CIRCUITOS ELÉTRICOS I 0. (4.1)

Tamanho: px
Começar a partir da página:

Download "CIRCUITOS ELÉTRICOS I 0. (4.1)"

Transcrição

1 ELETICIDADE CAPÍTULO CICUITOS ELÉTICOS Conforme visto no Capítulo, um circuito elétrico constitui um caminho condutor fechado pelo qual se permite conduzir uma corrente elétrica. Um circuito elétrico pode ser composto por elementos elétricos tais como resistores, indutores, capacitores, linhas de transmissão, fontes de tensão, fontes de corrente e interruptores, de modo que estes formem pelo menos um caminho fechado para a corrente elétrica. Neste capítulo, estudaremos os circuitos elétricos constituídos apenas de resistências elétricas os denominados circuitos elétricos resistivos operando em regime de corrente contínua (c.c.). Trataremos apenas de casos especiais, nos quais os circuitos são constituídos por uma única fonte de fem ideal, e que as resistências estejam associadas em série, em paralelo ou de forma mista, tal como visto no capítulo anterior. Existem circuitos resistivos mistos os quais não podem ser resolvidos usando as técnicas de associação de resistências em série e em paralelo vistas no capítulo anterior. Esses casos não serão tratados na disciplina. Leis de Kirchhoff para Circuitos Elétricos As leis de Kirchhoff para circuitos elétricos são utilizadas para a resolução e análise de quaisquer circuitos elétricos que operam em corrente contínua (c.c.) ou, até mesmo, em corrente alternada (c.a.). A aplicação destas leis permitirá a análise do comportamento das tensões e correntes em circuitos elétricos de associações resistivas em série, em paralelo e mista, bem como a determinação da resistência equivalente em tais combinações que envolvam diversas malhas. Os circuitos elétricos contêm nós e malhas. Como vimos no capítulo anterior, mas agora com um pouco mais de refino, nó é um ponto (comum) onde os terminais de diversos condutores estão conectados; malha é qualquer caminho condutor fechado pelo qual se permite circular uma dada corrente elétrica. ª Lei de Kirchhoff Lei dos Nós A soma algébrica das correntes que entram em um determinado nó deverá ser igual a soma algébrica das correntes que dele saem. Formalmente: entra I sai = I 0. (.) Em (.), I entra indica as correntes que entram em um determinado nó, ao passo que I sai indica as correntes que saem do mesmo. Esta lei se refere à forma como a corrente elétrica se distribui nos circuitos de associação de elementos em paralelo. Ainda, conforme indicado, essa lei deve ser satisfeita para todos os nós existentes em um dado circuito. Esta lei é uma conseqüência direta do princípio de conservação da carga elétrica, estudado no Capítulo. ª Lei de Kirchhoff Lei das Malhas A soma algébrica das forças eletromotrizes em uma malha qualquer deverá ser igual à soma algébrica das tensões dos elementos (em nosso caso apenas resistências) contidos nessa mesma malha. Formalmente: malha V malha = ε 0. (.) Uma fonte de fem ideal é aquela que não apresenta resistência interna; ou seja, a qual apresenta rendimento igual a 00%. As fontes de fem não ideais serão estudadas mais adiante. estringindo-se suas aplicações apenas para casos que envolvam valores instantâneos de tensão, corrente e potência.

2 Em (.), ε malha indica as forças eletromotrizes aplicadas em uma malha qualquer, ao passo que V malha indica as tensões dos elementos (no caso resistências) contidos na mesma. Esta lei se refere à forma como a tensão se distribui nos circuitos de associação de elementos em série. Ainda, conforme indicado, essa lei deve ser satisfeita em todas as malhas existentes em um dado circuito. Esta lei é uma conseqüência direta do princípio de conservação da energia, quando aplicada a circuitos elétricos. Circuitos Elétricos com Associação Série, Paralela e Mista de esistências Vamos aplicar as leis de Kirchhoff aos circuitos resistivos do tipo série, paralelo e misto, para analisar o comportamento das tensões e correntes nos elementos (resistências, no caso) destes. Também, pela aplicação destas leis, é possível verificar matematicamente as equações para a determinação da resistência equivalente de uma associação resistiva em série ou em paralelo, as quais foram apresentadas no capítulo anterior. Circuito com Associação de esistências em Série Figura. Circuito resistivo do tipo série. Para cada uma das resistências, há um voltímetro conectado em paralelo com tal, com vistas a medir a sua tensão. Também, há um amperímetro conectado em série com cada uma das resistências, com vistas a medir a corrente que atravessa cada uma destas. A Figura. mostra um circuito resistivo série composto por uma fonte de fem ideal ε e três resistências. O sentido (convencional) da corrente I é mostrado, indicando que esta deve ser a mesma que percorre cada uma das resistências. De fato, isto é verdade. Entretanto, vamos supor que não seja e, assim sendo, empregar a lei das malhas (segunda lei de Kirchhoff) para verificar o contrário. Consideremos que as três resistências ôhmicas no circuito da Figura. tenham valores distintos, isto é,. Inicialmente, colocam-se os três amperímetros A, A e A em série, respectivamente, com cada uma das resistências,, e. Já os três voltímetros V, V e V são conectados em paralelo com cada uma das respectivas resistências,, e. A justificativa para o modo de ligação destes aparelhos será dada mais adiante, neste capítulo. Logo, constata-se que a corrente que percorre cada uma das resistências é a mesma. Isto é, I = I = I = I, onde I é, então, a denominada corrente total (ou resultante) do circuito. Também, constata-se que a tensão sobre cada uma das resistências é diferente. Isto é, V V V. Então, como temos uma única fem na malha, e como há três resistências associadas em série, a segunda lei de Kirchhoff, (.), aplicada a este circuito, nos fornece = j= ε V V (.) j = V + V +

3 Como as resistências são ôhmicas, a relação V = I aplica-se a cada uma destas, de forma que, em (.), teremos ε = (.) I + I + I Como I = I = I = I, então, de (.), vem que ε I + I + I. (.5) = Colocando-se em evidência a corrente total I do circuito, em (.5), teremos que ε = I ( + + ). (.6) A fem ε pode ser encarada como a ddp total (V T ) aplicada à malha; I representa a corrente total do circuito, sendo esta a mesma que atravessa cada uma das resistências do mesmo. Então, ao dividirmos (.6) por I, determinamos que ε I + + = = eq. (.7) Assim, pela aplicação da lei das malhas a um circuito resistivo do tipo série, determina-se que a resistência total (ou equivalente) do mesmo é obtida somando-se os valores individuais de cada uma das resistências contidas na malha. A equação (.7) comprova a equação (.), do Capítulo. Agora, também, estamos em condição de definir, com mais requinte, o conceito de resistência equivalente, apresentado no capítulo anterior. Podemos concluir que a resistência equivalente eq será aquela que pode substituir a combinação resistiva do circuito, sem que ocorra variação da corrente I através dessa combinação ou, então, da fem aplicada ε através da mesma. O circuito da Figura. pode ser então esquematizado da seguinte maneira: Figura. Circuito equivalente. EXEMPLOS. Suponha uma fonte ideal de fem (ε) igual a V e duas resistências = 6Ω e = Ω. Monta-se um circuito resistivo de associação em série das duas resistências com a fonte. Sendo assim, pede-se: a) Um esboço (desenho) do circuito elétrico correspondente. c) O valor da intensidade da corrente total do circuito. d) O valor da intensidade da corrente que percorre a resistência. e) O valor da intensidade da corrente que percorre a resistência. f) O valor da tensão sobre a resistência. g) O valor da tensão sobre a resistência. h) O valor da potência da resistência. i) O valor da potência da resistência. j) O valor da potência total do circuito.

4 . Suponha que você tenha em mãos uma bateria ideal de fem igual a 60V e três resistores com resistências = 5Ω, e e de valores desconhecidos. Monta-se um circuito resistivo de associação em série das três resistências com a bateria. Sabe-se que a corrente (total) do circuito é de A e que a taxa de energia elétrica dissipada (potência) pela resistência é de 0W. Sendo assim, determine: a) O valor da resistência total do circuito. b) O valor da intensidade da corrente total do circuito. c) O valor da intensidade da corrente que percorre a resistência. d) O valor da intensidade da corrente que percorre a resistência. e) O valor da intensidade da corrente que percorre a resistência. f) O valor da tensão sobre a resistência. g) O valor da tensão sobre a resistência. h) O valor da tensão sobre a resistência. i) O valor da resistência. j) O valor da resistência.. Considere um determinado trecho de um circuito mais complexo, tal como mostrado ao lado. O mesmo mostra duas resistências, = Ω e = Ω, associadas em série com um voltímetro conectado entre os extremos dessa associação. Uma corrente elétrica I = A percorre as resistências. Sendo assim, determine o valor da tensão medida pelo voltímetro. Circuito com Associação de esistências em Paralelo Figura. Circuito resistivo do tipo paralelo. Para cada uma das resistências, há um voltímetro conectado em paralelo com tal, com vistas a medir a sua tensão. Também, há um amperímetro conectado em série com cada uma das resistências, com vistas a medir a corrente que atravessa cada uma destas. A Figura. mostra um circuito resistivo paralelo composto por uma fonte de fem ideal ε e três resistências. O sentido (convencional) da corrente I é mostrado, indicando que esta não deve ser a mesma que percorre cada uma das resistências. De fato, essa é a corrente total do circuito. Mas esta se subdividirá em outras correntes (de menor valor, é claro) ao encontrar um nó. A experiência nos comprova que a soma das correntes que atravessa cada uma das resistências corresponde à corrente total I do circuito. Assim, vamos empregar a lei dos nós (primeira lei de Kirchhoff) para verificar isso. Para tanto, consideremos que as três resistências ôhmicas no circuito da Figura. tenham valores distintos, isto é,, tal como fizemos para o circuito resistivo série da Figura.. Inicialmente, colocam-se os três amperímetros A, A e A em série, respectivamente, com cada uma das resistências, e. Já os três voltímetros V, V e V são conectados em paralelo com cada uma das respectivas resistências,, e. Logo, constata-se que a corrente que percorre cada uma das resistências é diferente. Isto é, I I I I, onde I é, então, a denominada

5 corrente total do circuito. Também, constata-se que a tensão sobre cada uma das resistências é a mesma, sendo esta igual a fem ε aplicada ao circuito. Isto é, V V = = ε. = V Então, como temos uma única fem ε na malha, e como há três resistências associadas em paralelo, a primeira lei de Kirchhoff, (.), aplicada a este circuito, nos fornece I = j= I j = I + I + I. (.8) Como as resistências são ôhmicas, a relação V = I aplica-se a cada uma destas, de forma que, em (.8), teremos V V V I + = +. (.9) Como V = V = V = ε, então, de (.9), vem que I ε ε ε = + +. (.0) Colocando-se em evidência a fem do circuito, em (.0), teremos que I = ε + +. (.) A fem ε pode ser encarada como a ddp total (V T ) aplicada à malha, sendo esta a tensão de cada uma das resistências do circuito; I representa a corrente total do circuito. Assim, ao dividirmos (.) pela fem, determinamos que I = + + = ε eq. (.) Assim, pela aplicação da lei dos nós a um circuito resistivo do tipo paralelo, determinamos que o inverso da resistência total (ou equivalente) do mesmo é obtida somando-se o inverso dos valores individuais de cada uma das resistências contidas nos ramos do circuito, tal como apresentamos no Capítulo. A equação (.) comprova a equação (.), do Capítulo. Ainda, como a fem do circuito corresponde à tensão para cada uma das resistências, podemos representar/visualizar o circuito da Figura. também da maneira apresentada na Figura.. Figura. Circuito resistivo paralelo com apenas dois nós. 5

