado denomina se força eletromotriz (fem). Esse termo não é muito exato, pois a fem não é uma força, mas sim uma grandeza com dimensão de energia por unidade de carga, tal como o potencial. A unidade SI de fem é a mesma de potencial, o volt (1V = 1 J/C). Uma pilha típica de uma lanterna possui fem igual a 1,5V; isso quer dizer que a pilha realiza um trabalho de 1 J sobre cada coulomb de carga que passa através dela. Para designar uma fem, usaremos o símbolo ε (uma letra "E" manuscrita maiúscula). Todo circuito completo por onde passa uma corrente estacionaria deve possuir algum dispositivo que forneça uma fem. Tal dispositivo denomina se fonte de fem. Pilhas, baterias, geradores elétricos, células solares, termopares e células de combustível são exemplos de fontes de fem. Todos esses dispositivos convertem algum tipo de energia (mecânica, química, térmica e assim por diante) em energia potencial elétrica e transferem essa energia para o circuito no qual o dispositivo esteja conectado. Uma fonte de

2 fem ideal mantém uma diferença de potencial constante através de seus terminais, independentemente de a corrente passar ou não através do dispositivo. Definimos quantitativamente a fem como o módulo dessa diferença de potencial. Como veremos, tal fonte ideal é um mito, como o plano sem atrito e a corda sem massa. Mais adiante, mostraremos a diferença entre uma fonte de fem ideal e uma fonte real. A Figura 2 mostra um diagrama esquemático de uma fonte de fem ideal que mantém uma diferença de potencial constante entre os condutores a e b, chamados de terminais da fonte. O terminal a, marcado pelo sinal +, é mantido a um potencial mais elevado do que o potencial do terminal b, marcado pelo sinal. Associado com a diferença de potencial, existe um campo elétrico E na região em torno dos terminais, tanto no interior quanto no exterior da fonte. O campo elétrico no interior do dispositivo é orientado de a para b, como indicado. Uma carga q no interior da fonte sofre a ação de uma força elétrica F e qe. Porém, a fonte também fornece uma influência adicional, que vamos representar como uma força não eletrostática F n. Essa força, agindo no interior do dispositivo, arrasta cargas "para cima" em sentido contrário ao da força elétrica F e. Logo, F n é responsável pela manutenção da diferença de potencial entre os terminais. Caso não existisse a força F n, as cargas se escoariam entre os terminais até que a diferença de potencial se tornasse igual a zero. A origem da influência adicional de F n depende do tipo da fonte. Em um gerador elétrico, ela decorre das forças magnéticas que atuam sobre cargas que se movem. Em uma bateria ou em uma célula de combustível, ela é associada com processos de difusão e com as variações de concentrações eletrolíticas produzidas por reações químicas. FIGURA 2 Diagrama esquemático de uma fonte de fem para a situação de um "circuito aberto" no qual a fonte não está conectada a um circuito. Indicamos a força elétrica F e qe e a força não eletrostática F n que atuam sobre uma carga positiva q. O trabalho realizado por F n sobre uma carga positiva q que se move de a até b é igual a qε, onde ε é a fem. Para a situação de um circuito aberto, F e e F n possuem módulos iguais. Quando uma carga positiva q se move de b para a no interior de uma fonte, a força não eletrostática F n realiza um trabalho positivo W n = qε sobre a carga. Esse deslocamento é oposto ao da força eletrostática F e, de modo que a energia potencial associada com a carga cresce de qv ab, onde V ab é o potencial de a (positivo) em relação ao ponto b. Para uma fonte ideal de fem que descrevemos, F e e F n possuem o mesmo módulo e a mesma direção, porém sentidos contrários, de modo que o trabalho realizado sobre a carga q é igual a zero; ocorre um aumento de energia potencial, porém nenhuma variação da energia cinética da carga. Isso é semelhante a levantar um livro com velocidade constante até o alto de uma estante. O aumento da energia potencial é exatamente igual ao trabalho não eletrostático W n, de modo que qε = qv ab, ou seja, V ab = ε (fonte de fem ideal). [1] Vamos agora fazer um circuito completo conectando um fio com resistência R aos terminais de uma fonte de tensão (Figura 3). A diferença de potencial entre os terminais a e b cria um campo elétrico no interior do fio; isso produz uma corrente que flui de a para b no circuito externo, do potencial mais elevado para o mais baixo. Note que, nos locais onde o fio se encurva, surgem cargas de sinais contrários nas partes "internas" e "externas" das curvas. Essas cargas são responsáveis pelas forças que obrigam a corrente a seguir um caminho ao longo das curvas dos fios. FIGURA 3 Diagrama esquemático de uma fonte ideal em um circuito completo. Os vetores F e e F n são as forças que atuam sobre uma carga positiva q no interior da fonte. A corrente flui de a para b no circuito externo e de b para a no interior da fonte. De acordo com a lei de Ohm, a diferença de potencial entre as extremidades do fio indicado na Figura 3 é dada por V ab = IR. Combinando com a Equação (1), obtemos ε = V ab = IR (fonte de fem ideal). [2] Ou seja, quando uma carga positiva q flui em torno do circuito, o aumento de potencial através da fonte ideal é igual à queda de potencial V ab = IR quando a corrente passa pelo restante do circuito. Conhecendo se os valores de E e de R, pela relação anterior podemos determinar a corrente no circuito. RESISTÊNCIA INTERNA Uma fonte real em um circuito não se comporta exatamente da maneira que descrevemos; a diferença de potencial entre os terminais de uma fonte real não é igual à fem, como indica a Equação (2). A razão disso é que a carga que se move no interior do material de qualquer fonte real encontra uma resistência chamada de resistência interna da fonte e designada pela letra r. Quando essa resistência segue a lei de Ohm, r deve ser constante e independente da corrente I. À medida que a corrente se desloca através de r, ela sofre uma queda de potencial igual a Ir. Logo, quando uma corrente flui através de uma fonte do terminal negativo b até o terminal positivo a, a diferença de potencial V ab entre os terminais é dada por V ab = ε Ir (voltagem nos terminais da fonte com resistência interna). [3] 2

3 A diferença de potencial V ab, chamada de voltagem nos terminais, é menor do que a fem ε em virtude do termo Ir, que representa a queda de potencial através da resistência interna r. Expressando de outra maneira, o aumento da energia potencial qv ab que ocorre quando a carga q se desloca de b até a no interior da fonte é menor do que o trabalho qε realizado pela força nãoeletrostática F n, visto que uma certa energia potencial se perde quando a carga atravessa a resistência interna. Uma pilha de 1,5 V possui fem igual a 1,5 V, porém a voltagem V ab nos terminais da pilha é igual a 1,5 V somente quando nenhuma corrente flui através dela, de modo que I = 0 na Equação (3). Quando a pilha faz parte de um circuito completo pelo qual passa uma corrente, a voltagem nos terminais da pilha é menor do que 1,5 V. A voltagem nos terminais de uma fonte de fem real possui valor igual ao da fem somente quando nenhuma corrente flui através da fonte. Portanto, podemos descrever o comportamento de uma fonte com base em duas propriedades: uma fem ε, que fornece uma diferença de potencial constante independente da corrente, e uma resistência interna r ligada em série com a fonte. A corrente que passa no circuito externo conectado com os terminais a e b da fonte é ainda determinada pela relação V=IR que, combinada com a Equação (3), fornece ε Ir = IR, ou I (corrente, fonte com resistência interna). [4] R r Ou seja, a corrente é obtida dividindo se o valor da fem da fonte pela resistência total do circuito (R + r). SÍMBOLOS USADOS NOS DIAGRAMAS DE CIRCUITOS Uma etapa importante na análise de qualquer circuito consiste em desenhar um diagrama do circuito esquemático. A Tabela 1 mostra os símbolos geralmente empregados nesses diagramas. Usaremos muito esses símbolos neste capítulo. Geralmente, supomos que os fios que conectam os elementos de um circuito possuem resistência desprezível; pela Equação V = IR, concluímos que a diferença de potencial nas extremidades desses fios é igual a zero. A Tabela 1 inclui dois instrumentos de medida usados nas medidas das propriedades dos circuitos. Um medidor ideal não perturba o circuito no qual ele está conectado. Um voltímetro, mede a diferença de potencial entre os pontos nos quais seus terminais são conectados; um voltímetro ideal possui resistência interna infinita e, quando mede uma diferença de potencial, nenhuma corrente é desviada para ele. Um amperímetro mede a corrente que passa através dele; um amperímetro ideal possui resistência igual a zero e não apresenta nenhuma diferença de potencial entre seus terminais. Como esses instrumentos de medida fazem parte do circuito no qual estão conectados, é importante lembrar essas propriedades. Condutor com resistência desprezível Resistor Fonte de fem (a linha vertical mais longa indica o terminal positivo, geralmente o potencial mais elevado) Fonte de fem com resistência interna r (a resistência interna r pode ser colocada em qualquer lado) Voltímetro (mede uma diferença de potencial entre seus terminais) Amperímetro (mede uma corrente que passa através dele) Tabela 1 Símbolos empregados nos diagramas deste capítulo. 3 APARELHOS DE MEDIDA São colocados nos circuitos para indicar correntes e tensão em determinados aparelhos que se pretende monitorar. De modo geral, denominamos amperímetro, ou amperômetro, o aparelho destinado a medir intensidades de correntes elétricas. Neste item vamos analisar também o aparelho chamado voltímetro, ou voltômetro, destinado a medir a tensão ou ddp entre dois pontos de um circuito elétrico. Devemos ressaltar que ao colocarmos esses instrumentos de medida em um circuito elétrico, geralmente buscamos fazê lo de modo que a inserção dos aparelhos não modifique a intensidade das correntes elétricas ou as diferenças de potencial. Entretanto, essa é uma situação apenas teórica, ideal, pois, pelo fato de esses instrumentos serem constituídos por condutores, a simples colocação dos aparelhos no circuito provoca, inevitavelmente, modificações nas intensidades de corrente e nas tensões. Dizemos que o aparelho de medida é ideal quando sua inserção no circuito não provoca alterações nas intensidades de corrente ou nas diferenças de potencial. Vamos, então, analisar as características que esses medidores ideais devem apresentar. 3.1 Amperímetro Aparelho destinado a medir corrente elétrica. Para não interferir na medição do circuito em questão deve ter resistência interna nula que é o ideal. Deve ser ligado em série com o ponto desejado para verificar a intensidade de corrente. 3

