Lista de Exercícios 5 Corrente elétrica e campo magnético

Documentos relacionados
Lista de Exercícios 3 Corrente elétrica e campo magnético

Lista de Exercícios 4

Física 3 - EMB5043. Prof. Diego Duarte Campos magnéticos produzidos por correntes (lista 9) 7 de novembro de 2017

Lista 6: Campo Magnético e Força Magnética (2017/2)

F-328 Física Geral III

Lista de Exercícios 1 Forças e Campos Elétricos

Leis de Biot-Savart e de Ampère

Lista de Exercícios IX

Lista 02 Parte II Capítulo 32

Lista de Exercícios 2: Magnetismo e Ondas Eletromagnéticas

Lista de Exercícios. Campo Magnético e Força Magnética

Lista de Exercícios 2 Potencial Elétrico e Capacitância

Física 3 - CÓDIGO Profa. Dra. Ignez Caracelli (DF)

Quinta Lista - Campos Magnéticos

Física III-A /1 Lista 7: Leis de Ampère e Biot-Savart

INDUÇÃO ELETROMAGNÉTICA

Lista de Exercícios 1: Eletrostática

Física III-A /2 Lista 7: Leis de Ampère e Biot-Savart

ELETROMAGNETISMO SEL Professor: Luís Fernando Costa Alberto

Carga Elétrica. Problemas Selecionados. Física Geral - Eletromagnetismo

Campos Magnéticos Produzidos por Correntes

Física III-A /1 Lista 7: Leis de Ampère e Biot-Savart

Lista de exercícios 8 Campos magnéticos produzidos por corrente

1. Na Figura, o fluxo de campo magnético na espira aumenta de acordo com a equação

Lista de exercícios 7 Campos Magnéticos. Letra em negrito são vetores; i, j, k são vetores unitários

Lista 7: Leis de Ampère e Biot-Savart (2017/2)

FIS1053 Projeto de Apoio Eletromagnetismo 09-Setembro Lista de Problemas 15 ant Revisão G4. Temas: Toda Matéria.

Capítulo 29. Objetivos do Aprendizado

Conteúdo Eletromagnetismo: Campo Magnético gerado por um fio e por um solenoide.

Lista de Exercícios 7 Lei de Ampère

Física III-A /2 Lista 1: Carga Elétrica e Campo Elétrico

(a) Determine o fluxo magnético através da área limitada pela espira menor em função de x 1. Na espira menor, determine. (b) a fem induzida e

Programa de pós-graduação em Física

1 Circuitos e resistores

Física. Leo Gomes (Vitor Logullo) Eletromagnetismo

Capacitores e Indutores (Aula 7) Prof. Daniel Dotta

Fichas de electromagnetismo

Campos Magnéticos produzidos por Correntes

Física III-A /2 Lista 8: Indução Eletromagnética

Produto vetorial. prof. Daniel B. Oliveira

CAMPO MAGNÉTICO EM CONDUTORES

Física 3 - EMB5031. Prof. Diego Duarte. (lista 10) 12 de junho de 2017

Física III-A /1 Lista 1: Carga Elétrica e Campo Elétrico

Campos Magnéticos Produzidos por Correntes 29-1 O CAMPO MAGNÉTICO PRODUZIDO POR UMA CORRENTE CAPÍTULO 29. Objetivos do Aprendizado.

C. -20 nc, e o da direita, com +20 nc., no ponto equidistante aos dois anéis? exercida sobre uma carga de 1,0 nc colocada no ponto equidistante?

Questão 1. I. A luz solar consiste em uma onda eletromagnética transversal, não polarizada e policromática.

Campo Magnético Neste capítulo será estudado:

Primeira Lista - lei de Coulomb

E(r) = 2. Uma carga q está distribuída uniformemente por todo um volume esférico de raio R.

Corrente contínua e Campo de Indução Magnética: CCB

Aula 21 - Lei de Biot e Savart

:desenho abaixo. Considerando a intensidade da aceleração da gravidade g=10 m/s 2, qual a intensidade da força de tração em cada corda?

216 Demonstração da Lei de Ampère

Prof. Dr. R.M.O Galvão e Prof. Dr. L.R.W. Abramo. Prova 2 - Diurno

IF/UFRJ Física III 2011/2 Raimundo Turmas IFA+OV1+IGM+IM+BCMT 10 a Lista de Problemas Lei da Indução

Força magnética e campo magnético

FFI Física IV: 1ª Lista de Exercícios

Letras em Negrito representam vetores e as letras i, j, k são vetores unitários.

Campo Magnética. Prof. Fábio de Oliveira Borges

Física E Intensivo v. 2

COLÉGIO SHALOM Ensino Médio 3 Ano Prof.º: Wesley Disciplina Física Aluno (a):. No.

