Estudo e Análise da Base de Dados do Portal Corporativo da Sexta Região da Polícia Militar com vista à aplicação de Técnicas de Mineração de Dados1

Tamanho: px
Começar a partir da página:

Download "Estudo e Análise da Base de Dados do Portal Corporativo da Sexta Região da Polícia Militar com vista à aplicação de Técnicas de Mineração de Dados1"

Transcrição

1 Estudo e Análise da Base de Dados do Portal Corporativo da Sexta Região da Polícia Militar com vista à aplicação de Técnicas de Mineração de Dados1 Rafaela Giroto, 10º módulo de Ciência da Computação, UFLA, Rua: Elbert Vilela, nº 1679, Bairro: Presidente Kenedy, Lavras (MG). Orientador: Ahmed Ali Abdala Esmin, UFLA/DCC. Palavras Chave: Segurança Pública, Mineração de Dados, KDD, Banco de dados. 1. INTRODUÇÃO Nas últimas décadas vem ocorrendo um aumento dramático na quantidade de informações ou dados que são armazenadas em formato eletrônico. Deve ser considerado, entretanto, que o valor destes dados está ligado à capacidade de extrair informações de mais alto nível, ou seja, informações úteis que sirvam para dar suporte a decisões. Portanto, tornase cada vez mais necessária a aplicação de técnicas e ferramentas que transformem, de maneira automática, os dados disponíveis em conhecimento. Dentro deste contexto, o termo mineração dos dados (data mining), que representa a extração de informações implícitas e padrões ocultos em bases de dados, tem recebido muita atenção de diversas áreas. Em iniciativa conjunta do Departamento de Ciência da Computação (DCC) e membros da Sexta Região da Polícia Militar, foi desenvolvido o Portal Corporativo da Sexta Região da Policia Militar (6RPM). Este projeto vem sendo consolidado e hoje oferece uma infra-estrutura computacional de apoio informatizado e também serve de instrumento de integração entre a comunidade e a Polícia Militar. Este Portal possui em Banco de Dados alimentado diariamente com diversos dados relativos à registros de ocorrências, troca de informações, dados estatísticos, logística e etc. Deve ser considerado, entretanto, que o valor destes dados está ligado à capacidade de extrair informações de mais alto nível, ou seja, informações úteis que sirvam para dar suporte a decisões. Portanto, torna-se cada vez mais necessária a aplicação de técnicas e ferramentas que transformem, de maneira automática, os dados disponíveis em conhecimento. Para tal, inicialmente, deve-se estudar a base de dados a fim de se analisar as condições do banco para posterior aplicação da Técnica de Mineração de Dados. 1 Projeto de Extensão/PROEX/UFLA: Desenvolvimento e Implementação de Metodologia para a Análise de Dados e Extração de Conhecimentos no Portal Corporativo da Sexta Região da Policia Militar (6RPM/PMMG).

2 1.1 Objetivo Este trabalho tem como objetivo realizar um estudo de viabilidade sobre a atual estrutura do banco de dados da 6ª Região de Polícia Militar de Minas Gerais para posteriormente aplicar técnicas de Mineração de Dados. 2. REFERENCIAL TEÓRICO 2.1 Descoberta de Conhecimento e Mineração de Dados A busca por conhecimento em grandes bases de dados recebeu diversos nomes até que em 1989 o termo Descoberta de Conhecimento em Banco de Dados foi então designado para se referir ao processo total de extração de conhecimento. (FAYYAD, et al., 1996). Sendo assim, o termo Mineração de Dados é uma das etapas deste processo como observamos na figura seguinte. Figura 1: Etapas do Processo de KDD. Fonte: Fayadd et al (1996). As etapas que compõem o processo de Descoberta do Conhecimento em Banco de Dados compreendem uma série de estágios subseqüentes e iterativos onde os resultados de cada passo realimentam as próximas ações. O analista de informações exerce um papel fundamental nesse processo, interagindo com os especialistas, direcionando e orientando as respectivas ações de desenvolvimento de KDD. As atividades interativas e iterativas do processo podem ser assim descritas: Seleção elegem-se os dados pertinentes as áreas de interesse, ou sumarizados em um subconjunto de amostragem. Pré-processamento consiste no emprego de ferramentas que viabilizem a preparação de dados para torná-los apropriados para as próximas fases do processo. Nesta etapa são corrigidas as distorções, ausência de dados ou, simplesmente, é realizada uma reorganização das informações. Transformação Os dados são processados e trabalhados de forma diferenciada da original, no entanto, suas propriedades são mantidas. O novo formato então é disponibilizado e deve ser mais bem aproveitado nas etapas sucessoras.

3 Mineração de Dados é a principal etapa do processo, pois, é nela que ocorre a extração do conhecimento, obtido por meio de métodos computacionais capazes de descobrir padrões, estruturas e tendências, etc. Utilizam-se algoritmos para abstrair conhecimentos novos e úteis. Interpretação Os resultados da mineração são verificados, analisados e interpretados pelos especialistas, que julgam ser necessário ou não a repetição do processo, alterando etapas específicas ou todas. 2.2 Mineração de Dados MOXON (2009) afirma que Data Mining também denominado mineração de dados é um conjunto de técnicas automáticas, usadas para explorar exaustivamente e descobrir relacionamentos complexos em um grande conjunto de dados. O conjunto de dados, na maioria das vezes, está armazenado em um banco de dados em forma de tabelas. Porém, segundo o autor, as técnicas também podem ser aplicadas a outras representações de dados, como banco de dados multidimensionais, textos e ambiente multimídia. O conceito de mineração de dados pode ser definido como a descoberta de informações potencialmente úteis a partir de um conjunto de dados disponibilizado, te tal forma que tais informações não possam ser determinadas pela análise simples e direta. Por conseqüência, a atividade de MD não é trivial, sendo que valia de sua utilização se deve ao fato de que seus resultados permitem uma melhor compreensão do conjunto de dados (Frawley et al 1991). Segundo (Keim and Kriegel 1996), a idéia de Mineração de Dados pode ser formamelnte definida como a busca por dois elementos: - Um subconjunto D*, pertencente a um conjunto de D={d 1, d 2,...d n }; - Hipóteses Hu(D*,C) sobre D*, tais que o usuário as considere úteis no contexto de uma aplicação C. A mineração de dados é um conjunto de técnicas e métodos que buscam a identificação de relacionamentos e padrões existentes no conjunto de dados, auxiliando na tomada de decisões. Devido ao aumento extraordinário na aquisição e armazenagem de dados, e a motivação de se conseguir vantagens em qualquer atividade humana onde haja concorrência, o interesse nessas ferramentas de MD tem crescido muito nos últimos anos, o que se nota no aumento do número de publicações e de ferramentas de MD no decorrer do tempo.

4 A grande quantidade de algoritmos de MD já apresentados na literatura impede uma análise das técnicas de mineração focando-se na estrutura de seus princípios de implementação. Um tratamento mais adequado do tema é possível concentrando-se nos principais problemas abordados pelos algoritmos. Segundo (Chen et al 1996), os principais métodos que compõem a aplicação de MD são: Regras de associação: busca descobrir regras para inferência dos dados da seguinte forma: se A 1^A 2^...^Am então B 1^B 2^...^B n. Onde A i (i {1,...m}) e B i (i {1,...,n}) são conjuntos de valores de atributos do conjunto de dados relevantes da base de dados. Generalização e sumarização: procura gerar uma caracterização, uma visão geral de um conjunto de dados fornecido. Classificação: procura classificar os dados de um conjunto baseando-se nos valores de alguns atributos. Identificação de aglomerados: também chamado de segmentação, procura fragmentar os elementos de dados em subconjuntos cuja elementos possuem uma certa similaridade, de forma que os dados com propriedades semelhantes são considerados homogêneos. Busca de padrões e dados temporais: procura identificar padrões que apenas se manifestam ao longo do tempo. Os resultados são utilizados para previsão de risco, identificação de determinados fenômenos e tendências associadas a padrões. Observando-se as diferentes finalidades dos algoritmos de MD, fica clara a abrangência de suas aplicações e como os seus resultados podem ajudar em diversos domínios de aplicação. A utilização dos resultados obtidos promove vantagens nos negócios, conclusões em estudos científicos, prevenção de riscos, previsão de fenômenos etc. 3. METODOLOGIA Num primeiro momento foi realizada uma revisão de literatura sobre a temática referente à Mineração de dados, para tanto, foram realizadas nesse processo consultas a livros e artigos reconhecidos da área. Por seguinte, foi realizado um backup da base de dados da Polícia Militar para promover os experimentos de tratamentos dos dados. Tal procedimento foi necessário em razão da manutenção da segurança do banco de dados original e das constantes inserções de dados que ocorrem diariamente.

