Termodinâmica Química: Lista 1: Gases. Resolução comentada de exercícios selecionados



Documentos relacionados
Termodinâmica Química Lista 2: 1 a Lei da Termodinâmica. Resolução comentada de exercícios selecionados

CAPITULO 1 Propriedades dos gases. PGCEM Termodinâmica dos Materiais UDESC

Módulo VII Mistura de Gases Ideais. Relações p-v-t. Entalpia, Energia Interna, Entropia e Calores Específicos. Sistemas com Misturas.

Termodinâmica Química

Do ponto de vista da Termodinâmica, gás ideal é aquele para o qual vale, para quaisquer valores de P e T, a equação de estado de Clapeyron:

Se um sistema troca energia com a vizinhança por trabalho e por calor, então a variação da sua energia interna é dada por:

Propriedades volumétricas de fluidos puros

2) Uma solução de 5,00 g de ácido acético, CH 3 COOH, em 100 g de benzeno congela a 3,37

Prova de Química Resolvida Segunda Etapa Vestibular UFMG 2011 Professor Rondinelle Gomes Pereira

Apresentar os conceitos relacionados à mistura simples e equilíbrios de fases e equilíbrio químico.

3.2 Equilíbrio de Fases Vapor - Líquida - Sólida numa Substância Pura Consideremos como sistema a água contida no conjunto êmbolo - cilindro abaixo:

Profa. Maria Fernanda - Química nandacampos.mendonc@gmail.com

8 PRESSÃO DE VAPOR, SATURAÇÃO, CONDENSAÇÃO E VÁCUO

DETERMINAÇÃO DA CONSTANTE UNIVERSAL DOS GASES, R.

OPERAÇÕES UNITÁRIAS. Processo de Combustão

Propriedades de uma Substância Pura

11.1 EQUAÇÃO GERAL DOS BALANÇOS DE ENERGIA. Acúmulo = Entrada Saída + Geração Consumo. Acúmulo = acúmulo de energia dentro do sistema

14 COMBUSTÍVEIS E TEMPERATURA DE CHAMA

Reações químicas e combustão

Cinética Química Aplicada (LOQ 4003)

Módulo VIII Princípios da Psicrometria. Bulbo Seco e Úmido. Cartas Psicrométricas.

Leis Ponderais e Cálculo Estequiométrico

P1 - PROVA DE QUÍMICA GERAL 13/04/2013

Lista de Exercícios 4 Indústrias Químicas Resolução pelo Monitor: Rodrigo Papai de Souza

INTRODUÇÃO À QUÍMICA FÍSICA

11/08/2014. Lei de Avogadro. Equação de Clayperon. CNTP 1 atm 0 C 273K

Profa. Dra. Rita de Cássia L.B. Rodrigues Departamento de Biotecnologia LOT.

Transições de Fase de Substâncias Simples

Gases. 1 atm = 1 kpa. 1 mmhg = 1 Torr. 1 m = 1000 L 1 L = 1000 ml = 1000 cm ESTUDO DOS GASES

INSTITUTO POLITÉCNICO DE TOMAR ESCOLA SUPERIOR DE TECNOLOGIA. Departamento de Engenharia Química e do Ambiente. QUÍMICA I (1º Ano/1º Semestre)

Quando juntamos duas espécies químicas diferentes e, não houver reação química entre elas, isto é, não houver formação de nova(s) espécie(s), teremos

Capítulo 1. Propriedades dos Gases

Módulo V Equações de Estado, Fator de Compressibilidade e Modelo de Gás Ideal.

Resolução Comentada - Química

A Termoquímica tem como objetivo o estudo das variações de energia que acompanham as reações químicas.

Estequiometria. Mestranda: Daniele Potulski Disciplina: Química da madeira I

Controle de Processos Aula: Balanço de massa

Leis Históricas da Estequiometria

2 bt2 20 o C. O calor trocado pelo sistema é, fazendo a = 5,4 cal/g.k, b = 0,0024 cal/g.k 2, c = 0, cal.k/g, dt, T 2. = 230,2kcal.