Exame de Ingresso na Pós-graduação Instituto de Física - UFF Básico - 08 de Junho de 2009

FUVEST 98 SEGUNDA FASE PROVA DE FÍSICA Q.01

Cap. 28. Campos Magnéticos. Prof. Oscar Rodrigues dos Santos Campos Magnéticos 1

Lista 01 Parte II. Capítulo 28

COMISSÃO PERMANENTE DE SELEÇÃO COPESE PRÓ-REITORIA DE GRADUAÇÃO PROGRAD PISM III- TRIÊNIO PROVA DE FÍSICA

Eletromagnetismo refsant

Considere os seguintes dados nas questões de nº 01 a 04. Determine a grandeza que falta (F m,v,b)

CURSO E COLÉGIO OBJETIVO TREINO PARA A PROVA DE FÍSICA F.3 PROF. Peixinho 3 o Ano E.M. 2 o Bimestre-2010

Indução e Indutância.

RESOLUÇÃO DO TC DO CLICK PROFESSOR

Apostila de Física 37 Campo Magnético

Física Teórica II. Prova 2 1º. semestre de /05/2018

Eletrostática e Eletromagnetismo. Lista de Orientação Valendo 1 ponto.

EXERCÍCIOS FÍSICA 3ª SÉRIE

BCJ Lista de Exercícios 7

Sala de Estudos FÍSICA - Lucas 3 trimestre Ensino Médio 2º ano classe: Prof.LUCAS Nome: nº

Unidade Parque Atheneu Professor (a): Dhanyella Aluno (a): Série: 3ª Data: / / LISTA DE FÍSICA I

Lista 02 Parte I. Capacitores (capítulos 29 e 30)

Cap. 24. Potencial Elétrico. Prof. Oscar Rodrigues dos Santos Potencial elétrico 1

Letras em Negrito representam vetores e as letras i, j, k são vetores unitários.

FÍSICA (ELETROMAGNETISMO) CORRENTE ELÉTRICA E RESISTÊNCIA

Engenharias, Física Elétrica, prof. Simões. Eletromagnetismo. Campo magnético produzido em um fio percorrido por uma corrente elétrica. Exercícios 1.

Lista de Exercícios 1 - Magnetismo e Partícula em Campo Magnético

PROCESSO DE SELEÇÃO PARA O PROGRAMA DE PÓS-GRADUAÇÃO FÍSICA E QUÍMICA DE MATERIAIS 2 SEMESTRE DE 2016 UNIVERSIDADE FEDERAL DE SÃO JOÃO DEL REI

Lista 12: Rotação de corpos rígidos

FÍSICA - 2 o ANO MÓDULO 13 ELETROSTÁTICA: CAMPO ELÉTRICO UNIFORME

Universidade de São Paulo Instituto de Física Laboratório Didático

Prof. Flávio Cunha, (19) Consultoria em Física, Matemática e Programação.

Eletromagnetismo. Motor Eletroimã Eletroimã. Fechadura eletromagnética Motor elétrico Ressonância Magnética

LEI DE AMPÈRE. Introdução

PROCESSO DE INGRESSO NA UPE

1. (Ufrj) Um satélite geoestacionário, portanto com período igual a um dia, descreve ao redor da Terra uma

Olimpíada Brasileira de Física ª Fase

Aula 17 Tudo sobre os Átomos

(c) B 0 4πR 2 (d) B 0 R 2 (e) B 0 2R 2 (f) B 0 4R 2

CONCURSO DE ADMISSÃO AO CURSO DE FORMAÇÃO E GRADUAÇÃO FÍSICA CADERNO DE QUESTÕES 2015 / 2016

Transcrição:

Lista de Exercícios 5 Corrente elétrica e campo magnético Exercícios Sugeridos (13/04/2010) A numeração corresponde ao Livros Textos A e B. A22.5 Um próton desloca-se com velocidade v = (2 î 4 ĵ + ˆk) m/s em uma região na qual o campo magnético é B = ( î + 2 ĵ 3 ˆk) T. Qual é a magnitude da força magnética que o próton experimenta? A22.11 O tubo de imagem de uma televisão usa bobinas magnéticas de deflexão em vez de placas elétricas de deflexão. Suponha que um feixe de elétrons é acelerado por uma diferença de potencial de 50,0 kv e, então, atravessa uma região de 1,00 cm de largura onde há um campo magnético uniforme. A tela está localizada a 10,0 cm do centro das bobinas e tem 50,0 cm de largura. Quando o campo é desligado, o feixe de elétrons atinge o centro da tela. Que magnitude de campo magnético é necessária para desviar o feixe para uma margem da tela? Despreze efeitos relativísticos. A22.12 O efeito Hall tem importantes aplicações na indústria eletrônica. Ele é usado para determinar o sinal e a densidade dos portadores de carga em chips semicondutores. O arranjo é mostrado na Figura P22.12. Um semicondutor de espessura t e largura d conduz uma corrente I na direção x. Um campo magnético uniforme B é aplicado na direção y. Se os portadores de carga forem positivos, a força magnética os desvia na direção z. Carga positiva se acumula na superfície superior da amostra e carga negativa na superfície inferior, criando um campo elétrico para baixo. No equilíbrio, a força elétrica sobre os portadores equilibra a força magnética e os portadores se deslocam sem desvio. É medida a voltagem Hall, V H = V c V a entre as superfícies superior e inferior e a densidade de portadores de carga pode ser determinada a partir dela. (a) Mostre que, se os portadores de carga forem negativos a voltagem Hall será negativa. Assim, o efeito Hall revela o sinal da carga dos portadores, de modo que a amostra possa ser classificada como tipo p ou n. (b) Determine a densidade dos portadores n (número de portadores por unidade de volume) em termos de I, t, B, V H e q, a carga dos portadores. Figura P22.12 A22.13 Um fio conduz uma corrente de 2,40 A. Uma parte reta do fio de 0,750 m de comprimento está ao longo do eixo x num campo magnético uniforme B = 1,60 ˆk T. Se a corrente está na direção +x, qual é a força magnética sobre esta seção do fio? 1

A22.14 Um condutor suspenso por dois fios flexíveis, como mostrado na Figura P22.14, tem massa de 0,0400 kg/m. O campo magnético, para dentro como indicado, tem intensidade de 3,60 T. Para que corrente (valor e direção) a tensão nos fios de suporte é nula? Figura P22.14 A22.15 Um campo magnético não uniforme exerce uma força resultante sobre um dipolo magnético. Um ímã forte é colocado sob um anel condutor horizontal de raio r que conduz uma corrente I, como indicado na Figura P22.15. Se o campo magnético B faz um ângulo θ com a vertical na localização do anel, quais são a magnitude e a direção da força resultante sobre o anel? Figura P22.15 A22.17 Um enrolamento consiste de N = 100 espiras retangulares próximas de dimensões a = 0,400 m e b = 0,300 m. O enrolamento é articulado ao longo do eixo y e seu plano faz um ângulo θ = 30,0 com o eixo x (Figura P22.17). Qual é a magnitude do torque exercido sobre o enrolamento por um campo magnético uniforme B = 0,800 T direcionado ao longo do eixo x quando a corrente for I = 1,20 A na direção mostrada? Qual é a direção esperada da rotação do enrolamento? Figura P22.17 2

A22.22 Uma corrente de 3,00 A fluindo ao longo do percurso mostrado na Figura P22.22 produz um campo magnético em P, o centro do arco. Se o arco tem um ângulo de 30,0 e raio de 0,600 m, quais são a magnitude e a direção do campo em P? Figura P22.22 A22.24 Considere o condutor indicado na Figura P22.24. As partes retas são muito longas e a espira tem raio R. Pelo condutor passa uma corrente I. Encontre uma expressão para o campo magnético no centro da espira. Figura P22.24 A22.25 Determine o campo magnético no ponto P, localizado a uma distância x do canto de um fio infinitamente longo dobrado em ângulo reto, como mostrado na Figura P22.25. O fio conduz uma corrente constante I. Figura P22.25 A22.31 Na Figura P22.31, a corrente no fio longo e reto é I 1 = 5,00 A. Este fio se encontra no plano da espira retangular que conduz uma corrente I 2 = 10,0 A. As dimensões são c = 0,100 m, a = 0,150 m e l = 0,450 m. Encontre a direção e a magnitude da força resultante exercida pelo campo do fio sobre a espira. Figura P22.31 3