5 Desta forma, antes de iniciar a verificação da base de dados, foram estabelecidas as questões a serem submetidas ao processo de KDD, ou seja, definir os resultados que seriam mais importantes para subsidiar as decisões estratégicas da polícia militar. Assim, foram identificadas as tabelas relacionadas com as ocorrências registradas no portal da PM pertencentes à área de interesse selecionada. Após o estudo, foi solicitada a equipe responsável pelo planejamento das operações da PM que elaborasse uma listagem de questões, a partir das tabelas selecionadas, a serem verificadas através do processo de mineração de dados. Como o gerenciador de banco de dados do portal é o SQL Server da Microsoft optouse pela ferramenta Business Intelligence Development Studio, que já está presente no sistema e que possui uma gama diversificada e ampla de recursos que podem ser empregados em processos de mineração de dados. Para compreender melhor o ferramental e potencializar a sua utilização foi necessário entende-la melhor, para tanto, foi utilizado o livro Data Mining with SQL Server 2005 de Tang e MacLennan. 4. RESULTADOS Foi realizada uma análise detalhada sobre a estrutura do banco de dados do portal e foi diagnosticada uma série de disfunções estruturais na organização das tabelas. Entretanto, procedeu-se com o desenvolvimento do trabalho retificando as distorções e realizando uma modelagem de parte da base de dados. Novamente, inconsistências seminais prejudicaram o andamento dos trabalhos. Desta forma, foram realizadas as primeiras etapas de KDD, onde foram feitos os processos de limpeza de dados e de pré-processamento. Contudo, após tentativas infindáveis de progredir para as etapas seguintes e pelos eventos anteriores imprevistos não foi possível aplicar as técnicas de mineração e nem concluir as metas estabelecidas a priori. 4.1 Considerações finais O banco de dados é relativamente grande e apresentou vários problemas estruturais, uma possível explicação para esse fenômeno pode ser em função da ausência de um planejamento e de uma modelagem adequada, visto que, grande parte dos desenvolvedores foram voluntários e bolsistas (alunos) de graduação. As sucessivas dificuldades encontradas no decorrer das atividades demandaram um esforço maior na tentativa de compreender a estrutura do banco de dados, não sendo possível desta forma, atingir dentro da vigência da bolsa a fase de aplicação de Técnicas de Mineração

6 de Dados. No entanto, contribuições significativas originaram-se deste trabalho, como a identificação dos problemas previamente inexistentes e a emergência de realizar um processo de reengenharia no banco para corrigir as inconsistências, ações indispensáveis e necessárias para futuramente possibilitar a aplicação de ferramentas para a extração de informação. Além disso, as rotinas de trabalho, o relacionamento cotidiano e as atividades em equipe, viabilizaram uma troca de conhecimento e experiências importantes tanto para o bolsista quanto para os policiais militares envolvidos no processo. Mais especificamente propiciou a polícia militar e seus especialistas um contato com uma tecnologia ainda pouco difundida na segurança pública, que poderá num futuro próximo auxiliar nas decisões estratégicas e operacionais da companhia. 5. REFERÊNCIAS BIBLIOGRÁFICAS FAYYAD, U. From data mining to knowledge discovery: an overview. In: Advances in Knowledge discovery and data mining, AAA Press / The Mit Press, MIT, Cambridge, England, 1996, p HAN, J., KAMBER, M., Data Mining, Concepts and Techniques. Morgan Kaufmann, HARRIES, K. Mapping Crime: Principle and Practice. U.S. Department of Justice. Washington, D.C: Original disponível em: - acessado em 23/03/2007. Tradução disponível em: - acessado em 23/03/2007 KEIM, D. A. and H. P. KRIEGEL (1996). Visualization Techniques for Mining Large Databases: A Comparison. IEEE Transactions in Knowledge and Data Engineering 8(6): KLÖSGEN, W.; ZYTKOW, J. M. Handbook of DATA MINING and KNOWLEDGE DISCOVERY. New York. USA: Oxford University Press, p MOXON, B. (2009). Defining Data Mining. DBMS, Data Warehouse Supplement, august Disponível in TANG, Z. and MACLENNAN, J. Data Mining with SQL Server Wiley Publishing, Inc, WANG, L., FU, X., Data mining with computational intelligence. Sciences Engineering Library, 2005.

7 WEKA 3 - Data Mining with Open Source Machine Learning Software in Java, Disponível in: <http://www.cs.waikato.ac.nz/ml/weka/> Acesso em: 06 Mar WITTEN, I. H., Eibe Frank (2005). Data Mining: Practical Machine Learning Tools and Techniques (2nd. Ed.). Morgan Kaufmann.

Extração de Árvores de Decisão com a Ferramenta de Data Mining Weka

Extração de Árvores de Decisão com a Ferramenta de Data Mining Weka Extração de Árvores de Decisão com a Ferramenta de Data Mining Weka 1 Introdução A mineração de dados (data mining) pode ser definida como o processo automático de descoberta de conhecimento em bases de

Leia mais

Sistema de mineração de dados para descobertas de regras e padrões em dados médicos

Sistema de mineração de dados para descobertas de regras e padrões em dados médicos Sistema de mineração de dados para descobertas de regras e padrões em dados médicos Pollyanna Carolina BARBOSA¹; Thiago MAGELA² 1Aluna do Curso Superior Tecnólogo em Análise e Desenvolvimento de Sistemas

Leia mais

MINERAÇÃO DE DADOS EDUCACIONAIS: UM ESTUDO DE CASO APLICADO AO PROCESSO SELETIVO DO IFSULDEMINAS CÂMPUS MUZAMBINHO

MINERAÇÃO DE DADOS EDUCACIONAIS: UM ESTUDO DE CASO APLICADO AO PROCESSO SELETIVO DO IFSULDEMINAS CÂMPUS MUZAMBINHO MINERAÇÃO DE DADOS EDUCACIONAIS: UM ESTUDO DE CASO APLICADO AO PROCESSO SELETIVO DO IFSULDEMINAS CÂMPUS MUZAMBINHO Fernanda Delizete Madeira 1 ; Aracele Garcia de Oliveira Fassbinder 2 INTRODUÇÃO Data

Leia mais

Planejamento Estratégico de TI. Prof.: Fernando Ascani

Planejamento Estratégico de TI. Prof.: Fernando Ascani Planejamento Estratégico de TI Prof.: Fernando Ascani Data Warehouse - Conceitos Hoje em dia uma organização precisa utilizar toda informação disponível para criar e manter vantagem competitiva. Sai na

Leia mais

Padronização de Processos: BI e KDD

Padronização de Processos: BI e KDD 47 Padronização de Processos: BI e KDD Nara Martini Bigolin Departamento da Tecnologia da Informação -Universidade Federal de Santa Maria 98400-000 Frederico Westphalen RS Brazil nara.bigolin@ufsm.br Abstract:

Leia mais

XIII Encontro de Iniciação Científica IX Mostra de Pós-graduação 06 a 11 de outubro de 2008 BIODIVERSIDADE TECNOLOGIA DESENVOLVIMENTO