6 Pela Figura., podemos redefinir o conceito de nó. Nó é um ponto comum onde os terminais de diversos condutores estão conectados e, então, submetidos a um mesmo potencial elétrico. No caso da Figura., podemos perceber que as partes superiores das resistências estão conectadas no nó, que é um ponto comum o qual está em um nível de energia elétrica superior àquele do nó. Em cada um dos nós, os terminais das resistências estão em um mesmo nível de energia elétrica. O desnível (ou diferença) de energia elétrica entre estes pontos (nós) é análogo à diferença de potencial elétrico, ou seja, a tensão entre tais pontos (nós). Também, verificamos, com mais nitidez, nessa figura, a lei dos nós. No nó, a corrente que entra no mesmo deverá corresponder à soma das três correntes que dele saem. No nó, a soma das três correntes que neste entram deverá corresponder (recompor) à corrente que entrou no nó (seu par complementar). O circuito equivalente para a Figura., bem como para a Figura., corresponde ao mesmo da Figura.. EXEMPLOS. esolva o exemplo considerando que as resistências e estejam associadas em paralelo. 5. Suponha que você tenha em mãos uma bateria ideal de fem igual a V e três resistores com resistências = Ω, e e de valores desconhecidos. Monta-se um circuito resistivo de associação em paralelo das três resistências com a bateria. Sabe-se que a corrente (total) do circuito é de 5,5A e que a taxa de energia elétrica dissipada (potência) pela resistência é de W. Sendo assim, determine: a) O valor da resistência total do circuito. b) O valor da intensidade da corrente total do circuito. c) O valor da intensidade da corrente que percorre a resistência. d) O valor da intensidade da corrente que percorre a resistência. e) O valor da intensidade da corrente que percorre a resistência. f) O valor da tensão sobre a resistência. g) O valor da tensão sobre a resistência. h) O valor da tensão sobre a resistência. i) O valor da resistência. j) O valor da resistência. 6. Considere um determinado trecho de um circuito mais complexo, tal como mostrado ao lado. O mesmo mostra duas resistências, = Ω e = Ω, associadas em paralelo. Essa associação recebe uma corrente elétrica I = A. Sendo assim, determine: a) O valor da intensidade da corrente que percorre a resistência. b) O valor da intensidade da corrente que percorre a resistência. c) O valor da tensão sobre a resistência. d) O valor da tensão sobre a resistência. Circuito com Associação Mista de esistências No capítulo anterior, verificamos que a associação mista de resistências é aquela que mistura resistências em série e, também, em paralelo. O mesmo se pode dizer a respeito dos circuitos elétricos de associação mista de resistências. EXEMPLOS 7. Dado o circuito elétrico resistivo abaixo, de fem (ε) ideal, pede-se que determine: 6

7 ε = V 5 = laranja,, = amarelo, =, c) O valor da intensidade da corrente total do circuito. d) O valor da intensidade da corrente que percorre a resistência. e) O valor da intensidade da corrente que percorre a resistência. f) O valor da intensidade da corrente que percorre a resistência. g) O valor da intensidade da corrente que percorre a resistência. h) O valor da intensidade da corrente que percorre a resistência 5. i) O valor da tensão sobre a resistência. j) O valor da tensão sobre a resistência. k) O valor da tensão sobre a resistência. l) O valor da tensão sobre a resistência. m) O valor da tensão sobre a resistência Dado o circuito elétrico resistivo abaixo, de fem (ε) ideal, pede-se que determine: ε = V até 6 = Observação: marrom, laranja, ouro Despreze as tolerâncias das resistências para os cálculos dessa questão. c) O valor da intensidade da corrente total do circuito. d) O valor da intensidade da corrente que percorre a resistência. e) O valor da intensidade da corrente que percorre a resistência. f) O valor da intensidade da corrente que percorre a resistência. g) O valor da intensidade da corrente que percorre a resistência. h) O valor da intensidade da corrente que percorre a resistência 5. i) O valor da intensidade da corrente que percorre a resistência 6. j) O valor da tensão sobre a resistência. k) O valor da tensão sobre a resistência. l) O valor da tensão sobre a resistência. m) O valor da tensão sobre a resistência. n) O valor da tensão sobre a resistência 5. o) O valor da tensão sobre a resistência 6. 7

8 Conservação da Energia em Circuitos Elétricos Conforme discutido no início do capítulo, as leis de Kirchhoff constituem uma reformulação de lei mais gerais da natureza, como a lei da conservação da carga (reformulada em termos da lei dos nós ) e a lei da conservação da energia (reformulada em termos da lei das malhas ), para o caso específico dos circuitos elétricos. Porém, essas leis, cada uma delas, se identificam com um modelo de circuito elétrico específico: um circuito elétrico de associação dos elementos em série (no qual se aplica a lei das malhas), ou um circuito elétrico de associação dos elementos em paralelo (no qual se aplica a lei dos nós). Já para o circuito elétrico do tipo misto, o tratamento é complicado. Porém, podemos tirar proveito da lei da conservação da energia (que resultou na lei das malhas), de uma maneira mais ampla, de forma a obter uma lei geral para os circuitos elétricos dos tipos série, paralelo e, também, misto. No caso dos circuitos elétricos resistivos submetidos a uma fem constante (e, por hora, ideal), sabemos que esta última (fem) é a fonte/sede de energia responsável por transferir energia elétrica, a cada instante de tempo, aos dispositivos do circuito (resistências, por hora) com a finalidade, dentre outras, de manter um fluxo constante de cargas elétricas (corrente elétrica) através do mesmo. Assim sendo, a quantidade de energia elétrica consumida, por efeito joule, em cada uma das resistências que compõe o circuito elétrico (série, paralelo ou misto ), a cada instante de tempo, representa uma fração da quantidade de energia elétrica total fornecida pela fonte de fem ao circuito, no mesmo intervalo de tempo considerado. Isto é, a energia total liberada pela fonte de fem ao circuito, em determinado intervalo de tempo, deverá corresponder à soma da quantidade de energia elétrica dissipada (por efeito joule) em cada uma das resistências do circuito no mesmo intervalo de tempo considerado. Como quantidade de energia por intervalo de tempo é a definição de potência, conforme visto no Capítulo, então temos que a potência total do circuito (que é a potência da fem) corresponde à soma da potência de cada uma das resistências do circuito. Isto é, n T = j= P P = P + P + P P. (.) j n Em (.), a potência total P T, à esquerda da igualdade, também poderá ser determinada pelas relações de potências estudadas no Capítulo. Para tanto, deve-se fazer uso dos valores da fem (que é a tensão total V T do circuito), da corrente total I T e ou da resistência equivalente (ou total) eq. Isto é, P = ε, (.) T I T P T eq T = I (.5) e P T ε =. (.6) eq Assim sendo, a soma da potência das resistências em um circuito elétrico, à direita da igualdade, em (.), deverá coincidir com o valor obtido para a potência total P T, à esquerda da igualdade, em (.); valores estes dados pelas equações (.), ou (.5) ou, então, (.6). Esta regra é geral, valendo para os circuitos elétricos dos tipos série, paralelo e, também, misto. Instrumentos de Medidas Elétricas Ohmímetro, Voltímetro e Amperímetro Ao longo desses dois últimos capítulos, apresentamos o ohmímetro, o voltímetro e o amperímetro aparelhos de medidas elétricas destinados, respectivamente, a efetuarem a leitura de resistências, tensões e correntes juntamente com suas respectivas simbologias. Agora, com base no exposto neste capítulo, estamos em condições de discutir sobre a maneira de conectar os mesmos nos circuitos estudados. O amperímetro deve ser conectado em série com o condutor, no qual se deseja medir a corrente elétrica que o atravessa, pelo fato do aparelho apresentar uma resistência extremamente baixa. Sendo A a resistência de um 8

9 amperímetro, idealmente temos que A 0. Em virtude disso, a conexão deste não prejudica significativamente a leitura da intensidade da corrente elétrica que deve atravessar o condutor. Supondo um circuito elétrico do tipo série, teremos então que a resistência total da combinação se resuma apenas à soma das resistências usadas na respectiva associação. Ao mesmo tempo, a baixa resistência do amperímetro explica o por que deste não ser conectado em paralelo com o condutor, para medir a corrente elétrica que o atravessa. Neste caso, supondo um condutor de resistência em paralelo com um amperímetro, e ambos conectados a uma fonte de fem ideal ε, teremos um circuito do tipo paralelo. Como idealmente temos que 0, a resistência equivalente dessa combinação será nula, ou seja, A 0 0 eq = = = 0. (.7) + 0 Isto implica que uma corrente teoricamente infinita deve atravessar o amperímetro, ou seja, ε ε I = = =. (.8) 0 eq Mas como nenhum amperímetro real suporta uma corrente elétrica de tal intensidade, o mesmo deverá ser danificado, ficando assim inutilizado. O voltímetro deve ser conectado em paralelo com o condutor, no qual se deseja medir a tensão sobre o mesmo, pelo fato do aparelho apresentar uma resistência extremamente alta. Sendo V a resistência de um voltímetro, idealmente temos que V. Em virtude disso, a conexão deste não prejudica significativamente a leitura da tensão sobre a carga. Neste caso, supondo um condutor de resistência com um voltímetro em paralelo com o mesmo, e ambos conectados a uma fonte de fem ideal ε, teremos um circuito do tipo paralelo. Como idealmente temos que, a resistência equivalente dessa combinação será igual à própria resistência do condutor, ou seja, V Isto implica em uma corrente teoricamente nula no voltímetro, ou seja, eq = = =. (.9) + ε ε I V = = = 0. (.0) Em virtude disso, a conexão deste não prejudica significativamente a intensidade da corrente elétrica que deve atravessar o condutor; o que é desejado, pois não haveria dreno significativo de corrente do circuito. Ao mesmo tempo, a alta resistência do voltímetro explica o por que deste não poder ser conectado em série com o condutor, para a medida da tensão sobre o mesmo. Neste caso, como idealmente temos que V, a resistência equivalente dessa combinação será infinita, ou seja, Isto implica em uma corrente teoricamente nula nessa malha, ou seja, V eq = + V = + =. (.) ε ε I = = = 0. (.) eq Assim, é como se tivéssemos cortado o circuito em algum ponto (tal como um interruptor, o qual foi desligado); cortando o caminho condutor da corrente elétrica. 9