4 Amperímetro de fundo de escala de 50 A. Num circuito elétrico, um amperímetro (A) será representado por um símbolo. O amperímetro deve ser introduzido no circuito de modo que o aparelho seja atravessada corrente elétrica cuja intensidade i se deseja medir. Para que isso aconteça, o amperímetro deve ser associado em série com o elemento de circuito. Numa situação ideal, na qual a intensidade de corrente elétrica não sofre modificação, a resistência elétrica do amperímetro deve ser nula, como na figura abaixo. Nesse caso, logicamente, a ddp terminais do amperímetro ideal será nula. Observe ainda que, se tivéssemos conectado o amperímetro ideal em paralelo com qualquer um dos dois resistores, estaríamos provocando um curtocircuito. 3.2 Voltímetro Aparelho destinado a medir tensão elétrica. Ele não interfere na medição do circuito em questão. Tem resistência interna infinitamente grande, o que é ideal. Usado para verificar U (d.d.p.), liga se em paralelo com o aparelho estudado ou trecho de circuito. Num circuito elétrico, também representaremos um voltímetro (V) por um símbolo. Para medirmos a ddp U entre dois pontos de um circuito elétrico, devemos ligar os terminais do voltímetro a esses pontos. Naturalmente, para que não se introduzam alterações no circuito original, o voltímetro ideal não deve permitir nenhum desvio de corrente elétrica através de si. Portanto, o voltímetro ideal tem resistência elétrica infinitamente grande (Rv > ). 4

5 Na figura acima, o voltímetro ideal está sendo usado para medir a ddp no resistor de resistência elétrica R 2 e para tanto foi ligado em paralelo a tal. Observe que, se tivéssemos conectado o voltímetro ideal em série no circuito, isto impediria a passagem de corrente elétrica, e o voltímetro estaria medindo a ddp entre os terminais da associação. Deste ponto em diante, a menos que se diga algo em contrário, admitiremos que os aparelhos de medi utilizados sejam ideais. Os amperímetros e voltímetros reais, para que possam ser considerados de boa qualidade, devem se aproximar o máximo possível do instrumento ideal. Um bom amperímetro deve ter resistência elétrica muito pequena, da ordem de 0,1Ω, enquanto um bom voltímetro deve ter resistência elétrica bastante elevada, da ordem de 10 kω. 3.3 Ponte de Wheatstone Podemos medir a resistência elétrica R de um resistor, medindo a corrente elétrica i e a ddp U nos seus terminais. Pela lei de Ohm: R = V/I Ocorre que os valores de i e U, medidos com amperímetro e voltímetro não ideais, não são precisos, gerando, dessa forma, imprecisão no cálculo da resistência elétrica R. Uma maneira bastante precisa de se medir o valor de R é montando o circuito abaixo, denominado ponte de Wheatstone, constituído de um gerador, um galvanômetro, um reostato (resistor de resistência arbitrariamente variável) e dois outros resistores de resistências elétricas conhecidas. Variando se o valor da resistência R 1 do reostato, varia se o valor da corrente i g no galvanômetro. Quando a corrente elétrica no galvanômetro se anula (i g = 0), dizemos que a ponte está em equilíbrio e, nesse caso, U CD = 0. Assim: Como i 1 = i' 2 e i 2 = i' 2 pois i g = 0, dividindo membro a membro as igualdades (I) e (II), temos: R.i R.i R R R.i R.i R R ou seja, ou seja, e, dessa forma, temos medido o valor de R = R Ponte de Fio Substituindo se os resistores R 2 e R 3 por um fio homogêneo de secção transversal constante, sobre o qual desliza um cursor P conectado ao galvanômetro, obtemos uma variante da ponte de Wheatstone, conforme a figura abaixo. 5

6 Sendo: 2 3 R2 e R3 A A (segunda lei de Ohm). Na posição D do cursor, a ponte atinge o equilíbrio e, nesse caso: R A A (produto em cruz) R1 4 REDE ELÉTRICA Os circuitos elétricos que estudamos até este ponto, por mais complicados que nos pareçam, são circuitos simples, pois podem ser reduzidos a um circuito contendo um gerador, um resistor e um receptor, com um único caminho fechado através do qual circula corrente elétrica como ilustrado abaixo. A resolução desse tipo de circuito elétrico, ou seja, a determinação de todas as suas variáveis, envolve basicamente a aplicação da lei de Ohm. Algumas vezes, entretanto, poderemos encontrar um circuito elétrico mais complexo, denominado rede elétrica, contendo vários caminhos fechados, e a resolução desse tipo de circuito usando aquelas leis torna se complicada. (engenharia elétrica é, por excelência, o campo de estudos e projetos de complicadas redes elétricas.) A resolução desse tipo de circuito pode ser feita com a utilização de algumas regras simples, denominadas leis de Kirchhoff, em homenagem ao físico alemão Gustav Rupert Kirchhoff ( ), que as estabeleceu em meados do século XIX. Antes de enunciarmos as leis de Kirchhoff, porém, devemos entender algumas convenções para o cálculo da ddp em um dado elemento de circuito elétrico, assim como sua polaridade, e alguns termos que usaremos com frequência durante o estudo das redes elétricas. 6

7 5 NÓ, RAMO E MALHA EM UM CIRCUITO ELÉTRICO Consideremos a rede elétrica mostrada abaixo, constituída por geradores, receptores e resistores. Numa rede elétrica qualquer, podemos definir os seguintes elementos: FIGURA 4 Exemplo de uma Rede Elétrica. Nó: é o ponto onde a corrente se divide. Na rede elétrica acima, os pontos F e C constituem os nós do circuito. Ramo: é o nome dado ao trecho de circuito entre dois nós consecutivos. Na rede elétrica que estamos considerando temos três ramos: FABC, FC e FEDC. Observe que a cada ramo do circuito corresponde uma intensidade de corrente elétrica. Malha: é a denominação dada ao conjunto de ramos que delimitam um percurso fechado. Na rede elétrica dada acima temos três malhas: FABCF, FEDCF e ABCDEFA. 6 REGRAS DE KIRCHHOFF E CIRCUITOS SIMPLES DE CORRENTE CONTÍNUA Como foi indicado na seção precedente, os circuitos simples podem ser analisados usando se ΔV = IR e as regras para combinações em série e em paralelo dos resistores. Entretanto, os resistores podem ser conectados de modo que os circuitos formados não possam ser reduzidos a um único resistor equivalente. O procedimento para analisar tais circuitos complexos é bastante simplificado pelo uso de duas regras simples, chamadas regras de Kirchhoff: A soma das correntes que entram em qualquer nó é igual à soma das correntes que saem desse nó. (Essa regra é frequentemente chamada de regra dos nós.) A soma das diferenças de potencial em todos os elementos de uma malha fechada do circuito é igual a zero. (Essa regra é chamada geralmente de regra das malhas.) As regras de Kirchhoff geralmente são usadas para determinar a corrente em cada elemento do circuito. Ao usar essas regras, primeiramente desenhamos o diagrama de circuito e adotamos uma direção para a corrente em cada dispositivo do circuito. Desenhamos uma seta representando essa direção ao lado do dispositivo e designamos um símbolo para cada corrente independente, como I 1, I 2 e assim por diante. Lembre se de que as correntes nos dispositivos conectados em série são as mesmas, então as correntes nesses dispositivos serão designadas pelo mesmo símbolo. A regra dos nós é um enunciado da conservação da carga. Qualquer que seja a corrente entrando em um ponto dado em um circuito, ela deve sair desse ponto porque a carga não pode acumular se ou desaparecer em um ponto. Se aplicarmos essa regra ao nó na Figura 5a, teremos I 1 = I 2 + I 3 A Figura 5b representa um análogo hidráulico a essa situação, em que a água flui através de um cano ramificado sem vazamentos. A taxa de fluxo entrando no cano é igual à taxa de fluxo total para fora das duas ramificações. FIGURA 5 (a) Um diagrama esquemático ilustrando a regra dos nós de Kirchhoff. A conservação da carga requer que qualquer corrente que entra em um nó tenha de deixar esse nó. Portanto, neste caso, I 1 = I 2 + I 3. (b) Um análogo mecânico da regra dos nós: A quantidade de água saindo das ramificações à direita tem de ser igual à quantidade entrando pela única ramificação à esquerda. 7

8 A segunda regra é equivalente à lei de conservação da energia. Suponha que uma carga se movimenta ao redor de qualquer malha fechada em um circuito (a carga começa e termina no mesmo ponto). Nesse caso, o circuito deve ganhar tanta energia quanto perde. Esse é o modelo de sistema isolado para o sistema do circuito nenhuma energia atravessa a fronteira do sistema, mas ocorrem transformações de energia dentro do sistema (desprezando se a transferência de energia pela radiação e pelo calor para o ar a partir dos elementos quentes no circuito). A energia do circuito pode diminuir devido a uma queda de potencial IR à medida que uma carga atravessa um resistor ou em consequência do movimento da carga na direção oposta através de uma fem. No último caso, a energia potencial elétrica é convertida em energia química enquanto a bateria é carregada. A energia aumenta quando a carga atravessa uma bateria na mesma direção que a fem. Outra abordagem para compreender a regra das malhas é recordar a definição de força conservativa visto em Mecânica. Um dos comportamentos matemáticos de uma força conservativa é que o trabalho realizado por esse tipo de força quando um membro do sistema percorre uma trajetória fechada é zero. Uma malha em um circuito é uma trajetória fechada. Se imaginarmos uma carga percorrendo uma malha, o trabalho total realizado pela força elétrica conservativa tem de ser nulo. O trabalho total é a soma dos trabalhos positivo e negativo enquanto a carga atravessa os vários elementos do circuito. Como o trabalho está relacionado com as variações de energia potencial e como as variações da energia potencial estão relacionadas com as diferenças de potencial, o fato de a soma de todos os trabalhos ser nula é equivalente ao fato de a soma de todas as diferenças de potencial ser nula, que é regra das malhas de Kirchhoff. Ao aplicar a lei das malhas, precisamos de algumas convenções de sinais. Sempre supomos um sentido para a corrente elétrica e marcamos o sentido escolhido no diagrama do circuito. A seguir, partindo de qualquer ponto do circuito, percorremos o circuito e adicionamos os termos IR e cada fem, à medida que passamos através dos elementos. Quando atravessamos uma fonte de tensão no sentido do para o +, a fem deve ser considerada positiva. Quando atravessamos uma fonte de tensão no sentido do + para o, a fem deve ser considerada negativa. Quando atravessamos um resistor no mesmo sentido que escolhemos para a corrente, o termo IR é negativo porque a corrente está fluindo no sentido dos potenciais decrescentes. Quando atravessamos um resistor no sentido contrário ao sentido da corrente, o termo IR é positivo porque isso corresponde a um aumento de potencial. As convenções de sinal para diferenças de potencial para os resistores e para as baterias baseadas nessas duas direções estão resumidas na Figura 6, onde se considera que o deslocamento é do ponto a para o ponto b: Se um resistor for atravessado na direção da corrente, a diferença de potencial no resistor é IR (Figura 6a). Se um resistor for atravessado na direção oposta à da corrente, a diferença de potencial no resistor é + IR (Figura 6b). Se uma fonte de fem for atravessada na direção da fem (do terminal para o terminal +), a diferença de potencial é +ε (Figura 6c). Se uma fonte de fem for atravessada na direção oposta à da fem (do terminal + para o terminal ), a diferença de potencial é ε (Figura 6d). FIGURA 6 Regras para a determinação das diferenças de potencial em um resistor e em uma bateria. (A bateria é considerada sem resistência interna.) Cada elemento do circuito é percorrido de a para b. Os usos da regra dos nós e da regra das malhas têm limitações. Você pode usar a regra dos nós quantas vezes forem necessárias, desde que, cada vez que escreva uma equação, inclua nela uma corrente que não tenha sido usada em uma equação precedente da regra dos nós. Em geral, o número de vezes em que a regra dos nós pode ser usada é um a menos do que o número de nós no circuito. A regra das malhas pode ser usada tão frequentemente quanto for necessário, desde que um novo elemento do circuito (um resistor ou uma bateria) ou uma nova corrente apareça em cada equação nova. Em geral, o número de equações independentes de que você precisa deve igualar o número de correntes desconhecidas a fim de resolver um problema de circuito particular. Em geral, a parte mais trabalhosa da solução não é o entendimento dos princípios básicos envolvidos, porém o uso correto dos sinais algébricos! EXERCÍCIOS RESOLVIDOS 01.Na figura a seguir, está representado um elemento de circuito elétrico: 8