XIII Encontro de Iniciação Científica IX Mostra de Pós-graduação 06 a 11 de outubro de 2008 BIODIVERSIDADE TECNOLOGIA DESENVOLVIMENTO XIII Encontro de Iniciação Científica IX Mostra de Pós-graduação 06 a 11 de outubro de 2008 BIODIVERSIDADE TECNOLOGIA DESENVOLVIMENTO EPE0147 UTILIZAÇÃO DA MINERAÇÃO DE DADOS EM UMA AVALIAÇÃO INSTITUCIONAL

Leia mais

FUNDAMENTOS DE SISTEMAS DE INFORMAÇÃO

FUNDAMENTOS DE SISTEMAS DE INFORMAÇÃO @ribeirord FUNDAMENTOS DE SISTEMAS DE INFORMAÇÃO Rafael D. Ribeiro, M.Sc,PMP. rafaeldiasribeiro@gmail.com http://www.rafaeldiasribeiro.com.br Lembrando... Aula 4 1 Lembrando... Aula 4 Sistemas de apoio

Leia mais

Administração de dados - Conceitos, técnicas, ferramentas e aplicações de Data Mining para gerar conhecimento a partir de bases de dados

Administração de dados - Conceitos, técnicas, ferramentas e aplicações de Data Mining para gerar conhecimento a partir de bases de dados Universidade Federal de Pernambuco Graduação em Ciência da Computação Centro de Informática 2006.2 Administração de dados - Conceitos, técnicas, ferramentas e aplicações de Data Mining para gerar conhecimento

Leia mais

Professor: Disciplina:

Professor: Disciplina: Professor: Curso: Esp. Marcos Morais de Sousa marcosmoraisdesousa@gmail.com Sistemas de informação Disciplina: Introdução a SI Noções de sistemas de informação Turma: 01º semestre Prof. Esp. Marcos Morais

Leia mais

Data Warehousing Visão Geral do Processo

Data Warehousing Visão Geral do Processo Data Warehousing Visão Geral do Processo Organizações continuamente coletam dados, informações e conhecimento em níveis cada vez maiores,, e os armazenam em sistemas informatizados O número de usuários

Leia mais

SISTEMAS DE APRENDIZADO PARA A IDENTIFICAÇÃO DO NÚMERO DE CAROÇOS DO FRUTO PEQUI LEARNING SYSTEMS FOR IDENTIFICATION OF PEQUI FRUIT SEEDS NUMBER

SISTEMAS DE APRENDIZADO PARA A IDENTIFICAÇÃO DO NÚMERO DE CAROÇOS DO FRUTO PEQUI LEARNING SYSTEMS FOR IDENTIFICATION OF PEQUI FRUIT SEEDS NUMBER SISTEMAS DE APRENDIZADO PARA A IDENTIFICAÇÃO DO NÚMERO DE CAROÇOS DO FRUTO PEQUI Fernando Luiz de Oliveira 1 Thereza Patrícia. P. Padilha 1 Conceição A. Previero 2 Leandro Maciel Almeida 1 RESUMO O processo

Leia mais

Microsoft Innovation Center

Microsoft Innovation Center Microsoft Innovation Center Mineração de Dados (Data Mining) André Montevecchi andre@montevecchi.com.br Introdução Objetivo BI e Mineração de Dados Aplicações Exemplos e Cases Algoritmos para Mineração

Leia mais

Mineração de Dados: Introdução e Aplicações

Mineração de Dados: Introdução e Aplicações Mineração de Dados: Introdução e Aplicações Luiz Henrique de Campos Merschmann Departamento de Computação Universidade Federal de Ouro Preto luizhenrique@iceb.ufop.br Apresentação Luiz Merschmann Engenheiro

Leia mais

srbo@ufpa.br www.ufpa.br/srbo

srbo@ufpa.br www.ufpa.br/srbo CBSI Curso de Bacharelado em Sistemas de Informação BI Prof. Dr. Sandro Ronaldo Bezerra Oliveira srbo@ufpa.br www.ufpa.br/srbo Tópicos Especiais em Sistemas de Informação Faculdade de Computação Instituto

Leia mais

DWARF DATAMINER: UMA FERRAMENTA GENÉRICA PARA MINERAÇÃO DE DADOS

DWARF DATAMINER: UMA FERRAMENTA GENÉRICA PARA MINERAÇÃO DE DADOS DWARF DATAMINER: UMA FERRAMENTA GENÉRICA PARA MINERAÇÃO DE DADOS Tácio Dias Palhão Mendes Bacharelando em Sistemas de Informação Bolsista de Iniciação Científica da FAPEMIG taciomendes@yahoo.com.br Prof.

Leia mais

KDD UMA VISAL GERAL DO PROCESSO

KDD UMA VISAL GERAL DO PROCESSO KDD UMA VISAL GERAL DO PROCESSO por Fernando Sarturi Prass 1 1.Introdução O aumento das transações comerciais por meio eletrônico, em especial as feitas via Internet, possibilitou as empresas armazenar

Leia mais

Prof. Msc. Paulo Muniz de Ávila

Prof. Msc. Paulo Muniz de Ávila Prof. Msc. Paulo Muniz de Ávila O que é Data Mining? Mineração de dados (descoberta de conhecimento em bases de dados): Extração de informação interessante (não-trivial, implícita, previamente desconhecida

Leia mais

APLICAÇÃO DE MINERAÇÃO DE DADOS PARA O LEVANTAMENTO DE PERFIS: ESTUDO DE CASO EM UMA INSTITUIÇÃO DE ENSINO SUPERIOR PRIVADA

APLICAÇÃO DE MINERAÇÃO DE DADOS PARA O LEVANTAMENTO DE PERFIS: ESTUDO DE CASO EM UMA INSTITUIÇÃO DE ENSINO SUPERIOR PRIVADA APLICAÇÃO DE MINERAÇÃO DE DADOS PARA O LEVANTAMENTO DE PERFIS: ESTUDO DE CASO EM UMA INSTITUIÇÃO DE ENSINO SUPERIOR PRIVADA Lizianne Priscila Marques SOUTO 1 1 Faculdade de Ciências Sociais e Aplicadas

Leia mais

Adriano Maranhão BUSINESS INTELLIGENCE (BI),

Adriano Maranhão BUSINESS INTELLIGENCE (BI), Adriano Maranhão BUSINESS INTELLIGENCE (BI), BUSINESS INTELLIGENCE (BI) O termo Business Intelligence (BI), popularizado por Howard Dresner do Gartner Group, é utilizado para definir sistemas orientados

Leia mais

DATA WAREHOUSE. Introdução

DATA WAREHOUSE. Introdução DATA WAREHOUSE Introdução O grande crescimento do ambiente de negócios, médias e grandes empresas armazenam também um alto volume de informações, onde que juntamente com a tecnologia da informação, a correta

Leia mais

KDD E MINERAÇÃO DE DADOS:

KDD E MINERAÇÃO DE DADOS: KDD E MINERAÇÃO DE DADOS: Introdução e Motivação Prof. Ronaldo R. Goldschmidt ronaldo@de9.ime.eb.br rribeiro@univercidade.br geocities.yahoo.com.br/ronaldo_goldschmidt Fatos: Avanços em TI e o crescimento

Leia mais

Resumo dos principais conceitos. Resumo dos principais conceitos. Business Intelligence. Business Intelligence

Resumo dos principais conceitos. Resumo dos principais conceitos. Business Intelligence. Business Intelligence É um conjunto de conceitos e metodologias que, fazem uso de acontecimentos e sistemas e apoiam a tomada de decisões. Utilização de várias fontes de informação para se definir estratégias de competividade

Leia mais

Programa do Curso de Pós-Graduação Lato Sensu MBA em Business Intelligence (BI)

Programa do Curso de Pós-Graduação Lato Sensu MBA em Business Intelligence (BI) Programa do Curso de Pós-Graduação Lato Sensu MBA em Business Intelligence (BI) Apresentação O programa de Pós-graduação Lato Sensu em Business Intelligence Inteligência Competitiva tem por fornecer conhecimento

Leia mais

INTRODUÇÃO A MINERAÇÃO DE DADOS UTILIZANDO O WEKA

INTRODUÇÃO A MINERAÇÃO DE DADOS UTILIZANDO O WEKA INTRODUÇÃO A MINERAÇÃO DE DADOS UTILIZANDO O WEKA Marcelo DAMASCENO(1) (1) Instituto Federal de Educação, Ciência e Tecnologia do Rio Grande do Norte/Campus Macau, Rua das Margaridas, 300, COHAB, Macau-RN,

Leia mais

BUSINESS INTELLIGENCE, O ELEMENTO CHAVE PARA O SUCESSO DAS ORGANIZAÇÕES.