10 O funcionamento do ohmímetro é idem, em parte, ao do voltímetro. A diferença dá-se pelo fato que a medida da resistência de um determinado condutor deverá ser feita com este fora do circuito no qual está, originalmente, conectado. Isto porque o voltímetro se comporta como uma fonte de fem conectada, em paralelo, a uma resistência (sendo esta a resistência do aparelho), a qual é extremamente alta. Sendo Ω a resistência de um ohmímetro, idealmente temos que Ω. Quando conectamos o ohmímetro em paralelo com uma resistência, para efetuar a leitura do valor desta, formamos então um circuito resistivo paralelo. Caso a resistência não fosse desconectada do circuito ao qual está conectada, teríamos uma espécie de circuito misto, pois estaríamos medindo uma resistência equivalente entre tais pontos, em virtude dos demais componentes existentes no circuito. Isto seria inadequado para a medição da resistência do condutor. Considerando que o circuito estivesse ligado, tal medida da resistência do condutor poderia danificar o ohmímetro, caso o condutor esteja submetido a tensões elevadas. Curto-circuito O curto-circuito ocorre quando se interligam os extremos de um determinado condutor elétrico de resistência, previamente submetido a uma ddp, por um condutor elétrico de resistência desprezível (isto é, uma resistência quase nula), tal como um pedaço de fio. Essa situação é idêntica àquela escrita anteriormente, para o caso (impróprio) do amperímetro ser conectado em paralelo com o condutor de resistência. Como a resistência do fio usado na ligação tende a ser idealmente nula, tal que FIO 0, então os resultados para essa conexão paralela de condutores são os mesmos apresentados em (.) e (.). Assim, a corrente excessiva (que tende à infinito) deverá passar somente pelo fio, e não pelo condutor de resistência. Fusível Em eletricidade e eletrônica, em geral, o fusível é um dispositivo de proteção contra um eventual curto-circuito que possa ocorrer, em um determinado circuito. O mesmo consiste de um filamento, ou lâmina, de um metal, ou liga metálica, de baixo ponto de fusão. Este dispositivo, por sua vez, se intercala em um ponto determinado do circuito considerado. O mesmo deverá fundir-se, por efeito Joule, quando a intensidade de corrente elétrica que o atravessa superar, devido a um curto-circuito, uma intensidade tal que danificaria os condutores. A Figura.5 mostra o aspecto físico do tipo mais comum de fusível, discutido acima, e a simbolgia do mesmo, sendo esta padrão para qualquer modelo de fusível. (a) (b) Figura.5 (a) Aspecto físico do tipo mais comum de fusível. (b) Simbologia (padrão) do fusível. Os fusíveis, e outros dispositivos de proteção contra curto-circuitos, constituem uma parte essencial de um sistema de distribuição de energia, de maneira a prevenir incêndios ou danos a outros elementos do circuito. EXECÍCIOS POPOSTOS. Suponha uma fonte ideal, de fem (ε) igual a V, e duas resistências = 00Ω e = 50Ω. Monta-se um circuito resistivo de associação série das duas resistências com a fonte. Sendo assim, pede-se: c) O valor da intensidade da corrente total do circuito, em miliampères (ma). d) O valor da intensidade da corrente que percorre a resistência, em miliampères (ma). e) O valor da intensidade da corrente que percorre a resistência, em miliampères (ma). 0

11 f) O valor da tensão sobre a resistência. g) O valor da tensão sobre a resistência.. Suponha uma fonte ideal, de fem (ε) igual a 50V, e duas resistências = 0Ω e = 60Ω. Monta-se um circuito resistivo de associação série das duas resistências com a fonte. Sendo assim, pede-se: c) O valor da intensidade da corrente total do circuito. d) O valor da intensidade da corrente que percorre a resistência. e) O valor da intensidade da corrente que percorre a resistência. f) O valor da tensão sobre a resistência. g) O valor da tensão sobre a resistência.. Suponha que você tenha em mãos uma bateria ideal, de fem desconhecida, e quatro resistências = 0Ω, = 0Ω, = 0Ω e = 80Ω. Monta-se um circuito resistivo de associação em série das quatro resistências com a bateria. Sabe-se que a tensão da resistência é de 0V. Sendo assim, determine: c) O valor da intensidade da corrente total do circuito. d) O valor da intensidade da corrente que percorre a resistência. e) O valor da intensidade da corrente que percorre a resistência. f) O valor da intensidade da corrente que percorre a resistência. g) O valor da intensidade da corrente que percorre a resistência. h) O valor da tensão sobre a resistência. i) O valor da tensão sobre a resistência. j) O valor da tensão sobre a resistência. k) O valor da tensão sobre a resistência.. Suponha que você tenha em mãos uma bateria ideal, de fem igual a 00V, e três resistores com resistências = Ω, = Ω e = 5Ω. Monta-se um circuito resistivo de associação em série das três resistências com a bateria. Sendo assim, determine: a) O valor da resistência total do circuito. b) O valor da intensidade da corrente total do circuito. c) O valor da intensidade da corrente que percorre a resistência. d) O valor da intensidade da corrente que percorre a resistência. e) O valor da intensidade da corrente que percorre a resistência. f) O valor da tensão sobre a resistência. g) O valor da tensão sobre a resistência. h) O valor da tensão sobre a resistência. 5. Suponha que você tenha em mãos uma bateria ideal, de fem igual a 0V, e três resistores com resistências = Ω, =,5Ω e = 0,5Ω. Monta-se um circuito resistivo de associação em série das três resistências com a bateria. Sendo assim, determine: a) O valor da resistência total do circuito. b) O valor da intensidade da corrente total do circuito. c) O valor da intensidade da corrente que percorre a resistência. d) O valor da intensidade da corrente que percorre a resistência. e) O valor da intensidade da corrente que percorre a resistência. f) O valor da tensão sobre a resistência. g) O valor da tensão sobre a resistência. h) O valor da tensão sobre a resistência.

12 6. Suponha que você tenha em mãos uma bateria ideal, de fem igual a 80V, e três resistores com resistências, = e =. Monta-se um circuito resistivo de associação em série das três resistências com a bateria. Sendo assim, qual dessas resistências apresentará a menor tensão? Justifique sua resposta. 7. Duas resistências, e, são associadas em série e esta associação, então, é conectada a uma fonte ideal de fem igual a 0V. Sabe-se que a tensão sobre cada uma das resistências é de 60V, e a corrente total que atravessa o circuito é de 00mA. Sendo assim, determine: a) O valor da resistência. b) O valor da resistência. 8. Considere um determinado trecho de um circuito mais complexo, tal como mostrado ao lado. O mesmo mostra duas resistências, = Ω e = 5Ω, associadas em série com um voltímetro conectado entre os extremos dessa associação. Uma corrente elétrica I = A percorre as resistências. Sendo assim, determine o valor da tensão medida pelo voltímetro. 9. Considere um determinado trecho de um circuito mais complexo, tal como mostrado ao lado. O mesmo mostra duas resistências, e, associadas em série com um voltímetro conectado entre os extremos dessa associação. Sabe-se que a resistência vale o quádruplo do valor da resistência, que uma corrente elétrica I =,5A percorre as resistências e que o voltímetro indica uma leitura de 58V. Sendo assim, determine: a) O valor da resistência. b) O valor da resistência. a) O valor da tensão sobre a resistência. c) O valor da tensão sobre a resistência. 0. Considere um determinado trecho de um circuito mais complexo, tal como mostrado ao lado. O mesmo mostra duas resistências, e, associadas em série com um voltímetro conectado entre os extremos dessa associação. Uma corrente elétrica I percorre essas resistências. Sabe-se que a tensão sobre a resistência é de 9V, que a resistência vale 7Ω e que o voltímetro indica uma leitura de 0V. Sendo assim, determine: a) O valor da resistência. b) O valor da intensidade da corrente I.. Suponha uma fonte ideal, de fem (ε) igual a V, e duas resistências = 560Ω e = 90Ω. Monta-se um circuito resistivo de associação em paralelo das duas resistências com a fonte. Sendo assim, pede-se: c) O valor da intensidade da corrente total do circuito, em miliampères (ma). d) O valor da intensidade da corrente que percorre a resistência, em miliampères (ma). e) O valor da intensidade da corrente que percorre a resistência, em miliampères (ma).

13 f) O valor da tensão sobre a resistência. g) O valor da tensão sobre a resistência.. Suponha uma fonte ideal de fem (ε) igual a 8V e duas resistências = 0Ω e = 60Ω. Monta-se um circuito resistivo de associação paralela das duas resistências com a fonte. Sendo assim, pede-se: c) O valor da intensidade da corrente total do circuito. d) O valor da intensidade da corrente que percorre a resistência. e) O valor da intensidade da corrente que percorre a resistência. f) O valor da tensão sobre a resistência. g) O valor da tensão sobre a resistência.. Suponha que você tenha em mãos uma bateria ideal, de fem com valor desconhecido, e quatro resistências = 5Ω, = 0Ω, = 60Ω e = 0Ω. Monta-se um circuito resistivo de associação em paralelo das quatro resistências com a bateria. Sabe-se que a corrente elétrica que atravessa a resistência é de 500mA. Sendo assim, determine: c) O valor da intensidade da corrente total do circuito. d) O valor da intensidade da corrente que percorre a resistência. e) O valor da intensidade da corrente que percorre a resistência. f) O valor da intensidade da corrente que percorre a resistência. g) O valor da intensidade da corrente que percorre a resistência. h) O valor da tensão sobre a resistência. i) O valor da tensão sobre a resistência. j) O valor da tensão sobre a resistência. k) O valor da tensão sobre a resistência.. Suponha que você tenha em mãos uma bateria ideal, com fem de valor desconhecido, e três resistências. Das três resistências, temos que e são de valores desconhecidos e = kω. Monta-se um circuito resistivo de associação em paralelo das três resistências com a bateria. Sabe-se que as correntes elétricas que atravessam as resistências e são, respectivamente, de ma e ma, enquanto que a corrente total do circuito vale 0mA. Sendo assim, determine: b) O valor da resistência. c) O valor da resistência. 5. Suponha que você tenha em mãos uma bateria ideal, de fem com valor desconhecidos e três resistências. Das três resistências, temos que = 6kΩ e = kω, enquanto que tem valor desconhecido. Montase um circuito resistivo de associação em paralelo das três resistências com a bateria. Sabe-se que a corrente elétrica que atravessa a resistência é de 6mA, enquanto que a corrente total do circuito vale 8mA. Sendo assim, determine: b) O valor da resistência.

14 6. Duas resistências, e, são associadas em paralelo e esta associação, então, é conectada a uma fonte ideal de fem igual a 80V. Sabe-se que a corrente total que atravessa o circuito é de A. Sendo o dobro de, determine: a) O valor da resistência. b) O valor da resistência. 7. Considere um determinado trecho de um circuito mais complexo, tal como mostrado ao lado. O mesmo mostra duas resistências, = Ω e = 6Ω, associadas em paralelo. Essa associação recebe uma corrente elétrica I = A. Sendo assim, determine: a) O valor da intensidade da corrente que percorre a resistência. b) O valor da intensidade da corrente que percorre a resistência. c) O valor da tensão sobre a resistência. d) O valor da tensão sobre a resistência. 8. Considere um determinado trecho de um circuito mais complexo, tal como mostrado ao lado. O mesmo mostra duas resistências, e, associadas em paralelo. Sabe-se que a resistência vale o dobro do valor da resistência. Considerando que esta associação recebe uma corrente elétrica I = A, determine: a) O valor da intensidade da corrente que percorre a resistência. b) O valor da intensidade da corrente que percorre a resistência. 9. Considere um determinado trecho de um circuito mais complexo, tal como mostrado ao lado. O mesmo mostra duas resistências, e, associadas em paralelo. Sabe-se que a resistência vale Ω e que a resistência é percorrida por uma corrente de 0,8A. Considerando que esta associação recebe uma corrente elétrica I igual a A, determine: a) O valor da intensidade da corrente que percorre a resistência. b) O valor da intensidade da corrente que percorre a resistência. c) O valor da tensão sobre a resistência. d) O valor da tensão sobre a resistência. e) O valor da resistência. f) O valor da resistência.