9 Sabendo que os potenciais em A e B valem, respectivamente, 2 V e 13 V, calcule a intensidade de corrente nesse elemento, especificando seu sentido. SOLUÇÃO: V A 0,5i + 12 = V B 2 0,5i + 12 = 13 0,5i = 1 i = 2A de A para B 02.No circuito a seguir, tem se um gerador ligado a um conjunto de resistores. Determine: a) a intensidade de corrente elétrica que percorre o gerador AB; b) a diferença de potencial entre os pontos C e D; c) a intensidade de corrente nos resistores de resistências R 2 e R 3. SOLUÇÃO: a) Os resistores de resistências R 2 e R 3 estão em paralelo. Assim: R.R R CD RCD 2 R2 R Podemos, então, redesenhar o circuito, como segue: Como os elementos do circuito estão todos em série (circuito de caminho único), podemos usar a equação do circuito simples: ε = R eq i 1 Como ε = 30 V e R eq = 2 Ω + 6 Ω + 2 Ω = 10 Ω (série), temos: 30 = 10 i 1 i 1 = 3 A b) A diferença de potencial entre C e D é obtida aplicando se a Primeira Lei de Ohm a R CD : U CD = R CD i 1 = 2 3 U CD = 6 V c) Aplicando a Primeira Lei de Ohm aos resistores de resistências R 2 e R 3 do circuito original, temos: U CD = R 2 i 2 6 = 3 i 2 i 2 = 2 A U CD = R 3 i 3 6 = 6 i 3 i 3 = 1 A 03.Usando seis lâmpadas iguais e duas baterias iguais, foram montados os dois circuitos a seguir: 9

10 Considerando as baterias ideais e desprezando a influência da temperatura na resistência elétrica, compare o brilho da lâmpada L 2 com o da lâmpada L 5. SOLUÇÃO: Sendo R a resistência elétrica de cada lâmpada, temos: No circuito da esquerda: 2 i1 R R eq R 3R 2 i 2 =i 1 /2 i 2 = ε/3r No outro circuito: i 5 = ε/r eq = ε/3r i 2 = i 5 Brilhos iguais 04.No circuito a seguir, qual deve ser o valor da resistência x, para que o galvanômetro G indique zero? SOLUÇÃO: O circuito fornecido é uma típica ponte de Wheatstone em equilíbrio (a corrente elétrica no galvanômetro é nula). Assim, podemos redesenhar esse circuito na forma convencional: Uma vez que a ponte encontra se em equilíbrio, vale a igualdade entre os produtos das resistências opostas: 12 (x + 5) = x + 5 = 25 x = 20 Ω 05.O circuito A foi ligado ao circuito B pelo fio MN: Determine a intensidade de corrente no circuito A, no circuito B e no fio MN. SOLUÇÃO: No circuito A: 11 ia ia 0,1A No circuito B: ib ib 1A

11 No fio MN: i MN = 0 06.Calcule as intensidades das correntes elétricas nos ramos do circuito a seguir: SOLUÇÃO: fem = fcem + R eq i do caminho ± R do trecho comum i do caminho ao lado I: 70 = i 1 11 i 2 II: 6 = i i 1 Resolvendo, temos: i 1 = 6 A e i 2 = 4 A Assim: 07.No circuito visto na figura, as baterias são ideais, suas fem são dadas em volts e as resistências em ohms. Determine, em volts, a diferença de potencial V ab, isto é, V a V b. SOLUÇÃO: 11

12 fem = fcem + R eq i do caminho ± R do trecho comum i do caminho ao lado I: 13 = 4 i 1 1 i 2 II: 11 = i 2 1 i 1 Resolvendo, temos: i 1 = 4 A e i 2 = 3 A 08.No circuito esquematizado, determine o potencial no ponto D: SOLUÇÃO: No circuito I, temos: 6 = ( ) i 1 i 1 = 1 A (sentido horário) No circuito II, temos: 12 = ( ) i 2 i 2 = 3 A (sentido horário) V A = 0 V B V A = R i 1 V B 0 = 2 1 V B = 2 V V C V B = ε 1 V C 2 = 10 V C = 12 V V D V C = ε 2 r 2 i 2 V D 12 = V D = 18 V 09. (a) Encontre as correntes I 1 I 2 e I 3 no circuito mostrado na Figura acima. (b) Encontre a diferença de potencial entre os pontos b e c. SOLUÇÃO: a)escolhemos as direções das correntes como na Figura. A aplicação da primeira regra de Kirchhoff ao nó c fornece 12

13 I 1 +I 2 = I 3 (1) O circuito tem três malhas: abcda, befcb e aefda (a malha mais externa). Necessitamos somente de duas equações de malha para determinar as correntes desconhecidas. A terceira equação de malha não daria nenhuma informação nova. Aplicando a segunda regra de Kirchhoff para as malhas abcda e befcb e percorrendo essas malhas no sentido horário, obtemos as expressões Malha abcda: 10V 6I 1 2I 3 = 0 (2) Malha befcb: 14V 10V + 6I 1 4I 2 = 0 (3) Observe que na malha befcb um sinal positivo é obtido ao se atravessar o resistor de 6,0Ω porque a direção da trajetória é oposta à direção de I 1. Uma terceira equação de malha para aefda fornece 14V 2I 3 4I 2 = 0, que é exatamente a soma de (2) e de (3). As expressões (1), (2) e (3) representam três equações independentes com três incógnitas. Podemos resolver o problema da seguinte maneira: Deixando de lado as unidades para simplificar, a substituição de (1) em (2) fornecem 10 6I 1 2(I 1 + I 2 ) = 0 10 = 8I 1 + 2I 2 (4) A divisão por 2 de cada termo de (3) e o rearranjo da equação fornecem 12 = 3I 1 + 2I 2 (5) A subtração (5) de (4) elimina I 2, dando 22 = 11I 1 I 1 = 2A O uso desse valor de I 1 em (5) fornece um valor para I 2 : 2I 2 = 3I 1 12 = 3(2) 12 = 6 I 2 = 3 A Finalmente, I 3 = I 1 + I 2 = 1 A. Logo, as correntes têm os valores I 1 = 2 A I 2 = 3 A I 3 = 1 A O fato de I 2 e I 3 serem negativas indica somente que escolhemos as direções erradas para essas correntes. Contudo, os valores numéricos estão corretos. b)seguindo de b a c ao longo do ramo central, temos V c V b = I 1 = = 2V 10.No circuito esquematizado, calcule as intensidades de correntes i 1, i 2, i 3. SOLUÇÃO: Este problema só pode ser resolvido usando as regras de Kirchhoff, embora apresente poucos elementos e os sentidos da corrente já sejam conhecidos. Assim, usando a regra dos nós para o nó A (ou para B), teremos: i 3 = i 1 + i 2 [1] Para usar a regra das malhas, vamos redesenhar cada uma das duas malhas independentes, já polarizando os diversos bipolos. Para a malha à direita, que chamaremos de α: Percorrendo a malha no sentido anti horário, teremos, partindo do nó A: + R 3 i 3 E 2 + r 2 i 2 = 0 2,5 i i 2 = 0 Simplificando e reordenando ( dividindo por 2,5): i 3 + 2i 2 = 2 [2] Para a malha à esquerda, chamada de β: 13

14 Percorrendo essa malha no sentido horário, a partir do nó A, teremos: + R 3 i 3 E 1 + r 1 i 1 = 0 2,5 i i 1 = 0 Simplificando e reordenando (x 2): 5 i i 1 = 6 [3] Reescrevendo as três equações obtidas: i 3 = i 1 + i 2 [1] i i 2 = 2 [2] 5 i i 1 = 6 [3] Exprimindo i 2 e i 1 em função de i 3, obtém se: de [2] 2 i3 i 2 2 de [3] 6 5i3 i 1 10 Substituindo em [1]: 2 i3 6 5i3 i i 3 = 10 5 i i 3 20 i 3 = 16 i 3 = 0,8 A Substituindo: 2 0,8 i 2 0,6A ,8 i 1 0,2A 10 Assim, obteve se: i 1 = 0,2 A i 2 = 0,6 A e i 3 = 0,8 A EXERCÍCIOS PARA RESOLVER 01.As 3 baterias no circuito ao lado são inteiramente idênticas. As duas lâmpadas também são idênticas. Quando o interruptor S está aberto, as duas lâmpadas têm a mesma luminosidade. Se o interruptor for fechado, o que acontece? a)a lâmpada de cima fica mais brilhante que a de baixo. b) A lâmpada de baixo fica mais brilhante que a de cima. c) As duas ficam com o mesmo brilho de antes. 02. Determine o módulo e o sentido da corrente no resistor de 2 Ω do desenho. 14