BUSINESS INTELLIGENCE, O ELEMENTO CHAVE PARA O SUCESSO DAS ORGANIZAÇÕES. Encontro de Ensino, Pesquisa e Extensão, Presidente Prudente, 22 a 25 de outubro, 2012 88 BUSINESS INTELLIGENCE, O ELEMENTO CHAVE PARA O SUCESSO DAS ORGANIZAÇÕES. Andrios Robert Silva Pereira, Renato Zanutto

Leia mais

Uma análise multidimensional dos dados estratégicos da empresa usando o recurso OLAP do Microsoft Excel

Uma análise multidimensional dos dados estratégicos da empresa usando o recurso OLAP do Microsoft Excel Uma análise multidimensional dos dados estratégicos da empresa usando o recurso OLAP do Microsoft Excel Carlos Alberto Ferreira Bispo (AFA) cafbispo@siteplanet.com.br Daniela Gibertoni (FATECTQ) daniela@fatectq.com.br

Leia mais

SISTEMA DE INFORMAÇÃO EXECUTIVA UTILIZANDO DATA MINING BASEADO NA TÉCNICA ÁRVORE DE DECISÃO

SISTEMA DE INFORMAÇÃO EXECUTIVA UTILIZANDO DATA MINING BASEADO NA TÉCNICA ÁRVORE DE DECISÃO SISTEMA DE INFORMAÇÃO EXECUTIVA UTILIZANDO DATA MINING BASEADO NA TÉCNICA ÁRVORE DE DECISÃO OSCAR DALFOVO, M.A. dalfovo@furb.rct-sc.br Professor da Universidade Regional de Blumenau - FURB Professor do

Leia mais

IMPLEMENTAÇÃO DE UM ALGORITMO DE PADRÕES DE SEQUÊNCIA PARA DESCOBERTA DE ASSOCIAÇÕES ENTRE PRODUTOS DE UMA BASE DE DADOS REAL

IMPLEMENTAÇÃO DE UM ALGORITMO DE PADRÕES DE SEQUÊNCIA PARA DESCOBERTA DE ASSOCIAÇÕES ENTRE PRODUTOS DE UMA BASE DE DADOS REAL Universidade Federal de Ouro Preto - UFOP Instituto de Ciências Exatas e Biológicas - ICEB Departamento de Computação - DECOM IMPLEMENTAÇÃO DE UM ALGORITMO DE PADRÕES DE SEQUÊNCIA PARA DESCOBERTA DE ASSOCIAÇÕES

Leia mais

GESTÃO DE CONHECIMENTO PARA PROGRAMAS DE MONITORIA UMA ABORDAGEM SISTEMÁTICA SOBRE O MÓDULO DE GESTÃO E GERAÇÃO DE CONHECIMENTO...

GESTÃO DE CONHECIMENTO PARA PROGRAMAS DE MONITORIA UMA ABORDAGEM SISTEMÁTICA SOBRE O MÓDULO DE GESTÃO E GERAÇÃO DE CONHECIMENTO... GESTÃO DE CONHECIMENTO PARA PROGRAMAS DE MONITORIA UMA ABORDAGEM SISTEMÁTICA SOBRE O MÓDULO DE GESTÃO E GERAÇÃO DE CONHECIMENTO... 589 GESTÃO DE CONHECIMENTO PARA PROGRAMAS DE MONITORIA UMA ABORDAGEM SISTEMÁTICA

Leia mais

Sistemas de Informação James A. O Brien Editora Saraiva Capítulo 5

Sistemas de Informação James A. O Brien Editora Saraiva Capítulo 5 Para entender bancos de dados, é útil ter em mente que os elementos de dados que os compõem são divididos em níveis hierárquicos. Esses elementos de dados lógicos constituem os conceitos de dados básicos

Leia mais

Data, Text and Web Mining

Data, Text and Web Mining Data, Text and Web Mining Fabrício J. Barth TerraForum Consultores Junho de 2010 Objetivo Apresentar a importância do tema, os conceitos relacionados e alguns exemplos de aplicações. Data, Text and Web

Leia mais

Aplicativo de Mineração de Dados Aplicado em Bases de Dados Acadêmicas

Aplicativo de Mineração de Dados Aplicado em Bases de Dados Acadêmicas 22 - Encontro Anual de Tecnologia da Informação Aplicativo de Mineração de Dados Aplicado em Bases de Dados Acadêmicas Elisa Maria Vissotto1, Adriane Barbosa Camargo2 1 Universidade Regional Integrada

Leia mais

MINERAÇÃO DE DADOS. Mineração de Dados

MINERAÇÃO DE DADOS. Mineração de Dados MINERAÇÃO DE DADOS Mineração de Dados Sumário Conceitos / Autores chave... 3 1. Introdução... 4 2. Conceitos de Mineração de Dados... 5 3. Aplicações de Mineração de Dados... 7 4. Ferramentas de Mineração

Leia mais

A Grande Importância da Mineração de Dados nas Organizações

A Grande Importância da Mineração de Dados nas Organizações A Grande Importância da Mineração de Dados nas Organizações Amarildo Aparecido Ferreira Junior¹, Késsia Rita da Costa Marchi¹, Jaime Willian Dias¹ ¹Universidade Paranaense (Unipar) Paranavaí PR Brasil

Leia mais

SISTEMAS DE APOIO À DECISÃO SAD

SISTEMAS DE APOIO À DECISÃO SAD SISTEMAS DE APOIO À DECISÃO SAD Conceitos introdutórios Decisão Escolha feita entre duas ou mais alternativas. Tomada de decisão típica em organizações: Solução de problemas Exploração de oportunidades

Leia mais

Data Mining II Modelos Preditivos

Data Mining II Modelos Preditivos Data Mining II Modelos Preditivos Prof. Doutor Victor Lobo Mestre André Melo Mestrado em Estatística e Gestão de Informação Objectivo desta disciplina Fazer previsões a partir de dados. Conhecer os principais

Leia mais

Fundamentos da inteligência de negócios: gestão da informação e de bancos de dados

Fundamentos da inteligência de negócios: gestão da informação e de bancos de dados Fundamentos da inteligência de negócios: gestão da informação e de bancos de dados slide 1 1 Copyright 2011 Pearson Education, Inc. publishing as Prentice Hall Objetivos de estudo Como um banco de dados

Leia mais

Instituto de Computação, Universidade Federal do Amazonas (UFAM) Manaus-AM, Brasil

Instituto de Computação, Universidade Federal do Amazonas (UFAM) Manaus-AM, Brasil Elicitação de Requisitos a partir de Modelos de Processos de Negócio e Modelos Organizacionais: Uma pesquisa para definição de técnicas baseadas em heurísticas Marcos A. B. de Oliveira 1, Sérgio R. C.