15 0. Dado o circuito elétrico resistivo abaixo, de fem (ε) ideal, pede-se que determine: ε = V 5 =, violeta, marrom, marrom, =,, marrom, = amarelo, violeta, = verde, azul, c) O valor da intensidade da corrente total do circuito, em miliampères (ma). d) O valor da intensidade da corrente que percorre a resistência, em miliampères (ma). e) O valor da intensidade da corrente que percorre a resistência, em miliampères (ma). f) O valor da intensidade da corrente que percorre a resistência, em miliampères (ma). g) O valor da intensidade da corrente que percorre a resistência, em miliampères (ma). h) O valor da intensidade da corrente que percorre a resistência 5, em miliampères (ma). i) O valor da tensão sobre a resistência. j) O valor da tensão sobre a resistência. k) O valor da tensão sobre a resistência. l) O valor da tensão sobre a resistência. m) O valor da tensão sobre a resistência 5.. Dado o circuito abaixo, de fem ideal, determine: ε = 5V = amarelo, violeta, = =,, a) A intensidade da corrente total do circuito. b) A intensidade da corrente que percorre a resistência. c) A intensidade da corrente que percorre a resistência. d) A tensão sobre a resistência. 5

16 . Dado o circuito abaixo, de fem ideal, determine: ε = 5V verde, = 5 = 6 =, = amarelo, c) O valor da intensidade da corrente total do circuito. d) O valor da intensidade da corrente que percorre a resistência. e) O valor da intensidade da corrente que percorre a resistência. f) O valor da intensidade da corrente que percorre a resistência. g) O valor da intensidade da corrente que percorre a resistência. h) O valor da intensidade da corrente que percorre a resistência 5. i) O valor da intensidade da corrente que percorre a resistência 6. j) O valor da tensão sobre a resistência. k) O valor da tensão sobre a resistência. l) O valor da tensão sobre a resistência. m) O valor da tensão sobre a resistência. n) O valor da tensão sobre a resistência 5. o) O valor da tensão sobre a resistência 6.. Dado o circuito abaixo, de fem ideal, determine: ε = 5V 5 6 verde, =, =, verde, = violeta, = laranja, c) O valor da intensidade da corrente total do circuito. d) O valor da intensidade da corrente que percorre a resistência. e) O valor da intensidade da corrente que percorre a resistência. f) O valor da intensidade da corrente que percorre a resistência. 6

17 g) O valor da intensidade da corrente que percorre a resistência. h) O valor da intensidade da corrente que percorre a resistência 5. i) O valor da intensidade da corrente que percorre a resistência 6. j) O valor da tensão sobre a resistência. k) O valor da tensão sobre a resistência. l) O valor da tensão sobre a resistência. m) O valor da tensão sobre a resistência. n) O valor da tensão sobre a resistência 5. o) O valor da tensão sobre a resistência 6.. Supondo que o circuito abaixo tenha uma fem ideal, e que sua corrente total seja de 0mA, determine: = amarelo, violeta, = verde, azul, marrom a) A força eletromotriz (fem) da fonte do circuito. b) A tensão sobre a resistência. c) A tensão sobre a resistência. 5. Dado o circuito elétrico resistivo abaixo, de fem (ε) ideal, pede-se que determine: 5 5V = laranja, = verde,, = 6 = laranja, ε = c) O valor da intensidade da corrente total do circuito. d) O valor da intensidade da corrente que percorre a resistência. e) O valor da intensidade da corrente que percorre a resistência. f) O valor da intensidade da corrente que percorre a resistência. g) O valor da intensidade da corrente que percorre a resistência. h) O valor da intensidade da corrente que percorre a resistência 5. i) O valor da intensidade da corrente que percorre a resistência 6. 7

18 j) O valor da tensão sobre a resistência. k) O valor da tensão sobre a resistência. l) O valor da tensão sobre a resistência. m) O valor da tensão sobre a resistência. n) O valor da tensão sobre a resistência 5. o) O valor da tensão sobre a resistência Dado o circuito abaixo, de fem ideal, determine a tensão sobre a resistência 6. ε = 5V 5 =, marrom = 6 = =,, marrom marrom 7. No circuito abaixo, determine a força eletromotriz (fem), suposta ideal, da fonte do circuito. Observe, conforme indicado no diagrama, que a corrente elétrica que segue para o ramo formado pelas resistências 5, 6 e 7 é de ma. 6 = 5 = 7 laranja =,, laranja = laranja, laranja, laranja marrom = verde, azul, laranja 8. Dado o circuito abaixo, de fem ideal, determine: ε = 0V 5 =, amarelo, = 6 =, = amarelo, = laranja, = azul, 8

19 a) O valor da intensidade da corrente que percorre a resistência. b) O valor da intensidade da corrente que percorre a resistência. c) O valor da intensidade da corrente que percorre a resistência. d) O valor da intensidade da corrente que percorre a resistência. e) O valor da intensidade da corrente que percorre a resistência 5. f) O valor da intensidade da corrente que percorre a resistência Dado o circuito abaixo, de fem ideal, determine: ε = V, =,, = verde, azul, marrom a) A potência total do circuito, em miliwatts (mw). b) A potência da resistência, em miliwatts (mw). c) A potência da resistência, em miliwatts (mw). d) A potência da resistência, em miliwatts (mw). e) A potência da resistência, em miliwatts (mw). 0. Dado o circuito abaixo, de fem ideal, e sabendo que a potência dissipada pela resistência é de 00mW, determine: à marrom, 7 = Observação: Despreze as tolerâncias das resistências para os cálculos dessa questão. a) A força eletromotriz (fem) da fonte do circuito. b) A potência total do circuito. 9

20 . Considere o circuito abaixo, de fem ideal. Sabendo-se que a tensão sobre a resistência é de V, determine: ε = V 5 marrom =,, marrom = amarelo, violeta, = verde, azul, a) O valor da resistência. b) A potência da resistência, em miliwatts (mw). c) A potência da resistência, em miliwatts (mw). d) A potência da resistência, em miliwatts (mw). e) A potência da resistência, em miliwatts (mw). f) A potência da resistência 5, em miliwatts (mw).. Considere o circuito abaixo, de fem ideal. Sabe-se que sua potência total é de 70mW. Além disso, a intensidade da corrente elétrica que atravessa a resistência vale ma. Assim sendo, determine: ε = V =,, a) O valor da resistência. b) A potência da resistência, em miliwatts (mw). c) A potência da resistência, em miliwatts (mw). d) A potência da resistência, em miliwatts (mw).. Considere o circuito abaixo, de fem ideal. Sabe-se que a intensidade da corrente elétrica que atravessa a resistência vale 5,mA e a tensão sobre a mesma é de 6V. Sendo assim, determine: ε = 9V = branco,, marrom 0

21 a) O valor da resistência. b) A potência da resistência, em miliwatts (mw). c) A potência da resistência, em miliwatts (mw). d) A potência da resistência, em miliwatts (mw). e) A potência da resistência, em miliwatts (mw).. Considere o circuito abaixo, de fem ideal. Sabe-se que a tensão sobre a resistência é de 0V e, também, que a potência total do circuito é de W. Sendo assim, determine: = laranja, laranja, marrom = amarelo, violeta, marrom a) A força eletromotriz (fem) da fonte do circuito. b) O valor da resistência. 5. Dado o circuito abaixo, de fem ideal, determine: ε = 5V à 6 = marrom, Observação: Despreze as tolerâncias das resistências para os cálculos dessa questão. a) A tensão sobre a resistência 6. b) A potência da resistência, em miliwatts (mw). c) A potência da resistência, em miliwatts (mw). d) A potência da resistência, em miliwatts (mw). e) A potência da resistência, em miliwatts (mw). f) A potência da resistência 5, em miliwatts (mw). g) A potência da resistência 6, em miliwatts (mw). 6. Considere o circuito abaixo, de fem ideal e igual a 7V. A intensidade da corrente elétrica total do circuito vale ma. Também, as resistências do circuito são iguais, isto é, todas têm o mesmo valor ôhmico comum. Sendo assim, determine o valor ôhmico comum das resistências do circuito.

22 = = = = = 5 7. Considere o circuito abaixo, de fem ideal. Sabe-se que a intensidade da corrente elétrica que atravessa a resistência 5 vale ma. Sendo assim, determine: 5, laranja = 7 = 6 =, = azul, = laranja, a) A força eletromotriz (fem) da fonte do circuito. b) O valor da intensidade da corrente total do circuito, em miliampères (ma). 8. Afirmativa: Para medirmos a corrente elétrica I que atravessa uma determinada resistência, num circuito elétrico em funcionamento (com uma fonte, suposta ideal, de fem ε), devemos conectar o amperímetro em paralelo com a mesma, conforme ilustrado na figura ao lado. Verifique a validade desta afirmativa (ou seja, responda se a mesma é válida ou não e justifique sua resposta). 9. Considere duas resistências, e, e uma fonte de fem (ε) ideal e constante (contínua). Sabe-se que a resistência tem valor ôhmico superior ao da resistência. Com base nessas informações, pede-se: a) Se as duas resistências forem associadas em série e a combinação então for conectada na fonte de fem ideal e constante, qual dessas resistências, ou, apresentará a maior ddp (tensão)? Justifique sua resposta sem cálculos (use características relativas ao tipo de circuito junto às leis de Kirchhoff). b) Se as duas resistências forem associadas em série e a combinação então for conectada na fonte de fem ideal e constante, em qual dessas resistências, ou, circulará a maior parte da corrente total fornecida pela fonte? Justifique sua resposta sem cálculos (use características relativas ao tipo de circuito junto às leis de Kirchhoff). c) Se as duas resistências forem associadas em paralelo e a combinação então for conectada na fonte de fem ideal e constante, qual dessas resistências, ou, apresentará a maior ddp (tensão)? Justifique sua resposta sem cálculos (use características relativas ao tipo de circuito junto às leis de Kirchhoff).

23 d) Se as duas resistências forem associadas em paralelo e a combinação então for conectada na fonte de fem ideal e constante, em qual dessas resistências, ou, circulará a maior parte da corrente total fornecida pela fonte? Justifique sua resposta sem cálculos (use características relativas ao tipo de circuito junto às leis de Kirchhoff). EXECÍCIOS ESPECIAIS (DESAFIO) 0. Duas resistências, = 0Ω e de valor desconhecido, são associadas em série e esta associação, então, é conectada a uma fonte ideal de fem igual a 6V. Sabe-se que a potência da resistência é de 675mW. Sendo assim, determine o valor da resistência. Dicas: () há um par de respostas; () lembre da fórmula de Bhaskara!. Duas resistências, = 00Ω e de valor desconhecido, podem ser associadas tanto em série quanto em paralelo por meio de uma fonte ideal de fem ε. Sabe-se que a potência total da combinação em paralelo é cinco vezes maior que a da combinação em série. Sendo assim, determine o valor da resistência. Dicas: () há um par de respostas; () lembre da fórmula de Bhaskara!. Determinar o número (isto é, a quantidade) de resistências de 0Ω necessárias para uma associação resistiva, desde que essa seja do tipo série ou paralela, a fim de que circule uma corrente de 5A por um circuito com uma bateria ideal cuja força eletromotriz é de 0V.. Conecta-se uma resistência de 7Ω em paralelo com um condutor de Ω. Esta combinação, então, é conectada a uma bateria ideal de força eletromotriz ε para formar um circuito elétrico. Sendo assim: a) Que parte (percentual) da corrente total I do circuito passa pela resistência de 7Ω? b) Que parte (percentual) da corrente total I do circuito passa pelo condutor de Ω?. Um amperímetro, de 60mΩ de resistência, é conectado em paralelo com um determinado condutor de resistência desconhecida. Esta combinação, então, é conectada a uma fonte de fem ideal. Para tanto, com vistas a não queimar o amperímetro, deseja-se que o mesmo seja atravessado por uma corrente elétrica que corresponda a 0% da corrente total do circuito. Sendo assim, determine: a) A razão entre o valor da resistência do amperímetro e a do condutor desconhecido. b) O valor da resistência do condutor desconhecido. ESPOSTAS DOS EXECÍCIOS POPOSTOS. a) V; b) 50Ω; c) 8mA; d) 8mA; e) 8mA; f),8v; g) 7,V.. a) 50V; b) 00Ω; c) 0,5A; d) 0,5A; e) 0,5A; f) 0V; g) 0V.. a) 75V; b) 50Ω; c) 0,5A; d) 0,5A; e) 0,5A; f) 0,5A; g) 0,5A; h) 5V; i) 0V; j) 0V; k) 0V.. a) 0Ω; b) 0A; c) 0A; d) 0A; e) 0A; f) 0V; g) 60V; h) 00V. 5. a) Ω; b) 5A; c) 5A; d) 5A; e) 5A; f) 0V; g) 7,5V; h),5v. 6.. Por quê?! 7. a) 00Ω; b) 00Ω. 8. 6V; 9. a) 8,56Ω; b),6ω; c) 6,V; d),6v;