15 03. Determine a voltagem entre os extremos do resistor de 5 Ω do desenho. Qual extremidade do resistor está no potencial mais elevado? 04. Determine a corrente no resistor de 4 Ω do desenho. Especifique o sentido da corrente. 05.Oito pilhas de lanterna em série fornecem uma fem aproximada de 12 V, igual à fem da bateria de um carro. Você pode usar essas pilhas para dar a partida do motor quando a bateria do carro está descarregada? 06.O circuito elétrico indicado na figura contém duas baterias, cada uma delas com uma fem e uma resistência interna, ligadas em série a dois resistores. Calcule a) a corrente no circuito (módulo e sentido); b) a voltagem V ab nos terminais da bateria de 16 V; c) Usando a figura como modelo, faça um gráfico do aumento e da queda de potencial no circuito. 07. a) Qual é a diferença de potencial V ad no circuito indicado na figura? b) Qual é a voltagem nos terminais da bateria de 4 V? c) Uma bateria com fem igual a 10 V é inserida no circuito no ponto d, com seu terminal negativo conectado ao terminal negativo da bateria de 8 V. Qual é agora a diferença de potencial V bc nos terminais da bateria de 4 V? 08. Em uma lanterna com duas pilhas, elas são geralmente conectadas em série. Por que não ligá las em paralelo? Qual seria uma possível vantagem na conexão de pilhas idênticas em paralelo? 09.Calcule a fem ε 1 e a fem ε 2 no circuito da figura e a diferença de potencial do ponto b em relação ao ponto a. 15

16 10. No circuito indicado na figura, calcule a) a corrente no resistor de 3 Ω; b) a fem ε 1 e a fem ε 2 ; c) a resistência R. Observe que foram fornecidas três correntes. 11.Uma bateria descarregada é carregada através da conexão com uma bateria carregada de outro carro com cabos de ligação direta. Determine a corrente no arranque e na bateria descarregada. 12.Determine a intensidade da corrente elétrica total nos circuitos a seguir: 13.Determine os módulos das correntes elétricas nos ponto A, B e C do circuito, mostrado na figura abaixo, em todas as situações em que apenas duas das chaves S 1, S 2 e S 3 estejam fechadas. 14.Os circuitos I e II, da figura abaixo, foram montados para a determinação do valor da força eletromotriz, fem, da bateria B. Neles foram utilizados os mesmos componentes elétricos. Na montagem do circuito I, o amperímetro, A, indicou uma corrente I 1 = 1 A e, na montagem do circuito II, indicou uma corrente l 2 = 3 A. As resistências internas das duas baterias e do amperímetro são de valor desprezível. Determine a fem da bateria B. 15.Com relação ao circuito dado a seguir, determine: a)a intensidade e o sentido da corrente elétrica; b)os potenciais nos pontos A, B, C, D, E, F e G, supondo nulo o potencial da Terra (potencial de referência); c)a diferença de potencial entre os pontos C e G (U CG = V c V G ). 16

17 16. No circuito visto na figura, as baterias são ideais. Determine, em volts, o módulo da diferença de potencial entre os pontos a e b. 17.Calcule a maior intensidade de corrente elétrica no circuito a seguir, em que estão presentes quatro baterias. 18.A energia que pode ser extraída de uma bateria com acumuladores é sempre menor do que a energia fornecida para carregá la. Por quê? 19.A figura mostra um circuito elétrico onde as fontes de tensão ideais têm fem e 1 e e 2. As resistências de ramo são R 1 = 100 Ω, R 2 = 50 Ω e R 3 = 20 Ω; no ramo de R 3 a intensidade da corrente é de 125 miliampères com o sentido indicado na figura. A fem e 2 é 10 volts. Determine o valor de e Observe a tirinha: 17

18 Realmente é muito desagradável quando o controle da TV não funciona; mas há algumas tentativas válidas para fazê lo funcionar. Uma pancadinha, por exemplo, pode até resolver quando a pilha não está bem colocada (isto é; quando existe mau contato). E quanto a colocar a pilha na geladeira? Você acha razoável??? Justifique! As pilhas, assim como os resistores, são elementos de um circuito elétrico que, dependendo da necessidade, devem ser associados em série ou em paralelo. a) Por que os circuitos dos controles de TV utilizam, na maioria das vezes, pilhas associadas em paralelo? b) Nos circuitos das residências é mais adequada a associação dos resistores em paralelo. Justifique. c) Considere os circuitos das figuras I e II abaixo: c 1 ) Calcule, para cada um deles, as intensidades de corrente I 1 e I 2 nas lâmpadas L 1 e L 2, respectivamente. Dados: ε = 120 V; L 1 =120 Ω e L 2 =200 Ω. c 2 ) Como ficam os valores de I 1 e I 2 se a lâmpada L 1 queimar? 21.No circuito esquematizado na figura, sabemos que I = 2 A, determine o valor de R e a potência dissipada na resistência de 20 Ω. 22.No circuito esquematizado, determine a intensidade de corrente i. 23. Determine o módulo e o sentido da corrente no resistor de 2 Ω do desenho. 24. Num circuito elétrico, uma fonte, de força eletromotriz 18V e resistência elétrica 0,50Ω, alimenta três resistores, de resistências 1,0Ω, 2,0Ω e 6,0Ω, conforme abaixo representado. Determine as leituras dos amperímetros ideais A 1 e A 2, em ampères. 18

19 26. No circuito apresentado na figura estão representadas diversas fontes de força eletromotriz, de resistência interna desprezível, que alimentam os resistores R 1 = 1,75 Ω e R 2 = 1,25 Ω. Determine a corrente i no circuito. 26. O circuito do desenho é conhecido como circuito da ponte de Wheatstone. Determine a voltagem entre os pontos B e D, e diga que ponto está no potencial mais elevado. 27.Na figura abaixo, o potencial elétrico do ponto M é 36 V. De M para N circula uma corrente elétrica de intensidade 2,0 A. Determine o potencial elétrico do ponto N. 28.Determine a diferença de potencial no resistor R 2 do circuito mostrado na figura abaixo. 29.Para o circuito esquematizado abaixo, determine: a) a intensidade da corrente que o atravessa; b) a tensão elétrica entre os pontos A e B; c) a tensão elétrica entre os pontos C e D

20 Um perigo para os mergulhadores em rios e oceanos é o contato com peixes elétricos. Sabe se que essa espécie produz eletricidade a partir de células biológicas (eletro placas) que funcionam como baterias elétricas. Certos peixes elétricos encontrados na América do Sul contêm um conjunto de eletro placas organizadas de forma análoga ao circuito elétrico representado na figura. Existem, ao longo do corpo deles, 150 linhas horizontais, com eletroplacas por linha. Cada eletroplaca tem uma força eletromotriz ε de 0,15 V e uma resistência elétrica R interna de 0,30 Ω. A resistência da água R água em torno do peixe deve ser considerada igual a 740 Ω. Com base nessas informações, calcule: a) O número total de eletroplacas do peixe elétrico, expressando a quantidade calculada em milhares de eletroplacas. b) A resistência equivalente em cada linha de eletroplacas, em ohms. c) A resistência equivalente do peixe elétrico, observada entre os pontos A e B, em ohms. 31.O circuito esquematizado a seguir contém duas baterias consideradas ideais e três resistores R 1, R 2 e R 3, de resistências iguais a 6 Ω, 3 Ω e 2 Ω, respectivamente. Calcule as intensidades e os sentidos das correntes elétricas em R 1, R 2 e R O sentido da corrente de uma bateria pode ser invertido conectando a a uma segunda bateria com fem mais elevada, ligando o pólo positivo de uma com o pólo positivo da outra. Quando o sentido da corrente da bateria é invertido, sua fem também se inverte? Por quê? 33.O amperímetro mostrado na figura indica 2,00 A. Encontre I 1, I 2 e ε. 34.Determine a corrente em cada ramo do circuito mostrado na figura. 20

Eletrodinâmica. Circuito Elétrico

Eletrodinâmica. Circuito Elétrico Eletrodinâmica Circuito Elétrico Para entendermos o funcionamento dos aparelhos elétricos, é necessário investigar as cargas elétricas em movimento ordenado, que percorrem os circuitos elétricos. Eletrodinâmica

Leia mais

Circuitos Elétricos 1º parte. Introdução Geradores elétricos Chaves e fusíveis Aprofundando Equação do gerador Potência e rendimento

Circuitos Elétricos 1º parte. Introdução Geradores elétricos Chaves e fusíveis Aprofundando Equação do gerador Potência e rendimento Circuitos Elétricos 1º parte Introdução Geradores elétricos Chaves e fusíveis Aprofundando Equação do gerador Potência e rendimento Introdução Um circuito elétrico é constituido de interconexão de vários

Leia mais

FÍSICA 3 Circuitos Elétricos em Corrente Contínua. Circuitos Elétricos em Corrente Contínua

FÍSICA 3 Circuitos Elétricos em Corrente Contínua. Circuitos Elétricos em Corrente Contínua FÍSICA 3 Circuitos Elétricos em Corrente Contínua Prof. Alexandre A. P. Pohl, DAELN, Câmpus Curitiba EMENTA Carga Elétrica Campo Elétrico Lei de Gauss Potencial Elétrico Capacitância Corrente e resistência

Leia mais

Exercícios Eletrodinâmica

Exercícios Eletrodinâmica Exercícios Eletrodinâmica 01-Um gerador elétrico tem potência total 0,6 kw, quando percorrido por uma corrente de intensidade igual a 50 A. Qual a sua força eletromotriz. a) 30.000 V b) 100 V c) 120 V

Leia mais

Exercícios Leis de Kirchhoff

Exercícios Leis de Kirchhoff Exercícios Leis de Kirchhoff 1-Sobre o esquema a seguir, sabe-se que i 1 = 2A;U AB = 6V; R 2 = 2 Ω e R 3 = 10 Ω. Então, a tensão entre C e D, em volts, vale: a) 10 b) 20 c) 30 d) 40 e) 50 Os valores medidos

Leia mais

Receptores elétricos

Receptores elétricos Receptores elétricos 1 Fig.20.1 20.1. A Fig. 20.1 mostra um receptor elétrico ligado a dois pontos A e B de um circuito entre os quais existe uma d.d.p. de 12 V. A corrente que o percorre é de 2,0 A. A

Leia mais

Geradores. a) Complete a tabela abaixo com os valores da corrente I. V(V) R( ) I(A) 1,14 7,55 0,15 1,10 4,40 1,05 2,62 0,40 0,96 1,60 0,85 0,94 0,90

Geradores. a) Complete a tabela abaixo com os valores da corrente I. V(V) R( ) I(A) 1,14 7,55 0,15 1,10 4,40 1,05 2,62 0,40 0,96 1,60 0,85 0,94 0,90 Geradores 1. (Espcex (Aman) 2013) A pilha de uma lanterna possui uma força eletromotriz de 1,5 V e resistência interna de 0,05 Ω. O valor da tensão elétrica nos polos dessa pilha quando ela fornece uma

Leia mais

CURSO DE APROFUNDAMENTO FÍSICA ENSINO MÉDIO

CURSO DE APROFUNDAMENTO FÍSICA ENSINO MÉDIO CURSO DE APROFUNDAMENTO FÍSICA ENSINO MÉDIO Prof. Cazuza 1. Arthur monta um circuito com duas lâmpadas idênticas e conectadas à mesma bateria, como mostrado nesta figura: Considere nula a resistência elétrica

Leia mais

Sendo n o número de elétrons que constituem a carga elétrica Q e a carga elétrica elementar, temos: Q = n.e.