Leia mais

Gestão da Informação. Gestão da Informação. AULA 3 Data Mining

Gestão da Informação. Gestão da Informação. AULA 3 Data Mining Gestão da Informação AULA 3 Data Mining Prof. Edilberto M. Silva Gestão da Informação Agenda Unidade I - DM (Data Mining) Definição Objetivos Exemplos de Uso Técnicas Tarefas Unidade II DM Prático Exemplo

Leia mais

Extensão do WEKA para Métodos de Agrupamento com Restrição de Contigüidade

Extensão do WEKA para Métodos de Agrupamento com Restrição de Contigüidade Extensão do WEKA para Métodos de Agrupamento com Restrição de Contigüidade Carlos Eduardo R. de Mello, Geraldo Zimbrão da Silva, Jano M. de Souza Programa de Engenharia de Sistemas e Computação Universidade

Leia mais

Extração de Conhecimento a partir dos Sistemas de Informação

Extração de Conhecimento a partir dos Sistemas de Informação Extração de Conhecimento a partir dos Sistemas de Informação Gisele Faffe Pellegrini & Katia Collazos Grupo de Pesquisa em Eng. Biomédica Universidade Federal de Santa Catarina Jorge Muniz Barreto Prof.

Leia mais

Determinação dos Fatores Críticos na Análise de Desempenho de Alunos de Pósgraduação Utilizando Metodologia de Mineração de Dados

Determinação dos Fatores Críticos na Análise de Desempenho de Alunos de Pósgraduação Utilizando Metodologia de Mineração de Dados Resumo Determinação dos Fatores Críticos na Análise de Desempenho de Alunos de Pósgraduação Utilizando Metodologia de Mineração de Dados Autoria: Elizabeth de Oliveira Carpenter, Gerson Lachtermacher O

Leia mais

INSTITUTO DE PESQUISA ECONÔMICA APLICADA PORTARIA Nº 139, DE 10 DE MAIO DE DE 2011.

INSTITUTO DE PESQUISA ECONÔMICA APLICADA PORTARIA Nº 139, DE 10 DE MAIO DE DE 2011. INSTITUTO DE PESQUISA ECONÔMICA APLICADA PORTARIA Nº 139, DE 10 DE MAIO DE DE 2011. Aprova a instituição e o funcionamento da equipe de tratamento e resposta a incidentes em redes computacionais do IPEA.

Leia mais

ERP & BI ENTENTENDO A BUSCA CONSTANTE DAS EMPRESAS POR UM SISTEMA QUE FORNEÇA INFORMAÇÕES CONFIÁVEIS PARA TOMADA DE DECISÃO*

ERP & BI ENTENTENDO A BUSCA CONSTANTE DAS EMPRESAS POR UM SISTEMA QUE FORNEÇA INFORMAÇÕES CONFIÁVEIS PARA TOMADA DE DECISÃO* ERP & BI ENTENTENDO A BUSCA CONSTANTE DAS EMPRESAS POR UM SISTEMA QUE FORNEÇA INFORMAÇÕES CONFIÁVEIS PARA TOMADA DE DECISÃO* RESUMO Marilia Costa Machado - UEMG - Unidade Carangola Graciano Leal dos Santos

Leia mais

Gestão do Conhecimento: Extração de Informações do Banco de Dados de um Supermercado

Gestão do Conhecimento: Extração de Informações do Banco de Dados de um Supermercado Gestão do Conhecimento: Extração de Informações do Banco de Dados de um Supermercado Alessandro Ferreira Brito 1, Rodrigo Augusto R. S. Baluz 1, Jean Carlo Galvão Mourão 1, Francisco das Chagas Rocha 2

Leia mais

Protótipo de um Sistema Móvel para a Extração de. Características em Fragmentos de Imagem de Tecido. Cólico

Protótipo de um Sistema Móvel para a Extração de. Características em Fragmentos de Imagem de Tecido. Cólico Protótipo de um Sistema Móvel para a Extração de Características em Fragmentos de Imagem de Tecido Cólico Application Prototype for Mobile Devices to Features Extraction in Image Fragments Colic Tissue

Leia mais

Paralelização de Tarefas de Mineração de Dados Utilizando Workflows Científicos 1

Paralelização de Tarefas de Mineração de Dados Utilizando Workflows Científicos 1 Paralelização de Tarefas de Mineração de Dados Utilizando Workflows Científicos 1 Carlos Eduardo Barbosa, Eduardo Ogasawara, Daniel de Oliveira, Marta Mattoso PESC COPPE Universidade Federal do Rio de

Leia mais

Ambiente Weka Waikato Environment for Knowledge Analysis

Ambiente Weka Waikato Environment for Knowledge Analysis Universidade Federal de São Carlos - UFSCar Departamento de Computação - DC Programa de Pós-Graduação em Ciência da Computação - PPGCC Ambiente Weka Waikato Environment for Knowledge Analysis Classificação

Leia mais

CONSIDERAÇÕES SOBRE ATIVIDADES DE IDENTIFICAÇÃO, LOCALIZAÇÃO E TRATAMENTO DE DADOS NA CONSTRUÇÃO DE UM DATA WAREHOUSE

CONSIDERAÇÕES SOBRE ATIVIDADES DE IDENTIFICAÇÃO, LOCALIZAÇÃO E TRATAMENTO DE DADOS NA CONSTRUÇÃO DE UM DATA WAREHOUSE CONSIDERAÇÕES SOBRE ATIVIDADES DE IDENTIFICAÇÃO, LOCALIZAÇÃO E TRATAMENTO DE DADOS NA CONSTRUÇÃO DE UM DATA WAREHOUSE Fabio Favaretto Professor adjunto - Programa de Pós Graduação em Engenharia de Produção

Leia mais

MBA EM BUSINESS INTELLIGENCE

MBA EM BUSINESS INTELLIGENCE MBA EM BUSINESS INTELLIGENCE Como a sua empresa estrutura informações estratégicas? Como as decisões são tomadas? São considerados, dados, informações e tendências, de macroambientes? O quanto você conhece

Leia mais

DESENVOLVER SISTEMAS 1 OBJETIVO

DESENVOLVER SISTEMAS 1 OBJETIVO Proposto por: Equipe Departamento de s de Informação (DESIS) DESENVOLVER SISTEMAS Analisado por: Departamento de s de Informação (DESIS) Aprovado por: Diretor-Geral de Tecnologia da Informação (DGTEC)

Leia mais

ü Curso - Bacharelado em Sistemas de Informação

ü Curso - Bacharelado em Sistemas de Informação Curso - Bacharelado em Sistemas de Informação Nome e titulação do Coordenador: Coordenador: Prof. Wender A. Silva - Mestrado em Engenharia Elétrica (Ênfase em Processamento da Informação). Universidade

Leia mais

Segmentação de imagens tridimensionais utilizando o sensor Microsoft Kinect

Segmentação de imagens tridimensionais utilizando o sensor Microsoft Kinect Segmentação de imagens tridimensionais utilizando o sensor Microsoft Kinect Lucas Viana Barbosa 1 ; Wanderson Rigo 2 ; Manassés Ribeiro 3 INTRODUÇÃO Os sistemas de visão artificial vêm auxiliando o ser

Leia mais

APLICAÇÃO DE DATA MINING NA IDENTIFICAÇÃO DE PADRÕES EM CRIANÇAS RESPIRADORAS BUCAIS E NASAIS 1.