- A velocidade da reação direta (V1) é igual à velocidade da reação inversa (V2) V 1 = V 2

4.2 Modelação da estrutura interna

FÍSICO-QUÍMICA GASES IDEAIS E GASES REAIS. Prof. MSc. Danilo Cândido

Aula 8 Gases Ideais e Teoria Cinética

A B EQUILÍBRIO QUÍMICO. H 2 + 2ICl I 2 + 2HCl. % Ach

Resolução: 0,86ºC. x = 0,5 mol etanol/kg acetona. 0,5 mol 1000 g de acetona. 200 g de acetona. y = 0,1 mol de etanol. 1 mol de etanol (C 2 H 6 O) 46 g

P2 - PROVA DE QUÍMICA GERAL - 20/05/06

s e s a G a ic ím u Q G. A 1 P

PADRÃO DE RESPOSTA - QUÍMICA - Grupo A

P1 - PROVA DE QUÍMICA GERAL 10/09/05

Transformações físicas de substâncias puras Aula 1

Métodos de determinação da Massa Molecular

FATORES QUE AFETAM AS VELOCIDADES DAS REAÇÕES. 2. As concentrações dos reagentes. 3. A temperatura na qual a reação ocorre.

Comportamento Físico dos Gases 3ª Parte

QUÍMICA. Questão 31. Questão 32

QUÍMICA CÁLCULOS ESTEQUIOMÉTRICOS

4. Introdução à termodinâmica

ESTEQUIOMETRIA. Prof. João Neto

Lista I de exercícios de estequiometria e balanceamento de equações Química Geral e Experimental I Prof. Hamilton Viana

Padrão de respostas às questões discursivas

EXERCÍCIOS DE APLICAÇÃO

Gases ideais. Universidade Federal de Ouro Preto Instituto de Ciências Exatas e Biológicas Departamento de Química

VAZAMENTOS CALCULADOS: UMA ANÁLISE FÍSICA

PROVA DE QUÍMICA Segunda Etapa

2 bt2 20 o C. O calor trocado pelo sistema é, fazendo a = 5,4 cal/g.k, b = 0,0024 cal/g.k 2, c = 0, cal.k/g, dt, T 2. = 230,2kcal.

Curso de Farmácia. Operações Unitárias em Indústria Prof.a: Msd Érica Muniz 6 /7 Período DESTILAÇÃO

Projeto rumo ao ita. Química. Exercícios de Fixação. Exercícios Propostos. Termodinâmica. ITA/IME Pré-Universitário Um gás ideal, com C p

LOQ Físico-Química Capítulo 2: A Primeira Lei: Conceitos TERMOQUÍMICA Atkins & de Paula (sétima edição)

Leonnardo Cruvinel Furquim TERMOQUÍMICA 2

Introdução. Muitas reações ocorrem completamente e de forma irreversível como por exemplo a reação da queima de um papel ou palito de fósforo.

Escola de Engenharia de Lorena USP - Cinética Química Capítulo 05 Reações Irreversiveis a Volume Varíavel

Química Fascículo 05 Elisabeth Pontes Araújo Elizabeth Loureiro Zink José Ricardo Lemes de Almeida

1 CONCEITUAÇÃO DAS GRANDEZAS USADAS NOS BALANÇOS DE MASSA E ENERGIA

INSTITUTO POLITÉCNICO DE TOMAR ESCOLA SUPERIOR DE TECNOLOGIA. Licenciatura em Engenharia Química. TERMODINÂMICA QUÍMICA II 3ª Série de Exercícios

O balão cairia! O que é o MOL? Quantidade de matéria. Obtido a partir da contagem indireta do nº de átomos em exatamente te 12g do

Química Geral e Experimental II Gases Resolução comentada de exercícios selecionados versão gases_v2_2005 Prof. Fabricio R.