24 0. a) Ω; b) A;. a) V; b) 9,89Ω; c) 5,mA; d),ma; e) 0,77mA; f) V; g) V.. a) 8V; b) Ω; c) A; d),a; e) 0,8A; f) 8V; g) 8V.. a) 60V; b) Ω; c) 5A; d) A; e),5a; f) A; g) 0,5A. h) 60V; i) 60V; j) 60V; k) 60V;. a) V; b) kω; c) kω; 5. a) V; b) kω. 6. a) 0Ω; b) 60Ω. 7. a),5a; b) 0,5A; c) V; d) V; 8. a) 0,67A; b),a; 9. a),a; b) 0,8A; c),v; d),v; e) Ω; f) 5,5Ω; 0. a) V; b) 0,6Ω; c) 7,6mA; d) 7,6mA; e) 7,6mA; f) 8,69mA; g) 8,57mA; h) 8,57mA; i) 7,6V; j),7v; k),9v; l) 0,87V; m),0v;.,5ma; b),5ma; c),5ma; d),v.. a) 5V; b),75ω; c) A; d) A; e) A; f) A; g),5a; h),5a; i),5a; j) 5V; k) V; l) 6V; m) 6V; n) V; o) V;. a) 5V; b),75ω; c) A; d) A; e) A; f) A; g),a; h) 0,6A; i) 0,6A; j) 5V; k) V; l) 6V; m) 6V; n),v; o),8v;. a),v; b) 0,96V; c) 0,9V. 5. a) 5V; b) 7Ω; c) 5A; d) 5A; e) A; f) A; g) 0,8A; h) 0,A; i) 0,A; j) 5V; k) 0V; l) V; m) 8V; n) 6V; o) V; 6.,6V. 7. 9V. 8. a) A; b),a; c) 0,6A; d) 0,A; e) 0,A; f) 0,6A. 9. a) 6,mW; b) mw; c) 0mW; d),6mw; e) 0,6mW. 0. a) 50V; b),75w.. a),55ω; b) 08,95mW; c) 97,9mW; d),9mw; e),8mw; f) 5,9mW.. a),kω; b) mw; c) 7,8mW; d) 8,5mW.. a) 79,7Ω; b),86mw; c) 50,6mW; d) 6mW; e) 9,mW.. a) 0,V; b),085kω. 5. a),v; b) 65,mW; c),0mw; d),0mw; e),mw; f) 5,mW; g) 5,mW. 6. kω. 7. a) V; b) ma. 8. Faça você mesmo. 9. Faça você mesmo. 0. 0Ω ou,ω.. 6,8Ω ou 8,Ω.. Cinco resistências.. a) 0%; b) 70%.. a) azão = (isto é: a resistência do amperímetro é vezes maior que a do condutor.); b) 5mΩ.

Aula 05. Resistores em Série e em Paralelo Leis de Kirchhoff- Parte I

Aula 05. Resistores em Série e em Paralelo Leis de Kirchhoff- Parte I Aula 05 Resistores em Série e em Paralelo Leis de Kirchhoff- Parte I Circuito Elétrico Básico e suas componentes. \ Resistores em Série Em uma associação de resistores em série, a corrente elétrica ( contínua)

Leia mais

Circuitos Elétricos 1º parte. Introdução Geradores elétricos Chaves e fusíveis Aprofundando Equação do gerador Potência e rendimento

Circuitos Elétricos 1º parte. Introdução Geradores elétricos Chaves e fusíveis Aprofundando Equação do gerador Potência e rendimento Circuitos Elétricos 1º parte Introdução Geradores elétricos Chaves e fusíveis Aprofundando Equação do gerador Potência e rendimento Introdução Um circuito elétrico é constituido de interconexão de vários

Leia mais

FÍSICA 3 Circuitos Elétricos em Corrente Contínua. Circuitos Elétricos em Corrente Contínua

FÍSICA 3 Circuitos Elétricos em Corrente Contínua. Circuitos Elétricos em Corrente Contínua FÍSICA 3 Circuitos Elétricos em Corrente Contínua Prof. Alexandre A. P. Pohl, DAELN, Câmpus Curitiba EMENTA Carga Elétrica Campo Elétrico Lei de Gauss Potencial Elétrico Capacitância Corrente e resistência

Leia mais

Circuitos Elétricos: Métodos de Resolução de Malhas Múltiplas

Circuitos Elétricos: Métodos de Resolução de Malhas Múltiplas Circuitos Elétricos: Métodos de esolução de Malhas Múltiplas (Por oberto ezende) (Agradecimentos ao professor Leandro Nogueira, que deu apoio com o método de Thévénin) )Introdução O objetivo deste artigo

Leia mais

Eletrodinâmica. Circuito Elétrico

Eletrodinâmica. Circuito Elétrico Eletrodinâmica Circuito Elétrico Para entendermos o funcionamento dos aparelhos elétricos, é necessário investigar as cargas elétricas em movimento ordenado, que percorrem os circuitos elétricos. Eletrodinâmica

Leia mais

Potência e rendimento de geradores e receptores

Potência e rendimento de geradores e receptores Potência e rendimento de geradores e receptores 1 Fig.26.1 26.1. No circuito da Fig. 26.1, a potência transformada em calor é igual a: A) 15 watts. B) 36 watts. C) 51 watts. D) 108 watts. E) 121 watts.

Leia mais

Sendo n o número de elétrons que constituem a carga elétrica Q e a carga elétrica elementar, temos: Q = n.e.

Sendo n o número de elétrons que constituem a carga elétrica Q e a carga elétrica elementar, temos: Q = n.e. AULA Nº 0 CORRENTE ELÉTRICA a) Corrente elétrica É todo movimento ordenado de cargas elétricas b) Intensidade média da corrente elétrica Seja Q o valor absoluto da carga elétrica que atravessa a secção

Leia mais

Exercícios Leis de Kirchhoff

Exercícios Leis de Kirchhoff Exercícios Leis de Kirchhoff 1-Sobre o esquema a seguir, sabe-se que i 1 = 2A;U AB = 6V; R 2 = 2 Ω e R 3 = 10 Ω. Então, a tensão entre C e D, em volts, vale: a) 10 b) 20 c) 30 d) 40 e) 50 Os valores medidos

Leia mais

CURSO DE APROFUNDAMENTO FÍSICA ENSINO MÉDIO

CURSO DE APROFUNDAMENTO FÍSICA ENSINO MÉDIO CURSO DE APROFUNDAMENTO FÍSICA ENSINO MÉDIO Prof. Cazuza 1. Arthur monta um circuito com duas lâmpadas idênticas e conectadas à mesma bateria, como mostrado nesta figura: Considere nula a resistência elétrica

Leia mais

O que você deve saber sobre

O que você deve saber sobre O que você deve saber sobre Além de resistores, os circuitos elétricos apresentam dispositivos para gerar energia potencial elétrica a partir de outros componentes (geradores), armazenar cargas, interromper

Leia mais

As leituras no voltímetro V e no amperímetro A, ambos ideais, são, respectivamente,

As leituras no voltímetro V e no amperímetro A, ambos ideais, são, respectivamente, 1. (Espcex (Aman) 015) Em um circuito elétrico, representado no desenho abaixo, o valor da força eletromotriz (fem) do gerador ideal é E 1,5 V, e os valores das resistências dos resistores ôhmicos são

Leia mais

Capítulo 04. Geradores Elétricos. 1. Definição. 2. Força Eletromotriz (fem) de um Gerador. 3. Resistência interna do gerador

Capítulo 04. Geradores Elétricos. 1. Definição. 2. Força Eletromotriz (fem) de um Gerador. 3. Resistência interna do gerador 1. Definição Denominamos gerador elétrico todo dispositivo capaz de transformar energia não elétrica em energia elétrica. 2. Força Eletromotriz (fem) de um Gerador Para os geradores usuais, a potência

Leia mais

Associação de Resistores

Associação de Resistores Associação de Resistores 1. (Pucrj 2013) No circuito mostrado na figura, a diferença de potencial entre os pontos B e A vale, em Volts: a) 3,0 b) 1,0 c) 2,0 d) 4,5 e) 0,75 2. (Uerj 2011) Observe a representação

Leia mais

FÍSICA - 2 o ANO MÓDULO 25 CIRCUITOS ELÉTRICOS: INTRODUÇÃO PARTE 2

FÍSICA - 2 o ANO MÓDULO 25 CIRCUITOS ELÉTRICOS: INTRODUÇÃO PARTE 2 FÍSIC - 2 o NO MÓDULO 25 CIRCUITOS ELÉTRICOS: INTRODUÇÃO PRTE 2 i 1 R 1 R 2 i 1 i g G B i i 2 R 4 D R g i 2 R 3 i Gerador R x G i G =0 R L 1 L 2 + E r i=i CC E i = r i=i CC U E 0 i CC i L 1 L 2 120V E

Leia mais

RESISTORES. 1.Resistencia elétrica e Resistores

RESISTORES. 1.Resistencia elétrica e Resistores RESISTORES 1.Resistencia elétrica e Resistores Vimos que, quando se estabelece uma ddp entre os terminais de um condutor,o mesmo é percorrido por uma corrente elétrica. Agora pense bem, o que acontece

Leia mais

Prof.: Geraldo Barbosa Filho

Prof.: Geraldo Barbosa Filho AULA 07 GERADORES E RECEPTORES 5- CURVA CARACTERÍSTICA DO GERADOR 1- GERADOR ELÉTRICO Gerador é um elemento de circuito que transforma qualquer tipo de energia, exceto a elétrica, em energia elétrica.

Leia mais

1º Experimento 1ª Parte: Resistores e Código de Cores

1º Experimento 1ª Parte: Resistores e Código de Cores 1º Experimento 1ª Parte: Resistores e Código de Cores 1. Objetivos Ler o valor nominal de cada resistor por meio do código de cores; Determinar a máxima potência dissipada pelo resistor por meio de suas

Leia mais

Exercícios de Física sobre Circuitos Elétricos com Gabarito

Exercícios de Física sobre Circuitos Elétricos com Gabarito Exercícios de Física sobre Circuitos Elétricos com Gabarito (Unicamp-999 Um técnico em eletricidade notou que a lâmpada que ele havia retirado do almoxarifado tinha seus valores nominais (valores impressos

Leia mais

LEI DE OHM LEI DE OHM. Se quisermos calcular o valor da resistência, basta dividir a tensão pela corrente.

LEI DE OHM LEI DE OHM. Se quisermos calcular o valor da resistência, basta dividir a tensão pela corrente. 1 LEI DE OHM A LEI DE OHM é baseada em três grandezas, já vistas anteriormente: a Tensão, a corrente e a resistência. Com o auxílio dessa lei, pode-se calcular o valor de uma dessas grandezas, desde que

Leia mais

Aula 4 Análise Circuitos Elétricos Prof. Marcio Kimpara

Aula 4 Análise Circuitos Elétricos Prof. Marcio Kimpara ELETICIDADE Aula 4 Análise Circuitos Elétricos Prof. Marcio Kimpara Universidade Federal de Mato Grosso do Sul 2 Fonte elétrica As fontes elétricas mantém a diferença de potencial (ddp) necessária para

Leia mais

Geradores. a) Complete a tabela abaixo com os valores da corrente I. V(V) R( ) I(A) 1,14 7,55 0,15 1,10 4,40 1,05 2,62 0,40 0,96 1,60 0,85 0,94 0,90

Geradores. a) Complete a tabela abaixo com os valores da corrente I. V(V) R( ) I(A) 1,14 7,55 0,15 1,10 4,40 1,05 2,62 0,40 0,96 1,60 0,85 0,94 0,90 Geradores 1. (Espcex (Aman) 2013) A pilha de uma lanterna possui uma força eletromotriz de 1,5 V e resistência interna de 0,05 Ω. O valor da tensão elétrica nos polos dessa pilha quando ela fornece uma

Leia mais

Receptores elétricos

Receptores elétricos Receptores elétricos 1 Fig.20.1 20.1. A Fig. 20.1 mostra um receptor elétrico ligado a dois pontos A e B de um circuito entre os quais existe uma d.d.p. de 12 V. A corrente que o percorre é de 2,0 A. A

Leia mais

Leis de Kirchhoff. 2. (Fuvest-gv) No circuito esquematizado a seguir, o amperímetro acusa uma corrente de 30 ma.