APLICAÇÃO DE DATA MINING NA IDENTIFICAÇÃO DE PADRÕES EM CRIANÇAS RESPIRADORAS BUCAIS E NASAIS 1. APLICAÇÃO DE DATA MINING NA IDENTIFICAÇÃO DE PADRÕES EM CRIANÇAS RESPIRADORAS BUCAIS E NASAIS 1. SQUIZANI, Cleonice Schell 2 ; MORALES, Yuri 2 ; VIEIRA, Sylvio André Garcia 2 1 Trabalho de pesquisa - UNIFRA

Leia mais

SAD. Paulo Silva, Rodolfo Ribeiro, Vinicius Tavares

SAD. Paulo Silva, Rodolfo Ribeiro, Vinicius Tavares SAD Paulo Silva, Rodolfo Ribeiro, Vinicius Tavares DataWarehouse Armazena informações relativas a uma organização em BD Facilita tomada de decisões Dados são coletados de OLTP(séries históricas) Dados

Leia mais

PLATAFORMA URBANMOB Aplicativo para captura de trajetórias urbanas de objetos móveis

PLATAFORMA URBANMOB Aplicativo para captura de trajetórias urbanas de objetos móveis PLATAFORMA URBANMOB Aplicativo para captura de trajetórias urbanas de objetos móveis Gabriel Galvão da Gama 1 ; Reginaldo Rubens da Silva 2 ; Angelo Augusto Frozza 3 RESUMO Este artigo descreve um projeto

Leia mais

DATA WAREHOUSE NO APOIO À TOMADA DE DECISÕES

DATA WAREHOUSE NO APOIO À TOMADA DE DECISÕES DATA WAREHOUSE NO APOIO À TOMADA DE DECISÕES Janaína Schwarzrock jana_100ideia@hotmail.com Prof. Leonardo W. Sommariva RESUMO: Este artigo trata da importância da informação na hora da tomada de decisão,

Leia mais

Módulo 4: Gerenciamento de Dados

Módulo 4: Gerenciamento de Dados Módulo 4: Gerenciamento de Dados 1 1. CONCEITOS Os dados são um recurso organizacional decisivo que precisa ser administrado como outros importantes ativos das empresas. A maioria das organizações não

Leia mais

Identificação de Padrões em Registros de Doenças com Técnicas de Mineração de Dados

Identificação de Padrões em Registros de Doenças com Técnicas de Mineração de Dados Identificação de Padrões em Registros de Doenças com Técnicas de Mineração de Dados Resumo. Nas últimas décadas, tem aumentado à necessidade de um processo automatizado para a descoberta de informações

Leia mais

UNIVERSIDADE ESTADUAL DO OESTE DO PARANÁ PRÓ-REITORIA DE GRADUAÇÃO. PLANO DE ENSINO - PERÍODO LETIVO/ANO 2008 ANO DO CURSO: 5 o

UNIVERSIDADE ESTADUAL DO OESTE DO PARANÁ PRÓ-REITORIA DE GRADUAÇÃO. PLANO DE ENSINO - PERÍODO LETIVO/ANO 2008 ANO DO CURSO: 5 o UNIVERSIDADE ESTADUAL DO OESTE DO PARANÁ PRÓ-REITORIA DE GRADUAÇÃO PLANO DE ENSINO - PERÍODO LETIVO/ANO 2008 ANO DO CURSO: 5 o Curso: Informática Modalidade: Bacharelado Turno: Integral Centro: Centro

Leia mais

Aplicação A. Aplicação B. Aplicação C. Aplicação D. Aplicação E. Aplicação F. Aplicação A REL 1 REL 2. Aplicação B REL 3.

Aplicação A. Aplicação B. Aplicação C. Aplicação D. Aplicação E. Aplicação F. Aplicação A REL 1 REL 2. Aplicação B REL 3. Sumário Data Warehouse Modelagem Multidimensional. Data Mining BI - Business Inteligence. 1 2 Introdução Aplicações do negócio: constituem as aplicações que dão suporte ao dia a dia do negócio da empresa,

Leia mais

Obtenção de regras de associação sobre compras governamentais: Um estudo de caso 1

Obtenção de regras de associação sobre compras governamentais: Um estudo de caso 1 Obtenção de regras de associação sobre compras governamentais: Um estudo de caso 1 Keila Michelly Bispo da Silva 2, Starlone Oliverio Passos 3,Wesley Vaz 4 Resumo: O processo de compras governamentais

Leia mais

ALGUMAS CONSIDERAÇÕES SOBRE SISTEMAS DE INFORMAÇÃO E DIAGRAMA DE FLUXO DE DADOS

ALGUMAS CONSIDERAÇÕES SOBRE SISTEMAS DE INFORMAÇÃO E DIAGRAMA DE FLUXO DE DADOS ALGUMAS CONSIDERAÇÕES SOBRE SISTEMAS DE INFORMAÇÃO E DIAGRAMA DE FLUXO DE DADOS Maria Vitória Marim Ferraz Pinto da SILVA Eng., Mestranda pela Universidade Federal de São Carlos. Rodovia Washington Luiz,

Leia mais

Administração de Sistemas de Informação Gerenciais UNIDADE IV: Fundamentos da Inteligência de Negócios: Gestão da Informação e de Banco de Dados Um banco de dados é um conjunto de arquivos relacionados

Leia mais

FUNDAÇÃO DE ENSINO EURÍPIDES SOARES DA ROCHA CENTRO UNIVERSITÁRIO EURÍPIDES DE MARÍLIA UNIVEM CURSO DE BACHARELADO EM SISTEMAS DE INFORMAÇÃO

FUNDAÇÃO DE ENSINO EURÍPIDES SOARES DA ROCHA CENTRO UNIVERSITÁRIO EURÍPIDES DE MARÍLIA UNIVEM CURSO DE BACHARELADO EM SISTEMAS DE INFORMAÇÃO FUNDAÇÃO DE ENSINO EURÍPIDES SOARES DA ROCHA CENTRO UNIVERSITÁRIO EURÍPIDES DE MARÍLIA UNIVEM CURSO DE BACHARELADO EM SISTEMAS DE INFORMAÇÃO DANIEL DA SILVA DISNER MINERAÇÃO DE DADOS PARA OBTENÇÃO DE CONHECIMENTO

Leia mais

TÉCNICAS DE INFORMÁTICA WILLIAN FERREIRA DOS SANTOS

TÉCNICAS DE INFORMÁTICA WILLIAN FERREIRA DOS SANTOS TÉCNICAS DE INFORMÁTICA WILLIAN FERREIRA DOS SANTOS Vimos em nossas aulas anteriores: COMPUTADOR Tipos de computadores Hardware Hardware Processadores (CPU) Memória e armazenamento Dispositivos de E/S

Leia mais

Pós-Graduação "Lato Sensu" Especialização em Análise de Dados e Data Mining

Pós-Graduação Lato Sensu Especialização em Análise de Dados e Data Mining Pós-Graduação "Lato Sensu" Especialização em Análise de Dados e Data Mining Inscrições Abertas Início das Aulas: 24/03/2015 Dias e horários das aulas: Terça-Feira 19h00 às 22h45 Semanal Quinta-Feira 19h00

Leia mais

O que é a ciência de dados (data science). Discussão do conceito. Luís Borges Gouveia Universidade Fernando Pessoa Versão 1.

O que é a ciência de dados (data science). Discussão do conceito. Luís Borges Gouveia Universidade Fernando Pessoa Versão 1. O que é a ciência de dados (data science). Discussão do conceito Luís Borges Gouveia Universidade Fernando Pessoa Versão 1.3, Outubro, 2015 Nota prévia Esta apresentação tem por objetivo, proporcionar

Leia mais

157.78 9.467.2 568.036.8

157.78 9.467.2 568.036.8 class Sisloc { class Sisloc { Nos últimos anos, o mundo tem passado por profundas e aceleradas transformações sociais, econômicas e culturais influenciadas, principalmente, pelas conseqüências da globalização

Leia mais

MATERIAL DIDÁTICO: APLICAÇÕES EMPRESARIAIS SISTEMA DE APOIO À DECISÃO (SAD)

MATERIAL DIDÁTICO: APLICAÇÕES EMPRESARIAIS SISTEMA DE APOIO À DECISÃO (SAD) AULA 07 MATERIAL DIDÁTICO: APLICAÇÕES EMPRESARIAIS SISTEMA DE APOIO À DECISÃO (SAD) JAMES A. O BRIEN MÓDULO 01 Páginas 286 à 294 1 AULA 07 SISTEMAS DE APOIO ÀS DECISÕES 2 Sistemas de Apoio à Decisão (SAD)