Sendo n o número de elétrons que constituem a carga elétrica Q e a carga elétrica elementar, temos: Q = n.e. AULA Nº 0 CORRENTE ELÉTRICA a) Corrente elétrica É todo movimento ordenado de cargas elétricas b) Intensidade média da corrente elétrica Seja Q o valor absoluto da carga elétrica que atravessa a secção

Leia mais

FÍSICA - 2 o ANO MÓDULO 25 CIRCUITOS ELÉTRICOS: INTRODUÇÃO PARTE 2

FÍSICA - 2 o ANO MÓDULO 25 CIRCUITOS ELÉTRICOS: INTRODUÇÃO PARTE 2 FÍSIC - 2 o NO MÓDULO 25 CIRCUITOS ELÉTRICOS: INTRODUÇÃO PRTE 2 i 1 R 1 R 2 i 1 i g G B i i 2 R 4 D R g i 2 R 3 i Gerador R x G i G =0 R L 1 L 2 + E r i=i CC E i = r i=i CC U E 0 i CC i L 1 L 2 120V E

Leia mais

As leituras no voltímetro V e no amperímetro A, ambos ideais, são, respectivamente,

As leituras no voltímetro V e no amperímetro A, ambos ideais, são, respectivamente, 1. (Espcex (Aman) 015) Em um circuito elétrico, representado no desenho abaixo, o valor da força eletromotriz (fem) do gerador ideal é E 1,5 V, e os valores das resistências dos resistores ôhmicos são

Leia mais

FÍSICA 4 Professor: Igor Ken CAPÍTULO 6 GERADORES E RECEPTORES ELÉTRICOS

FÍSICA 4 Professor: Igor Ken CAPÍTULO 6 GERADORES E RECEPTORES ELÉTRICOS FÍSICA 4 Professor: Igor Ken CAPÍTULO 6 GERADORES E RECEPTORES ELÉTRICOS TEORIA 1. INTRODUÇÃO Neste capítulo, vamos estudar os geradores e receptores elétricos. Aqui começa o nosso estudo dos circuitos

Leia mais

Capítulo 04. Geradores Elétricos. 1. Definição. 2. Força Eletromotriz (fem) de um Gerador. 3. Resistência interna do gerador

Capítulo 04. Geradores Elétricos. 1. Definição. 2. Força Eletromotriz (fem) de um Gerador. 3. Resistência interna do gerador 1. Definição Denominamos gerador elétrico todo dispositivo capaz de transformar energia não elétrica em energia elétrica. 2. Força Eletromotriz (fem) de um Gerador Para os geradores usuais, a potência

Leia mais

Exercícios de Física sobre Geradores com Gabarito

Exercícios de Física sobre Geradores com Gabarito Exercícios de Física sobre Geradores com Gabarito 1) (PASUSP-2009) Dínamos de bicicleta, que são geradores de pequeno porte, e usinas hidrelétricas funcionam com base no processo de indução eletromagnética,

Leia mais

CIRCUITOS ELÉTRICOS I 0. (4.1)

CIRCUITOS ELÉTRICOS I 0. (4.1) ELETICIDADE CAPÍTULO CICUITOS ELÉTICOS Conforme visto no Capítulo, um circuito elétrico constitui um caminho condutor fechado pelo qual se permite conduzir uma corrente elétrica. Um circuito elétrico pode

Leia mais

Exercícios de Física sobre Circuitos Elétricos com Gabarito

Exercícios de Física sobre Circuitos Elétricos com Gabarito Exercícios de Física sobre Circuitos Elétricos com Gabarito (Unicamp-999 Um técnico em eletricidade notou que a lâmpada que ele havia retirado do almoxarifado tinha seus valores nominais (valores impressos

Leia mais

Aula 05. Resistores em Série e em Paralelo Leis de Kirchhoff- Parte I

Aula 05. Resistores em Série e em Paralelo Leis de Kirchhoff- Parte I Aula 05 Resistores em Série e em Paralelo Leis de Kirchhoff- Parte I Circuito Elétrico Básico e suas componentes. \ Resistores em Série Em uma associação de resistores em série, a corrente elétrica ( contínua)

Leia mais

Associação de Geradores

Associação de Geradores Associação de Geradores 1. (Epcar (Afa) 2012) Um estudante dispõe de 40 pilhas, sendo que cada uma delas possui fem igual a 1,5 V e resistência interna de 0,25. Elas serão associadas e, posteriormente,

Leia mais

Leis de Kirchoff. a) 2, 2/3, 5/3 e 4. b) 7/3, 2/3, 5/3 e 4. c) 4, 4/3, 2/3 e 2. d) 2, 4/3, 7/3 e 5/3. e) 2, 2/3, 4/3 e 4.

Leis de Kirchoff. a) 2, 2/3, 5/3 e 4. b) 7/3, 2/3, 5/3 e 4. c) 4, 4/3, 2/3 e 2. d) 2, 4/3, 7/3 e 5/3. e) 2, 2/3, 4/3 e 4. Leis de Kirchoff 1. (Ita 2013) Considere o circuito elétrico mostrado na figura formado por quatro resistores de mesma resistência, R 10, e dois geradores ideais cujas respectivas forças eletromotrizes

Leia mais

Deu curto! Como o nosso assunto é a eletricidade, poderíamos

Deu curto! Como o nosso assunto é a eletricidade, poderíamos A U A UL LA Deu curto! Como o nosso assunto é a eletricidade, poderíamos dizer que a história do banho interrompido serviu para melhorar a ligação entre o pai e o filho. Ernesto, percebendo que aquele

Leia mais

E X E R C Í C I O S. i(a) 7,5 10 elétrons

E X E R C Í C I O S. i(a) 7,5 10 elétrons E X E R C Í C I O S 1. O gráfico da figura abaixo representa a intensidade de corrente que percorre um condutor em função do tempo. Determine a carga elétrica que atravessa uma secção transversal do condutor

Leia mais

Potência e rendimento de geradores e receptores

Potência e rendimento de geradores e receptores Potência e rendimento de geradores e receptores 1 Fig.26.1 26.1. No circuito da Fig. 26.1, a potência transformada em calor é igual a: A) 15 watts. B) 36 watts. C) 51 watts. D) 108 watts. E) 121 watts.

Leia mais

UNIVERSIDADE ESTADUAL PAULISTA FACULDADE DE ENGENHARIA CAMPUS DE ILHA SOLTEIRA DEPARTAMENTO DE ENGENHARIA ELÉTRICA. Eletricidade

UNIVERSIDADE ESTADUAL PAULISTA FACULDADE DE ENGENHARIA CAMPUS DE ILHA SOLTEIRA DEPARTAMENTO DE ENGENHARIA ELÉTRICA. Eletricidade UNIVERSIDADE ESTADUAL PAULISTA FACULDADE DE ENGENHARIA CAMPUS DE ILHA SOLTEIRA DEPARTAMENTO DE ENGENHARIA ELÉTRICA Eletricidade Análise de Circuitos alimentados por fontes constantes Prof. Ilha Solteira,

Leia mais

Circuitos Elétricos 2º parte. Biografia A lei de Pouilet Associação de geradores Lei de Kirchhoff

Circuitos Elétricos 2º parte. Biografia A lei de Pouilet Associação de geradores Lei de Kirchhoff Circuitos Elétricos 2º parte Biografia A lei de Pouilet Associação de geradores Lei de Kirchhoff Biografia Nascido nos arredores de Paris, Claude Pouillet foi um estudioso da Eletricidade e também um dos

Leia mais

Professor João Luiz Cesarino Ferreira

Professor João Luiz Cesarino Ferreira Exercícios 1º Lei de Ohm e Potência elétrica 1º) 2º) 3º) Um fio com uma resistência de 6,0Ω é esticado de tal forma que seu comprimento se torna três vezes maior que o original. Determine a resistência

Leia mais

O que você deve saber sobre

O que você deve saber sobre O que você deve saber sobre Além de resistores, os circuitos elétricos apresentam dispositivos para gerar energia potencial elétrica a partir de outros componentes (geradores), armazenar cargas, interromper

Leia mais

ACESSO FÍSICA LISTA 1 (LEIS DE OHM E CORRENTE ELÉTRICA)

ACESSO FÍSICA LISTA 1 (LEIS DE OHM E CORRENTE ELÉTRICA) ACESSO FÍSICA LISTA 1 (LEIS DE OHM E CORRENTE ELÉTRICA) 1. (Fuvest) O plutônio ( Pu) é usado para a produção direta de energia elétrica em veículos espaciais. Isso é realizado em um gerador que possui

Leia mais

ELETRICIDADE: CIRCUITOS ELÉTRICOS Experimento 1 Parte II: Medidas de corrente elétrica, tensão e resistência em circuitos de corrente

ELETRICIDADE: CIRCUITOS ELÉTRICOS Experimento 1 Parte II: Medidas de corrente elétrica, tensão e resistência em circuitos de corrente OBJETIVOS 9 contínua NOME ESCOLA EQUIPE SÉRIE PERÍODO DATA Familiarizar-se com o multímetro, realizando medidas de corrente, tensão e resistência. INTRODUÇÃO Corrente elétrica FÍSICA ELETRICIDADE: CIRCUITOS