Leis de Kirchhoff. 2. (Fuvest-gv) No circuito esquematizado a seguir, o amperímetro acusa uma corrente de 30 ma. TEXTO PARA A PRÓXIMA QUESTÃO (Ufpe) Constantes físicas necessárias para a solução dos problemas: aceleração da gravidade: 10 m/s constante de Planck: 6,6 x 10 J.s 1. Calcule o potencial elétrico no ponto

Leia mais

Energia e potência em receptores elétricos

Energia e potência em receptores elétricos Energia e potência em receptores elétricos 1 17.1. Quando uma corrente elétrica atravessa um receptor, a energia elétrica consumida ou é totalmente transformada em calor (é o caso dos resistores), ou então

Leia mais

UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO CENTRO UNIVERSITÁRIO NORTE DO ESPÍRITO SANTO

UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO CENTRO UNIVERSITÁRIO NORTE DO ESPÍRITO SANTO 34 4.4 Experimento 4: Capacitância, capacitores e circuitos RC 4.4.1 Objetivos Fundamentar o conceito de capacitância e capacitor; Realizar leituras dos valores de capacitância de capacitores; Associar

Leia mais

Leis de Kirchoff. a) 2, 2/3, 5/3 e 4. b) 7/3, 2/3, 5/3 e 4. c) 4, 4/3, 2/3 e 2. d) 2, 4/3, 7/3 e 5/3. e) 2, 2/3, 4/3 e 4.

Leis de Kirchoff. a) 2, 2/3, 5/3 e 4. b) 7/3, 2/3, 5/3 e 4. c) 4, 4/3, 2/3 e 2. d) 2, 4/3, 7/3 e 5/3. e) 2, 2/3, 4/3 e 4. Leis de Kirchoff 1. (Ita 2013) Considere o circuito elétrico mostrado na figura formado por quatro resistores de mesma resistência, R 10, e dois geradores ideais cujas respectivas forças eletromotrizes

Leia mais

APOSTILA DE ELETRICIDADE BÁSICA

APOSTILA DE ELETRICIDADE BÁSICA MINISTÉRIO DA EDUCAÇÃO INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DE SÃO PAULO CAMPUS DE PRESIDENTE EPITÁCIO APOSTILA DE ELETRICIDADE BÁSICA Prof. Andryos da Silva Lemes Esta apostila é destinada

Leia mais

Instrumentos de Medidas Elétricas I Voltímetros, Amperímetros e Ohmímetros

Instrumentos de Medidas Elétricas I Voltímetros, Amperímetros e Ohmímetros nstrumentos de Medidas Elétricas Nesta prática vamos estudar o princípios de funcionamentos de instrumentos de medidas elétrica, em particular, voltímetros, amperímetros e ohmímetros. Sempre que surgir

Leia mais

CAPÍTULO 2 DIODO SEMICONDUTOR

CAPÍTULO 2 DIODO SEMICONDUTOR CAPÍTULO 2 DIODO SEMICONDUTO O diodo semicondutor é um dispositivo, ou componente eletrônico, composto de um cristal semicondutor de silício, ou germânio, em uma película cristalina cujas faces opostas

Leia mais

E X E R C Í C I O S. i(a) 7,5 10 elétrons

E X E R C Í C I O S. i(a) 7,5 10 elétrons E X E R C Í C I O S 1. O gráfico da figura abaixo representa a intensidade de corrente que percorre um condutor em função do tempo. Determine a carga elétrica que atravessa uma secção transversal do condutor

Leia mais

a) 2,0. b) 2,4. c) 3,0. d) 4,8. e) 7,2.

a) 2,0. b) 2,4. c) 3,0. d) 4,8. e) 7,2. LISTA 08 GERADORES 1. (Uesb-BA) A força eletromotriz de um gerador é de 12V e a sua resistência interna é de 2,0. Quando esse gerador alimenta um dispositivo cuja resistência ôhmica é 4,0, a intensidade

Leia mais

ACESSO FÍSICA LISTA 2 (POTENCIA ELÉTRICA E CIRCUITOS)

ACESSO FÍSICA LISTA 2 (POTENCIA ELÉTRICA E CIRCUITOS) ACESSO FÍSICA LISTA 2 (POTENCIA ELÉTRICA E CIRCUITOS) 22. Considerando a tarifa aproximada de R$ 0,40 por kwh cobrada pela Copel em Curitiba, calcule o custo mensal (30 dias) dos banhos de uma família

Leia mais

a) 4V/R. b) 2V/R. c) V/R. d) V/2R. e) V/4R.

a) 4V/R. b) 2V/R. c) V/R. d) V/2R. e) V/4R. 1- (Unitau 1995) No circuito mostrado a seguir, a corrente fornecida pela bateria e a corrente que circula através do resistor de 6,0Ω São, respectivamente: 4- (Vunesp 1991) Alguns automóveis modernos

Leia mais

Introdução Teórica Aula 3: Leis de Kirchhoff

Introdução Teórica Aula 3: Leis de Kirchhoff Introdução Teórica Aula 3: Leis de Kirchhoff Gustav Kirchhoff Gustav Kirchhoff (1824-1887) foi um físico alemão que juntamente com o químico alemão Robert Wilhelm Bunsen, desenvolveu o espectroscópio moderno

Leia mais

Aula 3 Circuito paralelo de corrente contínua. marcela@edu.estacio.br

Aula 3 Circuito paralelo de corrente contínua. marcela@edu.estacio.br Aula 3 Circuito paralelo de corrente contínua marcela@edu.estacio.br Elementos em paralelo Resistência total Circuitos em paralelo Lei de Kirchhoff para corrente Regra do divisor de corrente Circuito aberto

Leia mais

UNIVERSIDADE ESTADUAL PAULISTA FACULDADE DE ENGENHARIA CAMPUS DE ILHA SOLTEIRA DEPARTAMENTO DE ENGENHARIA ELÉTRICA. Eletricidade

UNIVERSIDADE ESTADUAL PAULISTA FACULDADE DE ENGENHARIA CAMPUS DE ILHA SOLTEIRA DEPARTAMENTO DE ENGENHARIA ELÉTRICA. Eletricidade UNIVERSIDADE ESTADUAL PAULISTA FACULDADE DE ENGENHARIA CAMPUS DE ILHA SOLTEIRA DEPARTAMENTO DE ENGENHARIA ELÉTRICA Eletricidade Análise de Circuitos alimentados por fontes constantes Prof. Ilha Solteira,

Leia mais

Ligação em curto-circuito

Ligação em curto-circuito Ligação em curto-circuito 1 Fig. 14.1 14.1. Denomina-se reostato a qualquer resistor de resistência variável. Representamos o reostato pelos símbolos da Fig. 14.1. Submetendo a uma tensão constante igual

Leia mais

Exercícios Eletrodinâmica

Exercícios Eletrodinâmica Exercícios Eletrodinâmica 01-Um gerador elétrico tem potência total 0,6 kw, quando percorrido por uma corrente de intensidade igual a 50 A. Qual a sua força eletromotriz. a) 30.000 V b) 100 V c) 120 V

Leia mais

q = (Unidade: 1 C = 1A) t I m

q = (Unidade: 1 C = 1A) t I m 1 Corrente Elétrica Como visto no modulo anterior, os materiais condutores, devido as suas características físicas, formam elétrons livres quando de suas ligações atômicas. Contudo essas partículas que

Leia mais

PONTIFÍCIA UNIVERSIDADE CATÓLICA DE GOIÁS

PONTIFÍCIA UNIVERSIDADE CATÓLICA DE GOIÁS PONTIFÍCIA UNIVERSIDADE CATÓLICA DE GOIÁS DEPARTAMENTO DE MATEMÁTICA E FÍSICA EXERCÍCIOS NOTAS DE AULA I Goiânia - 014 1. Um capacitor de placas paralelas possui placas circulares de raio 8, cm e separação

Leia mais

Fig. 2.2 - Painel do multímetro com a função ohmímetro em destaque.

Fig. 2.2 - Painel do multímetro com a função ohmímetro em destaque. 2 MULTÍMETRO 2.1 - Objetivos Aprender a manusear o multímetro na realização de medidas de tensões e correntes elétricas, contínuas e alternadas, bem como medir resistências elétricas. 2.2 - Introdução

Leia mais

1 P r o j e t o F u t u r o M i l i t a r w w w. f u t u r o m i l i t a r. c o m. b r

1 P r o j e t o F u t u r o M i l i t a r w w w. f u t u r o m i l i t a r. c o m. b r Exercícios Capacitores e) 12,5 J 1-Capacitores são elementos de circuito destinados a: a) armazenar corrente elétrica. b) permitir a passagem de corrente elétrica de intensidade constante. c) corrigir

Leia mais

Professor João Luiz Cesarino Ferreira

Professor João Luiz Cesarino Ferreira Exercícios 1º Lei de Ohm e Potência elétrica 1º) 2º) 3º) Um fio com uma resistência de 6,0Ω é esticado de tal forma que seu comprimento se torna três vezes maior que o original. Determine a resistência

Leia mais

Roteiro para experiências de laboratório. AULA 1: Código de cores e associação de resistores. Alunos: 2-3-

Roteiro para experiências de laboratório. AULA 1: Código de cores e associação de resistores. Alunos: 2-3- Campus SERRA COORDENADORIA DE AUTOMAÇÃO INDUSTRIAL Disciplinas: ELETRÔNICA BÁSICA e ELETRICIDADE GERAL Turma: AM1 Professores: Vinícius Secchin de Melo Wallas Gusmão Thomaz Período: 2012-1 Roteiro para

Leia mais

eletroeletrônica I Uma máquina industrial apresentou defeito. Máquinas eletromecânicas

eletroeletrônica I Uma máquina industrial apresentou defeito. Máquinas eletromecânicas A U A UL LA Manutenção eletroeletrônica I Uma máquina industrial apresentou defeito. O operador chamou a manutenção mecânica, que solucionou o problema. Indagado sobre o tipo de defeito encontrado, o mecânico

Leia mais

Geradores elétricos GERADOR. Energia dissipada. Símbolo de um gerador

Geradores elétricos GERADOR. Energia dissipada. Símbolo de um gerador Geradores elétricos Geradores elétricos são dispositivos que convertem um tipo de energia qualquer em energia elétrica. Eles têm como função básica aumentar a energia potencial das cargas que os atravessam

Leia mais

Universidade Federal do Rio de Janeiro. Princípios de Instrumentação Biomédica. Módulo 4

Universidade Federal do Rio de Janeiro. Princípios de Instrumentação Biomédica. Módulo 4 Universidade Federal do Rio de Janeiro Princípios de Instrumentação Biomédica Módulo 4 Faraday Lenz Henry Weber Maxwell Oersted Conteúdo 4 - Capacitores e Indutores...1 4.1 - Capacitores...1 4.2 - Capacitor

Leia mais

Apostila de Física 30 Geradores Elétricos

Apostila de Física 30 Geradores Elétricos Apostila de Física 30 Geradores Elétricos 1.0 Definições Gerador elétrico Aparelho que transforma qualquer forma de energia em energia elétrica. Exemplos: Usinas hidrelétricas Geradores mecânicos. Pilhas

Leia mais

Lista de Exercícios ENTREGAR NO DIA DA PROVA (10/04). CASO NÃO TENHA ENTREGUE A LISTA CONFORME DATA ACIMA, A NOTA DE PROVA SERÁ DECRESCIDA.