Leia mais

Planejamento Estratégico de TI. Prof.: Fernando Ascani

Planejamento Estratégico de TI. Prof.: Fernando Ascani Planejamento Estratégico de TI Prof.: Fernando Ascani BI Business Intelligence A inteligência Empresarial, ou Business Intelligence, é um termo do Gartner Group. O conceito surgiu na década de 80 e descreve

Leia mais

DATA WAREHOUSE. Rafael Ervin Hass Raphael Laércio Zago

DATA WAREHOUSE. Rafael Ervin Hass Raphael Laércio Zago DATA WAREHOUSE Rafael Ervin Hass Raphael Laércio Zago Roteiro Introdução Aplicações Arquitetura Características Desenvolvimento Estudo de Caso Conclusão Introdução O conceito de "data warehousing" data

Leia mais

Data Warehouses Uma Introdução

Data Warehouses Uma Introdução Data Warehouses Uma Introdução Alex dos Santos Vieira, Renaldy Pereira Sousa, Ronaldo Ribeiro Goldschmidt 1. Motivação e Conceitos Básicos Com o advento da globalização, a competitividade entre as empresas

Leia mais

4. Que tipos de padrões podem ser minerados. 5. Critérios de classificação de sistemas de Data Mining. 6. Tópicos importantes de estudo em Data Mining

4. Que tipos de padrões podem ser minerados. 5. Critérios de classificação de sistemas de Data Mining. 6. Tópicos importantes de estudo em Data Mining Curso de Data Mining - Aula 1 1. Como surgiu 2. O que é 3. Em que tipo de dados pode ser aplicado 4. Que tipos de padrões podem ser minerados 5. Critérios de classificação de sistemas de Data Mining 6.

Leia mais

AVALIAÇÃO COMPARATIVA DE ALGORITMOS PARA SISTEMAS DE RECOMENDAÇÃO EM MÚLTIPLOS DOMÍNIOS: MODELOS INTERPRETÁVEIS APLICADOS A DADOS EDUCACIONAIS

AVALIAÇÃO COMPARATIVA DE ALGORITMOS PARA SISTEMAS DE RECOMENDAÇÃO EM MÚLTIPLOS DOMÍNIOS: MODELOS INTERPRETÁVEIS APLICADOS A DADOS EDUCACIONAIS AVALIAÇÃO COMPARATIVA DE ALGORITMOS PARA SISTEMAS DE RECOMENDAÇÃO EM MÚLTIPLOS DOMÍNIOS: MODELOS INTERPRETÁVEIS APLICADOS A DADOS EDUCACIONAIS Hugo Marques Casarini Faculdade de Engenharia de Computação

Leia mais

Modelagem de Processos de Negócio Departamento de Ciência da Computação - UFMG. Maturidade em BPM. (Business Process Management)

Modelagem de Processos de Negócio Departamento de Ciência da Computação - UFMG. Maturidade em BPM. (Business Process Management) Modelagem de Processos de Negócio Departamento de Ciência da Computação - UFMG Maturidade em BPM (Business Process Management) Douglas Rodarte Florentino Belo Horizonte, 21 de Junho de 2010 Agenda Introdução

Leia mais

FACULDADE DE CIÊNCIAS SOCIAIS E TECNOLÓGICAS FACITEC CURSO:

FACULDADE DE CIÊNCIAS SOCIAIS E TECNOLÓGICAS FACITEC CURSO: FACULDADE DE CIÊNCIAS SOCIAIS E TECNOLÓGICAS FACITEC CURSO: Bacharelado em Sistemas de Informação DISCIPLINA: Fundamentos de Sistemas de Informação PROFESSOR: Paulo de Tarso Costa de Sousa TURMA: BSI 2B

Leia mais

APLICATIVO WEB PARA O SETOR DE EXTENSÃO IFC VIDEIRA

APLICATIVO WEB PARA O SETOR DE EXTENSÃO IFC VIDEIRA APLICATIVO WEB PARA O SETOR DE EXTENSÃO IFC VIDEIRA Autores: Claudiléia Gaio BANDT; Tiago HEINECK; Patrick KOCHAN; Leila Lisiane ROSSI; Angela Maria Crotti da ROSA Identificação autores: Aluna do Curso

Leia mais

BUSINESS INTELLIGENCE (B.I.) : ANÁLISE PREDITIVA ATRAVÉS DA MINERAÇÃO DE DADOS.

BUSINESS INTELLIGENCE (B.I.) : ANÁLISE PREDITIVA ATRAVÉS DA MINERAÇÃO DE DADOS. BUSINESS INTELLIGENCE (B.I.) : ANÁLISE PREDITIVA ATRAVÉS DA MINERAÇÃO DE DADOS. Karine Rodrigues Coelho (FIAP) karcoelho@hotmail.com Agesandro Scarpioni (UMC) agesandro@fiap.com.br Edgard Riiti Massago

Leia mais

Sistemas de Apoio à Decisão (SAD) - Senado

Sistemas de Apoio à Decisão (SAD) - Senado Sistemas de Apoio à Decisão (SAD) - Senado DW OLAP BI Ilka Kawashita Material preparado :Prof. Marcio Vitorino Sumário OLAP Data Warehouse (DW/ETL) Modelagem Multidimensional Data Mining BI - Business

Leia mais

Ferramentas Livres de Armazenamento e Mineração de Dados

Ferramentas Livres de Armazenamento e Mineração de Dados Ferramentas Livres de Armazenamento e Mineração de Dados JasperBI, Pentaho, Weka 09/2009 Eng. Pablo Jorge Madril pmadril@summa.com.br Summa Technologies www.summa.com.br Eng. Pablo Jorge Madril pmadril@summa.com.br

Leia mais

Business Intelligence

Business Intelligence Business Intelligence Entendendo a Inteligência de Negócios Ms. Fernando Prass Rua Tuiuti 2130, sala 302 Centro - Santa Maria RS (55) 3026-8469 w w w. f p 2. c o m. b r Agenda Apresentação Business Intelligence

Leia mais

MINISTÉRIO DO DESENVOLVIMENTO SOCIAL E COMBATE À FOME Secretaria Nacional de Renda de Cidadania. CONTRATAÇÃO DE CONSULTOR MODALIDADE: Produto

MINISTÉRIO DO DESENVOLVIMENTO SOCIAL E COMBATE À FOME Secretaria Nacional de Renda de Cidadania. CONTRATAÇÃO DE CONSULTOR MODALIDADE: Produto MINISTÉRIO DO DESENVOLVIMENTO SOCIAL E COMBATE À FOME Secretaria Nacional de Renda de Cidadania CONTRATAÇÃO DE CONSULTOR MODALIDADE: Produto Nº do Termo de Referência no Plano de Aquisições: 2 B 5 Acordo

Leia mais

Técnicas de Seleção de Atributos utilizando Paradigmas de Algoritmos Disciplina de Projeto e Análise de Algoritmos

Técnicas de Seleção de Atributos utilizando Paradigmas de Algoritmos Disciplina de Projeto e Análise de Algoritmos Técnicas de Seleção de Atributos utilizando Paradigmas de Algoritmos Disciplina de Projeto e Análise de Algoritmos Theo Silva Lins, Luiz Henrique de Campos Merschmann PPGCC - Programa de Pós-Graduação

Leia mais

MINISTÉRIO DO DESENVOLVIMENTO SOCIAL E COMBATE À FOME Secretaria Nacional de Renda de Cidadania. CONTRATAÇÃO DE CONSULTOR MODALIDADE: Produto

MINISTÉRIO DO DESENVOLVIMENTO SOCIAL E COMBATE À FOME Secretaria Nacional de Renda de Cidadania. CONTRATAÇÃO DE CONSULTOR MODALIDADE: Produto MINISTÉRIO DO DESENVOLVIMENTO SOCIAL E COMBATE À FOME Secretaria Nacional de Renda de Cidadania CONTRATAÇÃO DE CONSULTOR MODALIDADE: Produto Nº do Termo de Referência no Plano de Aquisições: 2 B 4 Acordo

Leia mais

Data Mining Software Weka. Software Weka. Software Weka 30/10/2012

Data Mining Software Weka. Software Weka. Software Weka 30/10/2012 Data Mining Software Weka Prof. Luiz Antonio do Nascimento Software Weka Ferramenta para mineração de dados. Weka é um Software livre desenvolvido em Java. Weka é um É um pássaro típico da Nova Zelândia.