Leia mais

Aulas 19 a 23. 1. (Fuvest 2012)

Aulas 19 a 23. 1. (Fuvest 2012) 1. (Fuvest 01) A figura acima representa, de forma esquemática, a instalação elétrica de uma residência, com circuitos de tomadas de uso geral e circuito específico para um chuveiro elétrico. Nessa residência,

Leia mais

Instrumentos de Medidas Elétricas I Voltímetros, Amperímetros e Ohmímetros

Instrumentos de Medidas Elétricas I Voltímetros, Amperímetros e Ohmímetros nstrumentos de Medidas Elétricas Nesta prática vamos estudar o princípios de funcionamentos de instrumentos de medidas elétrica, em particular, voltímetros, amperímetros e ohmímetros. Sempre que surgir

Leia mais

RESISTORES. 1.Resistencia elétrica e Resistores

RESISTORES. 1.Resistencia elétrica e Resistores RESISTORES 1.Resistencia elétrica e Resistores Vimos que, quando se estabelece uma ddp entre os terminais de um condutor,o mesmo é percorrido por uma corrente elétrica. Agora pense bem, o que acontece

Leia mais

Equipe de Física FÍSICA

Equipe de Física FÍSICA Aluno (a): Série: 3ª Turma: TUTORIAL 10R Ensino Médio Equipe de Física Data: FÍSICA Corrente Elétrica Ao se estudarem situações onde as partículas eletricamente carregadas deixam de estar em equilíbrio

Leia mais

1 P r o j e t o F u t u r o M i l i t a r w w w. f u t u r o m i l i t a r. c o m. b r

1 P r o j e t o F u t u r o M i l i t a r w w w. f u t u r o m i l i t a r. c o m. b r Exercícios Capacitores e) 12,5 J 1-Capacitores são elementos de circuito destinados a: a) armazenar corrente elétrica. b) permitir a passagem de corrente elétrica de intensidade constante. c) corrigir

Leia mais

a) 2,0. b) 2,4. c) 3,0. d) 4,8. e) 7,2.

a) 2,0. b) 2,4. c) 3,0. d) 4,8. e) 7,2. LISTA 08 GERADORES 1. (Uesb-BA) A força eletromotriz de um gerador é de 12V e a sua resistência interna é de 2,0. Quando esse gerador alimenta um dispositivo cuja resistência ôhmica é 4,0, a intensidade

Leia mais

Prof.: Geraldo Barbosa Filho

Prof.: Geraldo Barbosa Filho AULA 07 GERADORES E RECEPTORES 5- CURVA CARACTERÍSTICA DO GERADOR 1- GERADOR ELÉTRICO Gerador é um elemento de circuito que transforma qualquer tipo de energia, exceto a elétrica, em energia elétrica.

Leia mais

Exercícios sobre Circuitos Elétricos Simples com Gabarito

Exercícios sobre Circuitos Elétricos Simples com Gabarito Exercícios sobre Circuitos Elétricos Simples com Gabarito 1) (Mack-1996) Um capacitor plano é ligado aos pontos A e B do circuito a seguir e o amperímetro ideal A acusa a passagem da corrente de 0,10A.

Leia mais

Ligação em curto-circuito

Ligação em curto-circuito Ligação em curto-circuito 1 Fig. 14.1 14.1. Denomina-se reostato a qualquer resistor de resistência variável. Representamos o reostato pelos símbolos da Fig. 14.1. Submetendo a uma tensão constante igual

Leia mais

APOSTILA DE ELETRICIDADE BÁSICA

APOSTILA DE ELETRICIDADE BÁSICA MINISTÉRIO DA EDUCAÇÃO INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DE SÃO PAULO CAMPUS DE PRESIDENTE EPITÁCIO APOSTILA DE ELETRICIDADE BÁSICA Prof. Andryos da Silva Lemes Esta apostila é destinada

Leia mais

ACESSO FÍSICA LISTA 2 (POTENCIA ELÉTRICA E CIRCUITOS)

ACESSO FÍSICA LISTA 2 (POTENCIA ELÉTRICA E CIRCUITOS) ACESSO FÍSICA LISTA 2 (POTENCIA ELÉTRICA E CIRCUITOS) 22. Considerando a tarifa aproximada de R$ 0,40 por kwh cobrada pela Copel em Curitiba, calcule o custo mensal (30 dias) dos banhos de uma família

Leia mais

- O movimento ordenado de elétrons em condutores

- O movimento ordenado de elétrons em condutores MATÉRIA: Eletrotécnica MOURA LACERDA CORRENTE ELÉTRICA: - O movimento ordenado de elétrons em condutores Os aparelhos eletro-eletrônicos que se encontram nas residências precisam de energia elétrica para

Leia mais

Receptores elétricos

Receptores elétricos Receptores elétricos Receptor elétrico é qualquer dispositivo que transforma energia elétrica em outra forma de energia que não seja exclusivamente térmica,se lembre que os resistores são os dispositivos

Leia mais

Circuitos Elétricos: Métodos de Resolução de Malhas Múltiplas

Circuitos Elétricos: Métodos de Resolução de Malhas Múltiplas Circuitos Elétricos: Métodos de esolução de Malhas Múltiplas (Por oberto ezende) (Agradecimentos ao professor Leandro Nogueira, que deu apoio com o método de Thévénin) )Introdução O objetivo deste artigo

Leia mais

LEIS DE KIRCHHOFF ANÁLISE DE REDES DC

LEIS DE KIRCHHOFF ANÁLISE DE REDES DC LEIS DE KIRCHHOFF ANÁLISE DE REDES DC 1. Análise de correntes nas malhas 2. Análise de tensão nodal 3. Superposição As Leis de Kirchhoff são assim denominadas em homenagem ao físico alemão Gustav Kirchhoff

Leia mais

Física LIVRO 3 Unidade 1 Avaliação capítulos 4 e 5 Eletricidade. Sinopse de questões

Física LIVRO 3 Unidade 1 Avaliação capítulos 4 e 5 Eletricidade. Sinopse de questões Sinopse de questões 1. Circuitos 2. Associação de resistores 3. Circuitos residenciais 4. Geradores 5. Receptores 6. Leis de Kirchoff 7. Ponte de Wheatstone 8. Capacitores 9. Capacitor plano 10. Associação

Leia mais

REVISÃO ENEM. Prof. Heveraldo

REVISÃO ENEM. Prof. Heveraldo REVISÃO ENEM Prof. Heveraldo Fenômenos Elétricos e Magnéticos Carga elétrica e corrente elétrica. Lei de Coulomb. Campo elétrico e potencial elétrico. Linhas de campo. Superfícies equipotenciais. Poder

Leia mais

Colégio Paulo VI Aluno (a): Nº.: 3º Série do Ensino Médio Turma: Turno: Vespertino Lista 03 LISTA Nº 04

Colégio Paulo VI Aluno (a): Nº.: 3º Série do Ensino Médio Turma: Turno: Vespertino Lista 03 LISTA Nº 04 Colégio Paulo VI Aluno (a): Nº.: 3º Série do Ensino Médio Turma: Turno: Vespertino Lista 03 Disciplina: Física Professor (a): Murilo Gomes Data: / / 2014 Eletrodinâmica LISTA Nº 04 1. Resistores 01. Um

Leia mais

Ele deu... a luz. Era noite e chovia torrencialmente. Roberto,

Ele deu... a luz. Era noite e chovia torrencialmente. Roberto, A UU L AL A Ele deu... a luz Era noite e chovia torrencialmente. Roberto, prevenido, deu a sua ordem preferida: - Desliga a televisão que é perigoso, está trovejando! Mal ele acabou a frase, surgiu um

Leia mais

Geradores elétricos GERADOR. Energia dissipada. Símbolo de um gerador

Geradores elétricos GERADOR. Energia dissipada. Símbolo de um gerador Geradores elétricos Geradores elétricos são dispositivos que convertem um tipo de energia qualquer em energia elétrica. Eles têm como função básica aumentar a energia potencial das cargas que os atravessam

Leia mais

Resistores e Associação de Resistores

Resistores e Associação de Resistores Parte I Resistores e Associação de Resistores 1. (Ufmg 2012) Arthur monta um circuito com duas lâmpadas idênticas e conectadas à mesma bateria, como mostrado nesta figura: c) 8. d) 12. e) 15. 4. (Ufu 2011)

Leia mais

Leis de Kirchhoff. 2. (Fuvest-gv) No circuito esquematizado a seguir, o amperímetro acusa uma corrente de 30 ma.

Leis de Kirchhoff. 2. (Fuvest-gv) No circuito esquematizado a seguir, o amperímetro acusa uma corrente de 30 ma. TEXTO PARA A PRÓXIMA QUESTÃO (Ufpe) Constantes físicas necessárias para a solução dos problemas: aceleração da gravidade: 10 m/s constante de Planck: 6,6 x 10 J.s 1. Calcule o potencial elétrico no ponto

Leia mais

Assunto: Exercícios Leis de Kirchhoff Apenas com duas malhas.

Assunto: Exercícios Leis de Kirchhoff Apenas com duas malhas. Página 1 de 3 CURSO Eletroeletrônica - DATA / / COMPONENTE Eletricidade Básica ALUNO RA: DOCENTE Prof. Romeu Corradi Júnior [www.corradi.junior.nom.br] Assunto: Exercícios Leis de Kirchhoff Apenas com

Leia mais

Introdução Teórica Aula 3: Leis de Kirchhoff

Introdução Teórica Aula 3: Leis de Kirchhoff Introdução Teórica Aula 3: Leis de Kirchhoff Gustav Kirchhoff Gustav Kirchhoff (1824-1887) foi um físico alemão que juntamente com o químico alemão Robert Wilhelm Bunsen, desenvolveu o espectroscópio moderno

Leia mais

k k R microfarad F F 1 1 10 nanofarad nf F 1 1 10 picofarad pf F coulomb volt C V 9.10 Nm capacitância ou capacidade eletrostática do condutor.

k k R microfarad F F 1 1 10 nanofarad nf F 1 1 10 picofarad pf F coulomb volt C V 9.10 Nm capacitância ou capacidade eletrostática do condutor. CONDUTOR EM EUILÍBRIO ELETROSTÁTICO Um condutor, eletrizado ou não, encontrase em equilíbrio eletrostático, quando nele não ocorre movimento ordenado de cargas elétricas em relação a um referencial fixo

Leia mais

LEI DE OHM LEI DE OHM. Se quisermos calcular o valor da resistência, basta dividir a tensão pela corrente.