Lista de Exercícios ENTREGAR NO DIA DA PROVA (10/04). CASO NÃO TENHA ENTREGUE A LISTA CONFORME DATA ACIMA, A NOTA DE PROVA SERÁ DECRESCIDA. Lista de Exercícios ENTREGAR NO DIA DA PROVA (10/04). CASO NÃO TENHA ENTREGUE A LISTA CONFORME DATA ACIMA, A NOTA DE PROVA SERÁ DECRESCIDA. 1. Vamos supor que uma lâmpada utiliza uma alimentação de 6V

Leia mais

EXPERIMENTO 1: MEDIDAS ELÉTRICAS

EXPERIMENTO 1: MEDIDAS ELÉTRICAS EXPERIMENTO 1: MEDIDAS ELÉTRICAS 1.1 OBJETIVOS Familiarização com instrumentos de medidas e circuitos elétricos. Utilização do multímetro nas funções: voltímetro, amperímetro e ohmímetro. Avaliação dos

Leia mais

Assunto: Exercícios Leis de Kirchhoff Apenas com duas malhas.

Assunto: Exercícios Leis de Kirchhoff Apenas com duas malhas. Página 1 de 3 CURSO Eletroeletrônica - DATA / / COMPONENTE Eletricidade Básica ALUNO RA: DOCENTE Prof. Romeu Corradi Júnior [www.corradi.junior.nom.br] Assunto: Exercícios Leis de Kirchhoff Apenas com

Leia mais

Colégio Paulo VI Aluno (a): Nº.: 3º Série do Ensino Médio Turma: Turno: Vespertino Lista 03 LISTA Nº 04

Colégio Paulo VI Aluno (a): Nº.: 3º Série do Ensino Médio Turma: Turno: Vespertino Lista 03 LISTA Nº 04 Colégio Paulo VI Aluno (a): Nº.: 3º Série do Ensino Médio Turma: Turno: Vespertino Lista 03 Disciplina: Física Professor (a): Murilo Gomes Data: / / 2014 Eletrodinâmica LISTA Nº 04 1. Resistores 01. Um

Leia mais

Lista de Exercícios de Física II Lei de Ohm - circuitos Prof: Tadeu Turma: 3 Ano do Ensino Médio Data: 16/07/2009

Lista de Exercícios de Física II Lei de Ohm - circuitos Prof: Tadeu Turma: 3 Ano do Ensino Médio Data: 16/07/2009 Lista de Exercícios de Física II Lei de Ohm - circuitos Prof: Tadeu Turma: 3 Ano do Ensino Médio Data: 16/07/2009 1ª Questão) Num circuito elétrico, dois resistores, cujas resistências são R 1 e R 2, com

Leia mais

Equipe de Física FÍSICA

Equipe de Física FÍSICA Aluno (a): Série: 3ª Turma: TUTORIAL 10R Ensino Médio Equipe de Física Data: FÍSICA Corrente Elétrica Ao se estudarem situações onde as partículas eletricamente carregadas deixam de estar em equilíbrio

Leia mais

Resistência elétrica

Resistência elétrica Resistência elétrica 1 7.1. Quando uma corrente percorre um receptor elétrico (um fio metálico, uma válvula, motor, por exemplo), há transformação de ia elétrica em outras formas de energia. O receptor

Leia mais

CAPACITORES. Vestibular1 A melhor ajuda ao vestibulando na Internet Acesse Agora! www.vestibular1.com.br

CAPACITORES. Vestibular1 A melhor ajuda ao vestibulando na Internet Acesse Agora! www.vestibular1.com.br CAPACITORES DEFINIÇÕES Quando as placas do capacitor estão carregadas com cargas iguais e de sinais diferentes, estabelece-se entre as placas uma diferença de potencial V que é proporcional à carga. Q

Leia mais

1.1. Resistor fixo de carvão e resistor fixo de fio. 1.2. Resistor de fio com derivação - ajustável

1.1. Resistor fixo de carvão e resistor fixo de fio. 1.2. Resistor de fio com derivação - ajustável Resistores 1. Introdução 2. Codigo de cores 3. Associação 4. Associação série 5. Associação paralela 6. Associação mista 7. Observações 8. Circuito em série 9. Circuito em paralelo 10. Exercícios 11. Referências

Leia mais

Eletricidade Aula 3. Circuitos de Corrente Contínua com Associação de Resistores

Eletricidade Aula 3. Circuitos de Corrente Contínua com Associação de Resistores Eletricidade Aula 3 Circuitos de Corrente Contínua com Associação de esistores Associação de esistores Vídeo 5 esistor equivalente resistor que substitui qualquer associação de resistores, produzindo o

Leia mais

Associação de Geradores

Associação de Geradores Associação de Geradores 1. (Epcar (Afa) 2012) Um estudante dispõe de 40 pilhas, sendo que cada uma delas possui fem igual a 1,5 V e resistência interna de 0,25. Elas serão associadas e, posteriormente,

Leia mais

Lista 2 - FCC UNIVERSIDADE DO ESTADO DE SANTA CATARINA CENTRO DE CIÊNCIAS TECNOLÓGICAS DEPARTAMENTO DE FÍSICA

Lista 2 - FCC UNIVERSIDADE DO ESTADO DE SANTA CATARINA CENTRO DE CIÊNCIAS TECNOLÓGICAS DEPARTAMENTO DE FÍSICA UNIESIDADE DO ESTADO DE SANTA CATAINA CENTO DE CIÊNCIAS TECNOLÓGICAS DEPATAMENTO DE FÍSICA Lista - FCC 1. Um eletrômetro é um instrumento usado para medir carga estática: uma carga desconhecida é colocada

Leia mais

Unidade 12 - Capacitores

Unidade 12 - Capacitores Unidade 1 - Capacitores Capacidade Eletrostática Condutor Esférico Energia Armazenada em um capacitor Capacitor Plano Associação de Capacitores Circuitos com capacitores Introdução Os primeiros dispositivos

Leia mais

Deu curto! Como o nosso assunto é a eletricidade, poderíamos

Deu curto! Como o nosso assunto é a eletricidade, poderíamos A U A UL LA Deu curto! Como o nosso assunto é a eletricidade, poderíamos dizer que a história do banho interrompido serviu para melhorar a ligação entre o pai e o filho. Ernesto, percebendo que aquele

Leia mais

NOTA DE AULA PROF. JOSÉ GOMES RIBEIRO FILHO CIRCUITOS ELÉTRICOS

NOTA DE AULA PROF. JOSÉ GOMES RIBEIRO FILHO CIRCUITOS ELÉTRICOS NOTA DE AULA PROF. JOSÉ GOMES RIBEIRO FILHO CIRCUITOS ELÉTRICOS 1 INTRODUÇÃO Os circuitos elétricos são a corrente sanguínea no equipamento do cientista e do engenheiro. Neste capítulo estudaremos os circuitos

Leia mais

Receptores elétricos

Receptores elétricos Receptores elétricos Receptor elétrico é qualquer dispositivo que transforma energia elétrica em outra forma de energia que não seja exclusivamente térmica,se lembre que os resistores são os dispositivos

Leia mais

Aulas 19 a 23. 1. (Fuvest 2012)

Aulas 19 a 23. 1. (Fuvest 2012) 1. (Fuvest 01) A figura acima representa, de forma esquemática, a instalação elétrica de uma residência, com circuitos de tomadas de uso geral e circuito específico para um chuveiro elétrico. Nessa residência,

Leia mais

LEI DE OHM E RESISTÊNCIA ELÉTRICA

LEI DE OHM E RESISTÊNCIA ELÉTRICA LEI DE OHM E RESISTÊNCIA ELÉTRICA OBJETIVOS Este experimento tem por objetivo estudar a dependência da diferença de potencial ( ) com a corrente ( ) de um dado circuito para componentes ôhmicos e não ôhmicos.

Leia mais

Circuitos Elétricos e Eletrotécnica Engenharia Mecânica Lista de Exercícios - 01

Circuitos Elétricos e Eletrotécnica Engenharia Mecânica Lista de Exercícios - 01 Circuitos Elétricos e Eletrotécnica Engenharia Mecânica Lista de Exercícios - 01 Prof. Dr. Carlos Henrique Farias dos Santos Março de 2010 1 Carga e Corrente 1. Calcular o fluxo de corrente através de

Leia mais

Física Experimental B Turma G

Física Experimental B Turma G Grupo de Supercondutividade e Magnetismo Física Experimental B Turma G Prof. Dr. Maycon Motta São Carlos-SP, Brasil, 2015 Prof. Dr. Maycon Motta E-mail: m.motta@df.ufscar.br Site: www.gsm.ufscar.br/mmotta

Leia mais

ELETRICIDADE: CIRCUITOS ELÉTRICOS Experimento 1 Parte II: Medidas de corrente elétrica, tensão e resistência em circuitos de corrente

ELETRICIDADE: CIRCUITOS ELÉTRICOS Experimento 1 Parte II: Medidas de corrente elétrica, tensão e resistência em circuitos de corrente OBJETIVOS 9 contínua NOME ESCOLA EQUIPE SÉRIE PERÍODO DATA Familiarizar-se com o multímetro, realizando medidas de corrente, tensão e resistência. INTRODUÇÃO Corrente elétrica FÍSICA ELETRICIDADE: CIRCUITOS

Leia mais

Laboratório de Circuitos Elétricos

Laboratório de Circuitos Elétricos Laboratório de Circuitos Elétricos 3ª série Mesa Laboratório de Física Prof. Reinaldo / Monaliza Data / / Objetivos Observar o funcionamento dos circuitos elétricos em série e em paralelo, fazendo medidas

Leia mais

O esquema da Fig.1 mostra como montar a resistência de teste para medidas de tensão, corrente e resistência.

O esquema da Fig.1 mostra como montar a resistência de teste para medidas de tensão, corrente e resistência. Ano lectivo: 200-20 Medição de Tensões e Correntes Eléctricas. Leis de Ohm e de Kirchhoff. OBJECTIO Aprender a utilizar um osciloscópio e um multímetro digital. Medição de grandezas AC e DC. Conceito de

Leia mais

PONTIFÍCIA UNIVERSIDADE CATÓLICA DE GOIÁS

PONTIFÍCIA UNIVERSIDADE CATÓLICA DE GOIÁS PONTIFÍCIA UNIVERSIDADE CATÓLICA DE GOIÁS DEPARTAMENTO DE MATEMÁTICA E FÍSICA Professor: Renato Medeiros EXERCÍCIOS NOTA DE AULA III Goiânia - 014 1 E X E R C Í C I O S 1. Uma corrente de 5,0 A percorre

Leia mais

Física C Extensivo V. 8

Física C Extensivo V. 8 Extensivo V 8 Exercícios 0) E I Verdadeira C ε o A d II Falsa A capacitância se reduz à metade III Falsa Não depende da carga 0) B P Q Como o tempo de transferência é pequeno, a t potência é máxima 0)

Leia mais

EXPERIMENTS MANUAL Manual de Experimentos Manual de Experimentos 1

EXPERIMENTS MANUAL Manual de Experimentos Manual de Experimentos 1 RESISTORS: LAWS AND THEOREMS Resistores: Leyes y Teoremas Resistores: Leis e Teoremas M-1101A *Only illustrative image./imagen meramente ilustrativa./imagem meramente ilustrativa. EXPERIMENTS MANUAL Manual

Leia mais

ACESSO FÍSICA LISTA 1 (LEIS DE OHM E CORRENTE ELÉTRICA)

ACESSO FÍSICA LISTA 1 (LEIS DE OHM E CORRENTE ELÉTRICA) ACESSO FÍSICA LISTA 1 (LEIS DE OHM E CORRENTE ELÉTRICA) 1. (Fuvest) O plutônio ( Pu) é usado para a produção direta de energia elétrica em veículos espaciais. Isso é realizado em um gerador que possui

Leia mais

CIRCUITOS ELÉTRICOS II

CIRCUITOS ELÉTRICOS II CIRCUITOS ELÉTRICOS II Prof.: Helder Roberto de O. Rocha Engenheiro Eletricista Doutorado em Computação Corrente Elétrica Quantidade de carga elétrica deslocada por unidade de tempo As correntes elétricas

Leia mais

Exercícios sobre Circuitos Elétricos Simples com Gabarito

Exercícios sobre Circuitos Elétricos Simples com Gabarito Exercícios sobre Circuitos Elétricos Simples com Gabarito 1) (Mack-1996) Um capacitor plano é ligado aos pontos A e B do circuito a seguir e o amperímetro ideal A acusa a passagem da corrente de 0,10A.