Processo Seletivo/UFU - Janeiro ª Prova Comum - PROVA TIPO 1 QUÍMICA QUESTÃO 32

Capítulo 2. A 1ª Lei da Termodinâmica

MÁQUINAS TÉRMICAS AT-101

LISTA DE EXERCÍCIOS ESTUDO DOS GASES

Nome:...N o...turma:... Data: / / ESTUDO DOS GASES E TERMODINÂMICA

Professora Sonia Exercícios sobre Cinética gasosa

Leonnardo Cruvinel Furquim TERMOQUÍMICA

2 Comportamento Termodinâmico de Fluidos no Reservatório


GASES. QUIMICA II a Unidade

Propriedades de substâncias puras, simples e compressíveis

Termoquı mica. Exercı cios Objetivos. C O(CO) 10, 8x102 kj/mol C = O(CO2 ) 8, 0x102 kj/mol H2 (g) + Cl2 (g) 2HCl(g),

Gases ideais. Universidade Federal de Ouro Preto Instituto de Ciências Exatas e Biológicas Departamento de Química

Equilíbrio Químico. Processos Reversíveis e Irreversíveis

Apostila de Química 01 Estudo dos Gases

TERMOQUÍMICA. O que é o CALOR? Energia térmica em transito

TERMODINÂMICA EXERCÍCIOS RESOLVIDOS E TABELAS DE VAPOR

Prof. Rafa - Química Cálculo Estequiométrico

Equações do estado Termodinâmica Aula [22/ ]

Propriedades de uma substância pura

P1 - PROVA DE QUÍMICA GERAL 04/04/08

Questão 13. Questão 15. Questão 14. alternativa C. alternativa E

Gases. 1. Qual a equação de Van der Waals para o gás real e qual o significado de cada termo dessa equação?

PROF. KELTON WADSON OLIMPÍADA 8º SÉRIE ASSUNTO: TRANSFORMAÇÕES DE ESTADOS DA MATÉRIA.

e hexafluoreto de enxofre

Transcrição:

Termodinâmica Química: Lista 1: Gases. Resolução comentada de exercícios selecionados Prof. Fabrício R. Sensato Semestre 4º Engenharia: Materiais Período: Matutino/diurno Regimes: Normal/DP Agosto, 2005

2 Termodinâmica Química Engenharia de Materiais Diurno/Noturno (4 o Sem) Lista de exercícios 1 Propriedades dos gases; Resolução comentada de exercícios selecionados Prof. Fabrício R. Sensato (agosto/2005) 1) Um vaso de 22,4 L tem inicialmente 2,0 mols de H 2 e 1,0 mols de N 2, a 273,15 K. Todo o H 2 reagem com o N 2 suficiente para formar NH 3. Calcule as pressões parciais e a pressão total da mistura final. 2) A densidade do ar, a 740 torr e 27 o C, é 1,146 g/l. Calcule a fração molar e a pressão parcial do nitrogênio e do oxigênio admitindo (a) que o ar é constituído exclusivamente por estes dois gases e (b) que o ar contém, também, 1,0% molar de Ar. 3) A 500 o C e 699 torr, a densidade do vapor de enxofre é 3,71 gl -1. Qual a fórmula molecular do enxofre nessas condições? 4) Num processo industrial, o nitrogênio é aquecido a 500 K num vaso de volume constante igual a 1,000m 3. O gás entra no vaso a 300 K e 100 atm. A massa de gás é 92,4 kg. Use a equação de van der Waals para determinar a pressão aproximada do gás na temperatura de operação de 500K. Para o nitrogênio, a = 1,408 L 2 atm mol -2 e b = 0,0391 Lmol -1. 5) O segundo coeficiente do virial do metano pode ser obtido, de forma aproximada, através da equação empírica onde a = -0,1993 bar -1, b =0,2002 bar -1 e c = 1131 K 2, com 300 K < T < 600 K. (a) Qual é o valor da temperatura de Boyle para o metano? (b) Compare o volume molar do metano a 50 bar previsto pela equação do virial com o que é previsto pela equação do gás perfeito a (i) 298 K, (ii) 373 K (Atkins & de Paula, problema numérico 1.13)