A22.35 A Figura P22.35 mostra um corte transversal de um cabo coaxial. O condutor central é cercado por uma camada de borracha, que é cercada pelo condutor exterior, que é envolvido por outra camada borracha. Em uma aplicação particular, a corrente no condutor interno é de 1,00 A e a corrente no condutor externo é de 3,00 A nas direções indicadas na figura. Determine a magnitude e a direção do campo magnético nos pontos a e b. Figura P22.35 A22.36 Um reator de fusão tokamak tem bobinas magnéticas na forma de um toróide com raio interno de 0,700 m e raio externo de 1,30 m. O enrolamento toroidal tem 900 espiras. Se a corrente no enrolamento é de 14,0 ka, encontre a magnitude do campo magnético dentro do toróide e determine seus valores extremos. A22.40 Um solenóide é feito com l = 10,0 m de fio (r = 2,00 mm, resistividade ρ = 1,70 10 8 Ω m) enrolado em uma camada sobre um cilindro de raio R = 5,00 cm. Encontre o campo magnético no centro do solenóide quando ele é conectado a uma bateria de 20,0 V. A22.42 Considere um solenóide de comprimento l e raio R, contendo N espiras pouco espaçadas pelas quais passa uma corrente I. (a) Encontre o campo magnético ao longo do eixo em função da distância a ao centro do solenóide. (b) Mostre que para l R o campo em cada extremidade do solenóide se aproxima de B = µ 0 NI/2l. A22.48 O sódio funde a 99 C e na forma líquida é um ótimo condutor de calor. Por isso sódio líquido é usado para refrigerar o núcleo de reatores nucleares. O sódio é feito circular por bombas que utilizam a força sobre uma carga se deslocando em um campo magnético. O princípio está esquematizado na Figura P22.48. O metal líquido está em uma tubulação isolante de seção retangular de lados w e h. Numa região de comprimento L há um campo magnético uniforme perpendicular à tubulação. Uma densidade de corrente J perpendicular à tubulação e ao campo magnético atravessa o sódio líquido. (a) Explique por que este arranjo produz no líquido uma força ao longo do comprimento da tubulação. (b) Mostre que a porção de líquido no campo magnético experimenta um aumento de pressão de JLB. Figura P22.48 4

A22.52 Um campo magnético uniforme de 0,150 T está direcionado ao longo do eixo x positivo. Um pósitron que se desloca a 5,00 10 6 m/s entra no campo ao longo de uma direção que faz um ângulo de 85,0 com o eixo x (Figura P22.52). O movimento do pósitron é uma hélice. Calcule (a) o passo da hélice, p e (b) o raio r. Figura P22.52 A22.56 Duas bobinas circulares de raio R são perpendiculares ao eixo comum (eixo x). Os centros das bobinas estão separados por uma distância R e cada bobina conduz uma corrente I, constante, na mesma direção, como mostrado na Figura P22.56. Defina a origem do eixo x no ponto médio dos centros das bobinas. (a) Mostre que o campo magnético nos pontos do eixo é B(x) = µ 0I 2R { } R 3 [R 2 + (x R/2) 2 ] 3/2 + R 3 [R 2 + (x + R/2) 2 ] 3/2. (b) Mostre que são nulas a primeira e a segunda derivadas de B em relação a x, db/dx e d 2 B/dx 2, no ponto médio entre as bobinas. Isso significa que o campo magnético nas proximidades desse ponto é altamente uniforme. Bobinas com esta configuração são chamadas de bobinas de Helmholtz. Figura P22.56 A22.63 A magnitude do campo magnético da Terra em qualquer dos pólos é de aproximadamente 0,7 G = 7 10 5 T. Se este campo fosse gerado por uma espira de corrente ao redor do equador, qual seria a corrente? (O raio da Terra é R T = 6,37 10 6 m.) A22.65 Uma tira de metal muito longa e fina de largura w, conduz uma corrente I ao longo de seu comprimento como mostra a Figura P22.65. Encontre o campo magnético no ponto P localizado no plano da tira a uma distância b de sua borda. Figura P22.65 5

B22.9 Considere o espectrômetro de massa mostrado esquematicamente na figura. O campo elétrico entre as placas do filtro de velocidades é 2500 V/m e o campo magnético no filtro de velocidades e na câmara de deflexão tem uma magnitude de 0,0350 T. Calcule o raio da trajetória para um íon monovalente de massa m = 2,18 10 26 kg. B22.44 Na saturação, quando quase todos os átomos têm seus momentos magnéticos alinhados, o campo magnético em uma amostra de ferro pode ser de 2,00 T. Se cada elétron contribuir com um momento magnético de 9,27 10 24 A m 2 (chamado de um magnéton de Bohr), quantos elétrons por átomo contribuem para o campo saturado do ferro? (Dica: O ferro contém aproximadamente 8,50 10 28 átomos/m 3.) B22.61 Um anel não condutor de raio R é uniformemente carregado com uma carga total q positiva. O anel gira com uma velocidade angular constante ω em torno de um eixo, através de seu centro, perpendicular ao plano do anel. Qual é a magnitude do campo magnético no eixo do anel a uma distância R/2 do seu centro? C30.45 Um solenóide com núcleo de ferro (κ m = 5000) tem 250 espiras por metro. A corrente no enrolamento é de 8,0 A. Determine: (a) o campo H, (b) a magnetização M, (c) o campo magnético B. Compute a corrente por unidade de comprimento do solenóide devida (d) às correntes livres e (e) às correntes de magnetização. C30.55 Um ímã cilíndrico, com 20 cm de comprimento e 3 cm de diâmetro, tem um campo magnético de 0,04 T no seu interior. Se o mesmo campo for produzido por uma corrente de 5 A num solenóide com núcleo de ar e as mesmas dimensões do ímã, quantas espiras deverá ter o solenóide? 6