Leia mais

Prof. Marcos Antonio

Prof. Marcos Antonio Prof. Marcos Antonio 1- DEFINIÇÃO É o ramo da eletricidade que estuda as cargas elétricas em movimento bem como seus efeitos. 2- CORRENTE ELÉTRICA E SEUS EFEITOS É o movimento ordenado de partículas portadoras

Leia mais

Resposta Transitória de Circuitos com Elementos Armazenadores de Energia

Resposta Transitória de Circuitos com Elementos Armazenadores de Energia ENG 1403 Circuitos Elétricos e Eletrônicos Resposta Transitória de Circuitos com Elementos Armazenadores de Energia Guilherme P. Temporão 1. Introdução Nas últimas duas aulas, vimos como circuitos com

Leia mais

Introdução ao Estudo da Corrente Eléctrica

Introdução ao Estudo da Corrente Eléctrica Introdução ao Estudo da Corrente Eléctrica Num metal os electrões de condução estão dissociados dos seus átomos de origem passando a ser partilhados por todos os iões positivos do sólido, e constituem

Leia mais

INSTITUTO NACIONAL DE PESQUISAS ESPACIAIS (INPE)

INSTITUTO NACIONAL DE PESQUISAS ESPACIAIS (INPE) INSTITUTO NACIONAL DE PESQUISAS ESPACIAIS (INPE) Concurso Público - NÍVEL MÉDIO CARGO: Técnico da Carreira de Desenvolvimento Tecnológico Classe: Técnico 1 Padrão I (TM11) CADERNO DE PROVAS PROVA DISCURSIVA

Leia mais

Corrente elétrica corrente elétrica.

Corrente elétrica corrente elétrica. Corrente elétrica Vimos que os elétrons se deslocam com facilidade em corpos condutores. O deslocamento dessas cargas elétricas é chamado de corrente elétrica. A corrente elétrica é responsável pelo funcionamento

Leia mais

Fundamentos da Eletricidade... 03 Conceitos Fundamentais da Eletricidade... 03 Matéria... 03. Circuito Elétrico... 07. Grandezas Elétricas...

Fundamentos da Eletricidade... 03 Conceitos Fundamentais da Eletricidade... 03 Matéria... 03. Circuito Elétrico... 07. Grandezas Elétricas... Eletrotecnica Sumário Fundamentos da Eletricidade... 03 Conceitos Fundamentais da Eletricidade... 03 Matéria... 03 Circuito Elétrico... 07 Grandezas Elétricas... 13 Lei de Ohm... 23 Cálculo de Tensão...

Leia mais

Eletrônica Básica. Eletrônica Básica. Educador Social: Alexandre Gomes. Rua Jorge Tasso Neto, 318 - Apipucos, Recife-PE Fone: (81) 3441 1428

Eletrônica Básica. Eletrônica Básica. Educador Social: Alexandre Gomes. Rua Jorge Tasso Neto, 318 - Apipucos, Recife-PE Fone: (81) 3441 1428 Eletrônica Básica Educador Social: Alexandre Gomes Multimetro Resistores Varistor Termistor Fusível Capacitores Diodos Transistores Fonte de Alimentação Eletrônica Básica: Guia Prático Multimetro É o aparelho

Leia mais

ELETROTÉCNICA ELM ROTEIRO DA AULA PRÁTICA 01 A LEI DE OHM e AS LEIS DE KIRCHHOFF

ELETROTÉCNICA ELM ROTEIRO DA AULA PRÁTICA 01 A LEI DE OHM e AS LEIS DE KIRCHHOFF ELETROTÉCNICA ELM ROTEIRO DA AULA PRÁTICA 01 A LEI DE OHM e AS LEIS DE KIRCHHOFF NOME: TURMA: DATA: / / OBJETIVOS: Ler o valor nominal de cada resistor através do código de cores. Conhecer os tipos de

Leia mais

FÍSICA 4 Professor: Igor Ken CAPÍTULO 6 GERADORES E RECEPTORES ELÉTRICOS

FÍSICA 4 Professor: Igor Ken CAPÍTULO 6 GERADORES E RECEPTORES ELÉTRICOS FÍSICA 4 Professor: Igor Ken CAPÍTULO 6 GERADORES E RECEPTORES ELÉTRICOS TEORIA 1. INTRODUÇÃO Neste capítulo, vamos estudar os geradores e receptores elétricos. Aqui começa o nosso estudo dos circuitos

Leia mais

FÍSICA - 2 o ANO MÓDULO 22 ASSOCIAÇÃO DE RESISTORES REVISÃO

FÍSICA - 2 o ANO MÓDULO 22 ASSOCIAÇÃO DE RESISTORES REVISÃO FÍSICA - 2 o ANO MÓDULO 22 ASSOCIAÇÃO DE RESISTORES REVISÃO Fixação 1) Têm-se três resistores de resistências elétricas R 1 = 6,0Ω, R 2 = 10 Ω e R 3 = 20 Ω. Esses resistores são associados em série, e

Leia mais

2)Dada a associação da figura, sabe- se que a ddp entre os pontos A e B, vale 80V. Determine:

2)Dada a associação da figura, sabe- se que a ddp entre os pontos A e B, vale 80V. Determine: Resistores em Série e em Paralelo 1) Determine a resistência equivalente, entre os terminais A e B, da associação na figura a seguir. 2)Dada a associação da figura, sabe- se que a ddp entre os pontos A

Leia mais

1] Dada a associação de resistores abaixo, calcule a resistência total.

1] Dada a associação de resistores abaixo, calcule a resistência total. ª ANO 1] Dada a associação de resistores abaixo, calcule a resistência total. Onde: O circuito A é uma associação de resitores em série, pois há apenas um caminho para que a corrente passe de uma extremidade

Leia mais

UNIVERSIDADE FEDERAL DE SANTA CATARINA DEPARTAMENTO DE ENGENHARIA ELÉTRICA EEL7040 Circuitos Elétricos I - Laboratório

UNIVERSIDADE FEDERAL DE SANTA CATARINA DEPARTAMENTO DE ENGENHARIA ELÉTRICA EEL7040 Circuitos Elétricos I - Laboratório ula 02 UNIERSIDDE FEDERL DE SNT CTRIN DEPRTMENTO DE ENGENHRI ELÉTRIC EEL7040 Circuitos Elétricos I - Laboratório UL 02 OLTÍMETRO E MPERÍMETRO DE CORRENTE CONTÍNU 1 INTRODUÇÃO Na primeira aula de laboratório

Leia mais

QUESTÕES DA PROVA DE RÁDIO ELETRICIDADE- PARTE - 1

QUESTÕES DA PROVA DE RÁDIO ELETRICIDADE- PARTE - 1 QUESTÕES DA PROVA DE RÁDIO ELETRICIDADE- PARTE - 1 QUESTÕES DE SIMPLES ESCOLHA - PARTE 1 PRÓXIMA => QUESTÃO 1 a. ( ) Fonte de corrente alternada. b. ( ) Fonte de tensão contínua. c. ( ) Fonte de corrente

Leia mais

Associação de resistores

Associação de resistores Associação de resistores É comum nos circuitos elétricos a existência de vários resistores, que encontram-se associados. Os objetivos de uma associação de resistores podem ser: a necessidade de dividir

Leia mais

Aula 06. ASSUNTOS: Circuitos elétricos de corrente contínua; potência elétrica; leis de OHM; efeito Joule.

Aula 06. ASSUNTOS: Circuitos elétricos de corrente contínua; potência elétrica; leis de OHM; efeito Joule. ASSNTOS: Circuitos elétricos de corrente contínua; potência elétrica; leis de OHM; efeito Joule. 1. (CEFET CE 007) Na figura a seguir, a bateria E, o voltímetro V e o amperímetro A são ideais. Todos os

Leia mais

Prof. Sergio Abrahão 17

Prof. Sergio Abrahão 17 DIFERENÇA DE POTENCIAL - DDP (U) (Tensão Elétrica) Vamos aqui definir diferença de potencial (d.d.p) ou tensão elétrica de duas maneiras. O de forma científica utilizará aquela adotada por Tipler em que

Leia mais

EEL7011 Eletricidade Básica Aula 2

EEL7011 Eletricidade Básica Aula 2 Introdução Teórica Aula 2: Lei de Ohm e Associação de Resistores Georg Simon Ohm Georg Simon Ohm (789-854) foi um físico e matemático alemão. Entre 826 e 827, Ohm desenvolveu a primeira teoria matemática

Leia mais

CIRCUITOS DE CORRENTE CONTÍNUA

CIRCUITOS DE CORRENTE CONTÍNUA Departamento de Física da Faculdade de iências da Universidade de Lisboa Electromagnetismo 2007/08 IRUITOS DE ORRENTE ONTÍNU 1. Objectivo Verificar as leis fundamentais de conservação da energia e da carga

Leia mais

(3) Mantendo-se a resistência constante e dobrando-se o comprimento (l) do fio, a área da secção transversal (A)

(3) Mantendo-se a resistência constante e dobrando-se o comprimento (l) do fio, a área da secção transversal (A) 01-(ENEM-MEC) Baseado nas figuras: (1) Mantendo-se a secção transversal constante e dobrando-se o comprimento (l) do fi o, a resistência (R) dobra --- então, a proporcionalidade entre l e R é direta. (2)

Leia mais

Conteúdo GERADORES ELÉTRICOS E QUÍMICOS E FORÇA ELETROMOTRIZ.

Conteúdo GERADORES ELÉTRICOS E QUÍMICOS E FORÇA ELETROMOTRIZ. Aula 10.1 Física Conteúdo GERADORES ELÉTRICOS E QUÍMICOS E FORÇA ELETROMOTRIZ. Habilidades Compreender os conceitos da Eletrodinâmica. Compreender elementos do circuito elétrico e seu funcionamento. Frente

Leia mais

Valores eternos. MATÉRIA. PROFESSOR(A) Hermann ---- ---- 1. Para a associação da figura, a resistência equivalente entre os terminais A e B é igual a:

Valores eternos. MATÉRIA. PROFESSOR(A) Hermann ---- ---- 1. Para a associação da figura, a resistência equivalente entre os terminais A e B é igual a: Valores eternos. TD Recuperação ALUNO(A) MATÉRIA Física III PROFESSOR(A) Hermann ANO SEMESTRE DATA 3º 1º Julho/2013 TOTAL DE ESCORES ESCORES OBTIDOS ---- ---- 1. Para a associação da figura, a resistência

Leia mais

Definir força eletromotriz e então discutir os circuitos de corrente contínua.

Definir força eletromotriz e então discutir os circuitos de corrente contínua. Aula 6 ELETRODINÂMICA META Conceituar corrente elétrica. Apresentar a lei de Ohm e sua aplicação nos resistores. Definir força eletromotriz e então discutir os circuitos de corrente contínua. Mostrar as

Leia mais