3 Respostas 1) 2) 3) S 8 4) 140 atm 5) T B = 501 K; V m (298K;virial) = 0,455 Lmol -1 ; V m (298K; gás ideal) = 0,496 Lmol -1 ; V m (373K;virial) = 0,599 Lmol -1 ; V m (298K; gás ideal) = 0,621 Lmol -1

4 Resolução Comentada Prof. Fabrício R. Sensato (agosto/2005) 1) Um vaso de 22,4 L tem inicialmente 2,0 mols de H 2 e 1,0 mols de N 2, a 273,15 K. Todo o H 2 reagem com o N 2 suficiente para formar NH 3. Calcule as pressões parciais e a pressão total da mistura final. A resolução do exercício exige a determinação da quantidade de matéria total, n T, no meio reacional. Tal quantidade e constituída pela quantidade de NH 3 gerada em adição à quantidade de N 2 que não reagiu (uma vez que o H 2 é o reagente limitante conforme enunciado no problema e de acordo com o que se pode inferir examinando-se a correspondente equação química). A equação química balanceada que descreve a formação do NH 3 é: 3H 2 (g) + N 2 (g) 2NH 3 (g) Observa-se que para consumir 1 mol de N 2, seriam necessários 3 mols de H 2 e, portanto, o N 2 é o reagente limitante. A razão entre H 2 e N 2 é 3:1 e, portanto, 2 mols de H 2 reagem com 2/3 mols de N 2. Assim, no meio reacional sobrará (1,0 2/3) mols de N 2, ou 0,3 mols de N 2. A quantidade de NH 3 gerada é determinada baseando-se no consumo do reagente limitante, H 2. Segundo a equação química supracitada, a relação entre H 2 e NH 3 é de 3:2. Assim, a quantidade de NH 3 gerada por 2,0 mols de H 2 é: Assim, a quantidade de matéria total é : N T = 1,3 mol + 0,3 mol = 1,6 mol. A pressão total pode ser calculada como se a mistura de gases se comportasse idealmente: De maneira similar, calcula-se a pressão parcial de N 2 e NH 3.

5 2) A densidade do ar, a 740 torr e 27 o C, é 1,146 g/l. Calcule a fração molar e a pressão parcial do nitrogênio e do oxigênio admitindo (a) que o ar é constituído exclusivamente por estes dois gases e (b) que o ar contém, também, 1,0% molar de Ar. Questão (a) A fração molar do gás oxigênio, O 2, sua correspondente pressão parcial são dadas pelas expressões: n Total pode ser facilmente calculada, mediante a equação de estado do gás ideal. Para o volume de 1 litro, o valor de n Total é dado por: Para encontrar a quantidade de O 2, pode-se explorar a massa contida no volume de 1L do gás. O valor da densidade revela que a soma das massas de O 2 e N 2 é 1,146 g (para um litro de gás sob as condições do problema). Assim, Deve-se, então, reconhecer que a massa de uma determinada substância é dada por sua massa molar (massa de um mol), M, multiplicada pela correspondente quantidade de matéria (número de mols), n. Assim, tem-se: Como

6 A quantidade de oxigênio pode ser dada em função da quantidade de nitrogênio e da quantidade de matéria total: Desta forma, a Eq. (2) torna-se: A fração molar de N 2 e O 2 pode, então, ser calculada. As correspondentes pressões parciais são dadas por: Questão (b)

7 Em consonância com a Eq. (1), para a mistura de O 2, N 2 e Ar (argônio), tem-se: A quantidade de Ar é de 1,0% molar, ou seja, n Ar = 0,00040 mol (1% da quantidade de matéria total). A quantidade de nitrogênio pode, então, ser dada em função da quantidade de O 2, Ar e da quantidade total de matéria. Assim, A quantidade de nitrogênio é, então, calculada pela equação (6), uma vez que a quantidade de matéria de O 2, Ar e total são conhecidas. As correspondentes frações molares são calculadas, como se segue: As pressões parciais são como segue:

8 3) A 500 o C e 699 torr, a densidade do vapor de enxofre é 3,71 gl -1. Qual a fórmula molecular do enxofre nessas condições. Uma maneira de determinar a fórmula molecular de uma substância pura é através da determinação de sua massa molar. A equação de estado dos gases ideais pode ser rearranjada de modo a correlacionar a massa molar do gás, M; sua densidade, ρ; temperatura e pressão: Ou seja, a massa molar do enxofre gasoso é 256 g/mol. Como a massa molar do enxofre elementar, S, é 32,07 g/mol, a fórmula molecular do gás em questão é S 8, uma vez que 250/32,07 8. 4) Num processo industrial, o nitrogênio é aquecido a 500 K num vaso de volume constante igual a 1,000m 3. O gás entra no vaso a 300 K e 100 atm. A massa de gás é 92,4 kg. Use a equação de van der Waals para determinar a pressão aproximada do gás na temperatura de operação de 500K. Para o nitrogênio, a = 1,408 L 2 atm mol -2 e b = 0,0391 Lmol -1. A equação de estado de van der Waals é dada pela seguinte expressão: Considerando-se que 1m 3 = 1000L e que n = (92,4 10 3 g)/28,02 gmol -1 = 3,30 10 3 mol

9 p= 140 atm 5) O segundo coeficiente do virial do metano pode ser obtido, de forma aproximada, através da equação empírica onde a = -0,1993 bar -1, b =0,2002 bar -1 e c = 1131 K 2, com 300 K < T < 600 K. (a) Qual é o valor da temperatura de Boyle para o metano? (b) Compare o volume molar do metano a 50 bar previsto pela equação do virial com o que é previsto pela equação do gás perfeito a (i) 298 K, (ii) 373 K (Atkins & de Paula, problema numérico 1.13) Como a equação supracitada revela, o valor do coeficiente virial (neste caso, o segundo coeficiente virial) é dependente da temperatura. Na temperatura de Boyle, T B, (temperatura em que as propriedades do gás coincidem com as do gás perfeito nas baixas pressões), o segundo coeficiente virial deve ser nulo, ou seja, B = 0 (ver Atkins & de Paula, p.18). Assim, deve-se encontrar um valor de T que torne B nulo. Este valor de T seria, portanto, a temperatura de Boyle para o metano. Assim, (a) (b) A equação do virial é dada pela expansão: pv m =RT(1 + B p + C p 2 +...) em que B e C são os coeficientes viriais. O terceiro coeficiente do virial, C, é usualmente menos importante que o segundo, B (ver Atkins & de Paula, p18). Assim, pode-se, em geral, truncar a equação do virial no segundo coeficiente, tornando-a: pv m =RT(1 + B p)

10 Ainda, pode-se identificar o termo (1 + B p) com o fator de compressibilidade, Z), uma vez que pv m =RTZ ou pv m /RT = Z. Calculando-se o valor de Z para p = 50 bar e T = 298 K, tem-se Assim, o volume molar, V m, calculado pela equação do virial, é: Nota: 50 bar = 49,3 atm (verifique!!!) Similarmente (exceto pela inclusão de Z) o volume molar calculado pela equação do gás ideal é dado por: Ou seja, o volume molar calculado pela equação do virial é menor que o calculado pela equação dos gases ideais. Isto significa que forças atrativas dominam as interações intermoleculares nas condições de temperatura e pressão especificadas no problema. A mesma conclusão é obtida inspecionando o valor do coeficiente de compressibilidade uma vez que Z < 0. Para T = 373 K, Z = 0,964. O volume molar calculado pela equação de estado do virial é 0,599 Lmol -1, enquanto o valor calculado pela equação dos gases ideais é 0,621 Lmol -1 (confirme!!!!)