Leia mais

05/06/2012. Banco de Dados. Gerenciamento de Arquivos. Gerenciamento de Arquivos Sistema Gerenciador de Banco de Dados Modelos de Dados

05/06/2012. Banco de Dados. Gerenciamento de Arquivos. Gerenciamento de Arquivos Sistema Gerenciador de Banco de Dados Modelos de Dados Banco de Dados Gerenciamento de Arquivos Sistema Gerenciador de Banco de Dados Modelos de Dados Gerenciamento de Arquivos Gerenciamento de Arquivos 1 Gerenciamento de Arquivos Em uma indústria são executadas

Leia mais

O Uso da Descoberta de Conhecimento em Base de Dados para Apoiar a Tomada de Decisões

O Uso da Descoberta de Conhecimento em Base de Dados para Apoiar a Tomada de Decisões 1 O Uso da Descoberta de Conhecimento em Base de Dados para Apoiar a Tomada de Decisões José Carlos Almeida Ryan Ribeiro de Eric Rommel G. Dantas Daniel Silva de Lima Patrício Júnior Azevedo Centro de

Leia mais

TÍTULO: IMPLEMENTAÇÃO DE UM SISTEMA DE CONTROLE PATRIMONIAL (SCP) PARA O CORPO DE BOMBEIRO DE MATO GROSSO DO SUL(MS)

TÍTULO: IMPLEMENTAÇÃO DE UM SISTEMA DE CONTROLE PATRIMONIAL (SCP) PARA O CORPO DE BOMBEIRO DE MATO GROSSO DO SUL(MS) TÍTULO: IMPLEMENTAÇÃO DE UM SISTEMA DE CONTROLE PATRIMONIAL (SCP) PARA O CORPO DE BOMBEIRO DE MATO GROSSO DO SUL(MS) CATEGORIA: EM ANDAMENTO ÁREA: CIÊNCIAS EXATAS E DA TERRA SUBÁREA: COMPUTAÇÃO E INFORMÁTICA

Leia mais

Figura 1 - Arquitetura multi-camadas do SIE

Figura 1 - Arquitetura multi-camadas do SIE Um estudo sobre os aspectos de desenvolvimento e distribuição do SIE Fernando Pires Barbosa¹, Equipe Técnica do SIE¹ ¹Centro de Processamento de Dados, Universidade Federal de Santa Maria fernando.barbosa@cpd.ufsm.br

Leia mais

SISTEMA DE GESTÃO DE PESSOAS SEBRAE/TO UNIDADE: GESTÃO ESTRATÉGICA PROCESSO: TECNOLOGIA DA INFORMAÇÃO

SISTEMA DE GESTÃO DE PESSOAS SEBRAE/TO UNIDADE: GESTÃO ESTRATÉGICA PROCESSO: TECNOLOGIA DA INFORMAÇÃO SISTEMA DE GESTÃO DE PESSOAS SEBRAE/TO UNIDADE: GESTÃO ESTRATÉGICA PROCESSO: TECNOLOGIA DA INFORMAÇÃO Competências Analista 1. Administração de recursos de infra-estrutura de tecnologia da informação 2.

Leia mais

Como tornar o seu. Maribel Yasmina* Isabel Ramos*

Como tornar o seu. Maribel Yasmina* Isabel Ramos* Os sistemas de Business Intelligence são imprescindíveis a decisores dinâmicos e motivados para aproveitar as oportunidades que uma sociedade em transformação rápida pode oferecer Maribel Yasmina* Como

Leia mais

Contexto de Big Data, Ciência de Dados e KDD

Contexto de Big Data, Ciência de Dados e KDD Contexto de Big Data, Ciência de Dados e KDD Fabrício J. Barth! Disciplina de Modelagem Descritiva e Preditiva! Pós-Graduação em Big Data e Analytics 100 10 quantidade de informações Sempre houve:!! Produção

Leia mais

O Processo de KDD Knowledge Discovery in Database para Aplicações na Medicina

O Processo de KDD Knowledge Discovery in Database para Aplicações na Medicina SEMINC 2001 57 O Processo de KDD Knowledge Discovery in Database para Aplicações na Medicina MARIZA FERRO HUEI DIANA LEE UNIOESTE - Universidade Estadual do Oeste do Paraná CECE Centro de Engenharias e

Leia mais

Análise da vantagem de adoção e uso de sistemas ERP código aberto em relação aos sistemas ERP código fechado

Análise da vantagem de adoção e uso de sistemas ERP código aberto em relação aos sistemas ERP código fechado Análise da vantagem de adoção e uso de sistemas ERP código aberto em relação aos sistemas ERP código fechado Louis Albert Araujo Springer Luis Augusto de Freitas Macedo Oliveira Atualmente vem crescendo

Leia mais

TERMO DE REFERÊNCIA Nº 4031 PARA CONTRATAÇÃO DE PESSOA FÍSICA PROCESSO DE SELEÇÃO - EDITAL Nº

TERMO DE REFERÊNCIA Nº 4031 PARA CONTRATAÇÃO DE PESSOA FÍSICA PROCESSO DE SELEÇÃO - EDITAL Nº Impresso por: RAFAEL DE SOUZA RODRIGUES DOS SANTOS Data da impressão: 10/08/015-14:4:5 SIGOEI - Sistema de Informações Gerenciais da OEI TERMO DE REFERÊNCIA Nº 401 PARA CONTRATAÇÃO DE PESSOA FÍSICA PROCESSO

Leia mais

Data Mining na Web para Inteligência Competitiva

Data Mining na Web para Inteligência Competitiva Data Mining na Web para Inteligência Competitiva Simone de Almeida (CEFET/PR) simonea@pg.cefetpr.br Rui Francisco Martins Marçal (CEFET/PR) marcal@pg.cefetpr.br Luciano Scandelari (CEFET/PR) luciano@cefetpr..br

Leia mais

INSTITUTO VIANNA JÚNIOR LTDA FACULADE DE CIENCIAS ECONOMICAS VIANNA JUNIOR DATA MINING - EXTRAÇÃO E EXPLORAÇÃO DE CONHECIMENTO.

INSTITUTO VIANNA JÚNIOR LTDA FACULADE DE CIENCIAS ECONOMICAS VIANNA JUNIOR DATA MINING - EXTRAÇÃO E EXPLORAÇÃO DE CONHECIMENTO. INSTITUTO VIANNA JÚNIOR LTDA FACULADE DE CIENCIAS ECONOMICAS VIANNA JUNIOR DATA MINING - EXTRAÇÃO E EXPLORAÇÃO DE CONHECIMENTO. Lúcia Helena de Magalhães 1 Márcio Aarestrup Arbex 2 Resumo Este artigo tem

Leia mais

http://www.publicare.com.br/site/5,1,26,5480.asp

http://www.publicare.com.br/site/5,1,26,5480.asp Página 1 de 7 Terça-feira, 26 de Agosto de 2008 ok Home Direto da redação Última edição Edições anteriores Vitrine Cross-Docking Assine a Tecnologística Anuncie Cadastre-se Agenda Cursos de logística Dicionário

Leia mais

Dado: Fatos conhecidos que podem ser registrados e têm um significado implícito. Banco de Dados:

Dado: Fatos conhecidos que podem ser registrados e têm um significado implícito. Banco de Dados: MC536 Introdução Sumário Conceitos preliminares Funcionalidades Características principais Usuários Vantagens do uso de BDs Tendências mais recentes em SGBDs Algumas desvantagens Modelos de dados Classificação

Leia mais