LEI DE OHM LEI DE OHM. Se quisermos calcular o valor da resistência, basta dividir a tensão pela corrente. 1 LEI DE OHM A LEI DE OHM é baseada em três grandezas, já vistas anteriormente: a Tensão, a corrente e a resistência. Com o auxílio dessa lei, pode-se calcular o valor de uma dessas grandezas, desde que

Leia mais

Grupo: Ederson Luis Posselt Geovane Griesang Joel Reni Herdina Jonatas Tovar Shuler Ricardo Cassiano Fagundes

Grupo: Ederson Luis Posselt Geovane Griesang Joel Reni Herdina Jonatas Tovar Shuler Ricardo Cassiano Fagundes Curso: Ciências da computação Disciplina: Física aplicada a computação Professor: Benhur Borges Rodrigues Relatório experimental 03: Efeitos da corrente elétrica sobre um fio material; Carga e descarga

Leia mais

Associação de Resistores

Associação de Resistores Associação de Resistores 1. (Pucrj 2013) No circuito mostrado na figura, a diferença de potencial entre os pontos B e A vale, em Volts: a) 3,0 b) 1,0 c) 2,0 d) 4,5 e) 0,75 2. (Uerj 2011) Observe a representação

Leia mais

Ponte de Wheatstone. e) 1min Ω 1max. De R 20 a R 30Ω. De R 10 a R 25Ω De R 9,0 a R 23Ω De R 7,7 a R 9,0Ω

Ponte de Wheatstone. e) 1min Ω 1max. De R 20 a R 30Ω. De R 10 a R 25Ω De R 9,0 a R 23Ω De R 7,7 a R 9,0Ω Ponte de Wheatstone 1. (Ita 2012 nível difícil) Alguns tipos de sensores piezorresistivos podem ser usados na confecção de sensores de pressão baseados em pontes de Wheatstone. Suponha que o resistor R

Leia mais

Circuitos de Corrente Contínua

Circuitos de Corrente Contínua Circuitos de Corrente Contínua Conceitos básicos de eletricidade Fundamentos de Eletrostática Potencial, Diferença de Potencial, Corrente Tipos de Materiais Circuito Elétrico Resistores 1 Circuitos de

Leia mais

Questão 1) ELETRICIDADE

Questão 1) ELETRICIDADE Eletricidade 1 Questão 1) Uma esfera condutora A, carregada positivamente, é aproximada de uma outra esfera condutora B, que é idêntica à esfera A, mas está eletricamente neutra. Sobre processos de eletrização

Leia mais

Números Complexos. Note com especial atenção o sinal "-" associado com X C. Se escrevermos a expressão em sua forma mais básica, temos: = 1

Números Complexos. Note com especial atenção o sinal - associado com X C. Se escrevermos a expressão em sua forma mais básica, temos: = 1 1 Números Complexos. Se tivermos um circuito contendo uma multiplicidade de capacitores e resistores, se torna necessário lidar com resistências e reatâncias de uma maneira mais complicada. Por exemplo,

Leia mais

a) 4V/R. b) 2V/R. c) V/R. d) V/2R. e) V/4R.

a) 4V/R. b) 2V/R. c) V/R. d) V/2R. e) V/4R. 1- (Unitau 1995) No circuito mostrado a seguir, a corrente fornecida pela bateria e a corrente que circula através do resistor de 6,0Ω São, respectivamente: 4- (Vunesp 1991) Alguns automóveis modernos

Leia mais

Primeira Lei de Ohm. Podemos dizer que a resistência elétrica deste circuito é de: a) 2,0 m b) 0,2 c) 0,5 d) 2,0 k e) 0,5 k

Primeira Lei de Ohm. Podemos dizer que a resistência elétrica deste circuito é de: a) 2,0 m b) 0,2 c) 0,5 d) 2,0 k e) 0,5 k Primeira Lei de Ohm 1. (Pucrj 2013) O gráfico abaixo apresenta a medida da variação de potencial em função da corrente que passa em um circuito elétrico. Podemos dizer que a resistência elétrica deste

Leia mais

PONTIFÍCIA UNIVERSIDADE CATÓLICA DE GOIÁS

PONTIFÍCIA UNIVERSIDADE CATÓLICA DE GOIÁS PONTIFÍCIA UNIVERSIDADE CATÓLICA DE GOIÁS DEPARTAMENTO DE MATEMÁTICA E FÍSICA EXERCÍCIOS NOTAS DE AULA I Goiânia - 014 1. Um capacitor de placas paralelas possui placas circulares de raio 8, cm e separação

Leia mais

PONTIFÍCIA UNIVERSIDADE CATÓLICA DE GOIÁS

PONTIFÍCIA UNIVERSIDADE CATÓLICA DE GOIÁS PONTIFÍCIA UNIVERSIDADE CATÓLICA DE GOIÁS DEPARTAMENTO DE MATEMÁTICA E FÍSICA Professor: Renato Medeiros EXERCÍCIOS NOTA DE AULA III Goiânia - 014 1 E X E R C Í C I O S 1. Uma corrente de 5,0 A percorre

Leia mais

CIRCUITOS ELÉTRICOS II

CIRCUITOS ELÉTRICOS II CIRCUITOS ELÉTRICOS II Prof.: Helder Roberto de O. Rocha Engenheiro Eletricista Doutorado em Computação Corrente Elétrica Quantidade de carga elétrica deslocada por unidade de tempo As correntes elétricas

Leia mais

Física Experimental B Turma G

Física Experimental B Turma G Grupo de Supercondutividade e Magnetismo Física Experimental B Turma G Prof. Dr. Maycon Motta São Carlos-SP, Brasil, 2015 Prof. Dr. Maycon Motta E-mail: m.motta@df.ufscar.br Site: www.gsm.ufscar.br/mmotta

Leia mais

Aula 9.1 Conteúdo: Geradores elétricos, geradores químicos e força eletromotriz. Receptores, motores elétricos e força contra eletromotriz.

Aula 9.1 Conteúdo: Geradores elétricos, geradores químicos e força eletromotriz. Receptores, motores elétricos e força contra eletromotriz. Aula 9.1 Conteúdo: Geradores elétricos, geradores químicos e força eletromotriz. Receptores, motores elétricos e força contra eletromotriz. Habilidades: Compreender a função dos geradores e receptores

Leia mais

INSTITUTO NACIONAL DE PESQUISAS ESPACIAIS (INPE)

INSTITUTO NACIONAL DE PESQUISAS ESPACIAIS (INPE) INSTITUTO NACIONAL DE PESQUISAS ESPACIAIS (INPE) Concurso Público - NÍVEL MÉDIO CARGO: Técnico da Carreira de Desenvolvimento Tecnológico Classe: Técnico 1 Padrão I (TM11) CADERNO DE PROVAS PROVA DISCURSIVA

Leia mais

Resolução O período de oscilação do sistema proposto é dado por: m T = 2π k Sendo m = 250 g = 0,25 kg e k = 100 N/m, vem:

Resolução O período de oscilação do sistema proposto é dado por: m T = 2π k Sendo m = 250 g = 0,25 kg e k = 100 N/m, vem: 46 c FÍSICA Um corpo de 250 g de massa encontra-se em equilíbrio, preso a uma mola helicoidal de massa desprezível e constante elástica k igual a 100 N/m, como mostra a figura abaixo. O atrito entre as

Leia mais

TÉCNICO EM ELETRÔNICA MTAC-1. Métodos e Técnicas de Análise de Circuitos Prof. Renato P. Bolsoni

TÉCNICO EM ELETRÔNICA MTAC-1. Métodos e Técnicas de Análise de Circuitos Prof. Renato P. Bolsoni TÉCNICO EM ELETRÔNICA MTAC-1 Métodos e Técnicas de Análise de Circuitos Prof. Renato P. Bolsoni Ver 1-11/08/2009 MTAC 1 - Prof. Renato Bolsoni 1 ÍNDICE Conteúdo Pág. O básico da teoria atômica da matéria...

Leia mais

U = R.I. Prof.: Geraldo Barbosa Filho AULA 06 CORRENTE ELÉTRICA E RESISTORES 1- CORRENTE ELÉTRICA

U = R.I. Prof.: Geraldo Barbosa Filho AULA 06 CORRENTE ELÉTRICA E RESISTORES 1- CORRENTE ELÉTRICA AULA 06 CORRENTE ELÉTRICA E RESISTORES 1- CORRENTE ELÉTRICA Movimento ordenado dos portadores de carga elétrica. 2- INTENSIDADE DE CORRENTE É a razão entre a quantidade de carga elétrica que atravessa

Leia mais

Prof. Sergio Abrahão 17

Prof. Sergio Abrahão 17 DIFERENÇA DE POTENCIAL - DDP (U) (Tensão Elétrica) Vamos aqui definir diferença de potencial (d.d.p) ou tensão elétrica de duas maneiras. O de forma científica utilizará aquela adotada por Tipler em que

Leia mais

UNIVERSIDADE FEDERAL DE SANTA CATARINA DEPARTAMENTO DE ENGENHARIA ELÉTRICA EEL7040 Circuitos Elétricos I - Laboratório

UNIVERSIDADE FEDERAL DE SANTA CATARINA DEPARTAMENTO DE ENGENHARIA ELÉTRICA EEL7040 Circuitos Elétricos I - Laboratório UNIERSIDADE FEDERAL DE SANTA CATARINA DEPARTAMENTO DE ENGENHARIA ELÉTRICA EEL7040 Circuitos Elétricos I - Laboratório AULA 03 MEDIDAS DE RESISTÊNCIA ELÉTRICA 1 INTRODUÇÃO Nas aulas anteriores teve-se como

Leia mais

TC 3 UECE - 2013 FASE 2 MEDICINA e REGULAR

TC 3 UECE - 2013 FASE 2 MEDICINA e REGULAR TC 3 UECE - 03 FASE MEICINA e EGULA SEMANA 0 a 5 de dezembro POF.: Célio Normando. A figura a seguir mostra um escorregador na forma de um semicírculo de raio = 5,0 m. Um garoto escorrega do topo (ponto

Leia mais

q = (Unidade: 1 C = 1A) t I m

q = (Unidade: 1 C = 1A) t I m 1 Corrente Elétrica Como visto no modulo anterior, os materiais condutores, devido as suas características físicas, formam elétrons livres quando de suas ligações atômicas. Contudo essas partículas que

Leia mais

Definir força eletromotriz e então discutir os circuitos de corrente contínua.

Definir força eletromotriz e então discutir os circuitos de corrente contínua. Aula 6 ELETRODINÂMICA META Conceituar corrente elétrica. Apresentar a lei de Ohm e sua aplicação nos resistores. Definir força eletromotriz e então discutir os circuitos de corrente contínua. Mostrar as

Leia mais

LISTA 3 - Prof. Jason Gallas, DF UFPB 10 de Junho de 2013, às 18:19. Jason Alfredo Carlson Gallas, professor titular de física teórica,

LISTA 3 - Prof. Jason Gallas, DF UFPB 10 de Junho de 2013, às 18:19. Jason Alfredo Carlson Gallas, professor titular de física teórica, Exercícios Resolvidos de Física Básica Jason Alfredo Carlson Gallas, professor titular de física teórica, Doutor em Física pela Universidade Ludwig Maximilian de Munique, Alemanha Universidade Federal

Leia mais

Universidade Federal da Paraíba Centro de Ciências Exatas e da Natureza Departamento de Informática

Universidade Federal da Paraíba Centro de Ciências Exatas e da Natureza Departamento de Informática Universidade Federal da Paraíba Centro de Ciências Exatas e da Natureza Departamento de Informática Francisco Erberto de Sousa 11111971 Saulo Bezerra Alves - 11111958 Relatório: Capacitor, Resistor, Diodo

Leia mais

Corrente elétrica corrente elétrica.

Corrente elétrica corrente elétrica. Corrente elétrica Vimos que os elétrons se deslocam com facilidade em corpos condutores. O deslocamento dessas cargas elétricas é chamado de corrente elétrica. A corrente elétrica é responsável pelo funcionamento

Leia mais

Medidas elétricas I O Amperímetro

Medidas elétricas I O Amperímetro Medidas elétricas I O Amperímetro Na disciplina Laboratório de Ciências vocês conheceram quatro fenômenos provocados pela passagem de corrente elétrica num condutor: a) transferência de energia térmica,

Leia mais

Unidade 12 - Capacitores

Unidade 12 - Capacitores Unidade 1 - Capacitores Capacidade Eletrostática Condutor Esférico Energia Armazenada em um capacitor Capacitor Plano Associação de Capacitores Circuitos com capacitores Introdução Os primeiros dispositivos

Leia mais

Universidade Federal do Rio de Janeiro. Princípios de Instrumentação Biomédica. Módulo 4

Universidade Federal do Rio de Janeiro. Princípios de Instrumentação Biomédica. Módulo 4 Universidade Federal do Rio de Janeiro Princípios de Instrumentação Biomédica Módulo 4 Faraday Lenz Henry Weber Maxwell Oersted Conteúdo 4 - Capacitores e Indutores...1 4.1 - Capacitores...1 4.2 - Capacitor

Leia mais

Questão 46. Questão 48. Questão 47. alternativa A. alternativa B

Questão 46. Questão 48. Questão 47. alternativa A. alternativa B Questão 46 Na figura, são dados os vetores a, bec. Sendo u a unidade de medida do módulo desses vetores, pode-se afirmar que o vetor d = = a b + c tem módulo a) 2u, e sua orientação é vertical, para cima.

Leia mais

Apostila de Revisão de Eletrodinâmica: 1ª Lei de Ohm, Potência e Energia Elétrica, Associação de Resistores e Circuito Elétrico

Apostila de Revisão de Eletrodinâmica: 1ª Lei de Ohm, Potência e Energia Elétrica, Associação de Resistores e Circuito Elétrico Apostila de Revisão de Eletrodinâmica: 1ª Lei de Ohm, Potência e Energia Elétrica, Associação de Resistores e Circuito Elétrico 1. (G1 - cftmg 2013) O meio que conduz melhor a eletricidade é a(o) a) ar,

Leia mais

Fig. 2.2 - Painel do multímetro com a função ohmímetro em destaque.

Fig. 2.2 - Painel do multímetro com a função ohmímetro em destaque. 2 MULTÍMETRO 2.1 - Objetivos Aprender a manusear o multímetro na realização de medidas de tensões e correntes elétricas, contínuas e alternadas, bem como medir resistências elétricas. 2.2 - Introdução

Leia mais

UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO CENTRO UNIVERSITÁRIO NORTE DO ESPÍRITO SANTO

UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO CENTRO UNIVERSITÁRIO NORTE DO ESPÍRITO SANTO 34 4.4 Experimento 4: Capacitância, capacitores e circuitos RC 4.4.1 Objetivos Fundamentar o conceito de capacitância e capacitor; Realizar leituras dos valores de capacitância de capacitores; Associar

Leia mais

Apostila de Física 30 Geradores Elétricos

Apostila de Física 30 Geradores Elétricos Apostila de Física 30 Geradores Elétricos 1.0 Definições Gerador elétrico Aparelho que transforma qualquer forma de energia em energia elétrica. Exemplos: Usinas hidrelétricas Geradores mecânicos. Pilhas

Leia mais

UFMG - 2003 2º DIA FÍSICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR

UFMG - 2003 2º DIA FÍSICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR UFMG - 2003 2º DIA FÍSICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR Física Questão 01 Durante uma brincadeira, Rafael utiliza o dispositivo mostrado nesta figura para lançar uma bolinha horizontalmente. Nesse

Leia mais

Eletricista Instalador Predial de Baixa Tensão Eletricidade Básica Jones Clécio Otaviano Dias Júnior Curso FIC Aluna:

Eletricista Instalador Predial de Baixa Tensão Eletricidade Básica Jones Clécio Otaviano Dias Júnior Curso FIC Aluna: Ministério da Educação - MEC Secretaria de Educação Profissional e Tecnológica (SETEC) Instituto Federal de Educação, Ciência e Tecnologia do Ceará Eletricista Instalador Predial de Baixa Tensão Eletricidade

Leia mais

Aula 06. ASSUNTOS: Circuitos elétricos de corrente contínua; potência elétrica; leis de OHM; efeito Joule.

Aula 06. ASSUNTOS: Circuitos elétricos de corrente contínua; potência elétrica; leis de OHM; efeito Joule. ASSNTOS: Circuitos elétricos de corrente contínua; potência elétrica; leis de OHM; efeito Joule. 1. (CEFET CE 007) Na figura a seguir, a bateria E, o voltímetro V e o amperímetro A são ideais. Todos os

Leia mais

Força Eletromotriz Induzida

Força Eletromotriz Induzida Força Eletromotriz Induzida 1. (Uerj 2013) Um transformador que fornece energia elétrica a um computador está conectado a uma rede elétrica de tensão eficaz igual a 120 V. A tensão eficaz no enrolamento

Leia mais

Resistência elétrica

Resistência elétrica Resistência elétrica 1 7.1. Quando uma corrente percorre um receptor elétrico (um fio metálico, uma válvula, motor, por exemplo), há transformação de ia elétrica em outras formas de energia. O receptor

Leia mais

a) os módulos das velocidades angulares ωr NOTE E ADOTE

a) os módulos das velocidades angulares ωr NOTE E ADOTE 1. Um anel condutor de raio a e resistência R é colocado em um campo magnético homogêneo no espaço e no tempo. A direção do campo de módulo B é perpendicular à superfície gerada pelo anel e o sentido está

Leia mais

Aula 4 Análise Circuitos Elétricos Prof. Marcio Kimpara

Aula 4 Análise Circuitos Elétricos Prof. Marcio Kimpara ELETICIDADE Aula 4 Análise Circuitos Elétricos Prof. Marcio Kimpara Universidade Federal de Mato Grosso do Sul 2 Fonte elétrica As fontes elétricas mantém a diferença de potencial (ddp) necessária para

Leia mais

Energia e potência em receptores elétricos

Energia e potência em receptores elétricos Energia e potência em receptores elétricos 1 17.1. Quando uma corrente elétrica atravessa um receptor, a energia elétrica consumida ou é totalmente transformada em calor (é o caso dos resistores), ou então

Leia mais

Conteúdo GERADORES ELÉTRICOS E QUÍMICOS E FORÇA ELETROMOTRIZ.

Conteúdo GERADORES ELÉTRICOS E QUÍMICOS E FORÇA ELETROMOTRIZ. Aula 10.1 Física Conteúdo GERADORES ELÉTRICOS E QUÍMICOS E FORÇA ELETROMOTRIZ. Habilidades Compreender os conceitos da Eletrodinâmica. Compreender elementos do circuito elétrico e seu funcionamento. Frente

Leia mais

O esquema da Fig.1 mostra como montar a resistência de teste para medidas de tensão, corrente e resistência.

O esquema da Fig.1 mostra como montar a resistência de teste para medidas de tensão, corrente e resistência. Ano lectivo: 200-20 Medição de Tensões e Correntes Eléctricas. Leis de Ohm e de Kirchhoff. OBJECTIO Aprender a utilizar um osciloscópio e um multímetro digital. Medição de grandezas AC e DC. Conceito de

Leia mais

Título: Professor: Turma: Lista de exercícios de geradores José Alex. Questão 1. Questão 3

Título: Professor: Turma: Lista de exercícios de geradores José Alex. Questão 1. Questão 3 Título: Professor: Turma: Lista de exercícios de geradores José Alex Questão 1 Questão 3 O motorista abasteceu o carro às 7 horas da manhã, quando a temperatura ambiente era de 15 C, e o deixou estacionado

Leia mais

Sobriedade e objetividade nessa caminhada final e que a chegada seja recheado de SUCESSO! Vasco Vasconcelos

Sobriedade e objetividade nessa caminhada final e que a chegada seja recheado de SUCESSO! Vasco Vasconcelos Prezado aluno, com o intuito de otimizar seus estudos para a 2ª fase do Vestibular da UECE, separamos as questões, por ano, por assunto e com suas respectivas resoluções! Vele a pena dar uma lida e verificar

Leia mais

UNIVERSIDADE FEDERAL DE UBERLÂNDIA FACULDADE DE CIÊNCIAS INTEGRADAS DO PONTAL

UNIVERSIDADE FEDERAL DE UBERLÂNDIA FACULDADE DE CIÊNCIAS INTEGRADAS DO PONTAL UNIVERSIDADE FEDERAL DE UBERLÂNDIA FACULDADE DE CIÊNCIAS INTEGRADAS DO PONTAL Física Experimental III - Medidas Elétricas Objetivo O objetivo desta prática é aprender a fazer medições de resistência, tensão

Leia mais