história & histórias seção responsável Sérgio Roberto Nobre Unesp Rio Claro 12 no. 82 revista do professor de matemática

Documentos relacionados
EMENTA ESCOLAR III Trimestre Ano 2016 Disciplina: Matemática Professor: Flávio Calônico Júnior Turma: 1ª série do Ensino Médio

Exemplo Aplicando a proporcionalidade existente no Teorema de Tales, determine o valor dos segmentos AB e BC na ilustração a seguir:

Matemática GEOMETRIA PLANA. Professor Dudan

E.E.M.FRANCISCO HOLANDA MONTENEGRO PLANO DE CURSO ENSINO MÉDIO

7.º Ano. Planificação Matemática 2016/2017. Escola Básica Integrada de Fragoso 7.º Ano

Av. João Pessoa, 100 Magalhães Laguna / Santa Catarina CEP

DEPARTAMENTO DE MATEMÁTICA INFORMÁTICA DISCIPLINA:

PLANO DE ESTUDOS DE MATEMÁTICA - 7.º ANO

PLANO DE ESTUDOS DE MATEMÁTICA 7.º ANO

Uma introdução histórica 1

Geometria e Medida: Figuras Geométricas

Módulo de Triângulo Retângulo, Lei dos Senos e Cossenos, Poĺıgonos Regulares. 9 o ano E.F.

DEPARTAMENTO DE MATEMÁTICA INFORMÁTICA DISCIPLINA: Matemática (7º Ano) METAS CURRICULARES/CONTEÚDOS... 1º Período

7º Ano. Planificação Matemática 2014/2015. Escola Básica Integrada de Fragoso 7º Ano

INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DO RIO GRANDE DO NORTE. Professor: João Carmo

PLANIFICAÇÃO ANUAL: ANO LETIVO 2013/2014 DISCIPLINA DE MATEMÁTICA 7 º ANO

1. Posição de retas 11 Construindo retas paralelas com régua e compasso 13

GEOMETRIA PLANA. 1) (UFRGS) Na figura abaixo, o vértice A do retângulo OABC está a 6 cm do vértice C. O raio do círculo mede

Circunferência. MA092 Geometria plana e analítica. Interior e exterior. Circunferência e círculo. Francisco A. M. Gomes

Universo Da Matemática Mundo do Marcão Fase 1

EMENTA ESCOLAR III Trimestre Ano 2014

Geometria Plana. Exterior do ângulo Ô:

Axiomas e Proposições

1.0. Conceitos Utilizar os critérios de divisibilidade por 2, 3, 5 e Utilizar o algoritmo da divisão de Euclides.

Relações Trigonométricas nos Triângulos

MATEMÁTICA A - 11o Ano Geometria -Trigonometria Propostas de resolução

Aula 9 Triângulos Semelhantes

2ª série do Ensino Médio

Polígonos PROFESSOR RANILDO LOPES 11.1

1. Área do triângulo

CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA Trigonometria. Iris Lima - Engenharia da produção

PLANIFICAÇÃO ANUAL DE MATEMÁTICA

PROGRAMA e Metas Curriculares Matemática A

Prova final de MATEMÁTICA - 3o ciclo a Chamada

PLANIFICAÇÃO A MÉDIO/LONGO PRAZO

Matemática B Extensivo V. 7

Quadro de conteúdos MATEMÁTICA

GEOMETRIA PLANA. Segmentos congruentes: Dois segmentos ou ângulos são congruentes quando têm as mesmas medidas.

Associamos a esse paralelepípedo um número real, chamado volume, e definido por. V par = a b c.

Relembrando: Ângulos, Triângulos e Trigonometria...

PREPARATÓRIO PROFMAT/ AULA 8 Geometria

MATEMÁTICA CADERNO 3 CURSO E. FRENTE 1 Álgebra. n Módulo 11 Módulo de um Número Real. 5) I) x + 1 = 0 x = 1 II) 2x 7 + x + 1 0

Geometria plana. Índice. Polígonos. Triângulos. Congruência de triângulos. Semelhança de triângulos. Relações métricas no triângulo retângulo

FUNÇÕES TRIGONOMÉTRICAS. Teorema de Pitágoras Razões trigonométricas Circunferência trigonométrica

Material Teórico - Módulo Elementos Básicos de Geometria Plana - Parte 3. Paralelogramos Especiais. Oitavo ano do Ensino Fundamental

Preparar o Exame Matemática A

RETAS PARALELAS INTERCEPTADAS POR UMA TRANSVERSAL

UNIVERSIDADE FEDERAL DE OURO PRETO - DEMAT 3 a Lista de Exercícios

Expressões Algébricas

Prova final de MATEMÁTICA - 3o ciclo a Chamada

C A r. GABARITO MA13 Geometria I - Avaliação /2. A área de um triângulo ABC será denotada por (ABC).

CONSTRUÇÕES GEOMÉTRICAS E DEMONSTRAÇÕES nível 2

Revisional 3 Bim - MARCELO

Relações Métricas nos Triângulos. Joyce Danielle de Araújo

Material Teórico - Módulo Elementos básicos de geometria plana - Parte 3. Quadriláteros Inscritíveis e Circunscritíveis

araribá matemática Quadro de conteúdos e objetivos Quadro de conteúdos e objetivos Unidade 1 Potências Unidade 2 Radiciação

Caderno 1: 35 minutos. Tolerância: 10 minutos. (é permitido o uso de calculadora)

VESTIBULAR UFPE UFRPE / ª ETAPA

CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA Trigonometria 1. Danielly Guabiraba- Engenharia Civil

PLANO DE ENSINO Disciplina: Matemática 8 a série Professor: Fábio Girão. Competências Habilidades Conteúdos. I Etapa

MATEMÁTICA BÁSICA II TRIGONOMETRIA Aula 03

PLANO DE CURSO DISCIPLINA: GEOMETRIA EUCLIDIANA PLANA E DESENHO GEOMÉTRICO PERÍODO: 2 O. DISCIP. OBRIGATÓRIA ( X )

A FORMA das coisas. Anne Rooney Por Margarete Farias Medeiros Geometria Plana/2017 IFC- Campus Avançado Sombrio

REVISÃO DE TRIGONOMETRIA E GEOMETRIA ANALÍTICA

Aula 11 Conseqüências da semelhança de

A triângulo equilátero = 3.R2. 3. A hexágono = 2. A triângulo equilátero. Letra B

Equipe de Matemática MATEMÁTICA

Cronograma - 2º Bimestre / 2016

Matemática. Nesta aula iremos aprender as. 1 Ponto, reta e plano. 2 Posições relativas de duas retas

CONSTRUÇÕES GEOMÉTRICAS E DEMONSTRAÇÕES nível 1

. Calcule a medida do segmento CD. 05. No triângulo retângulo da figura ao lado, BC = 13m

Agrupamento de Escolas de Alcácer do Sal MATEMÁTICA - 9o Ano

MA13 Geometria I Avaliação

Proposta de teste de avaliação

MATEMÁTICA APLICADA À AGRIMENSURA PROF. JORGE WILSON

Trigonometria e relações trigonométricas

Polígonos Regulares. UFPEL-DME Geometria Plana Prof Lisandra Sauer

Grupo 1 - PIC OBMEP 2011 Módulo 2 - Geometria. Resumo do Encontro 6, 22 de setembro de Questões de geometria das provas da OBMEP

CIRCUNFERÊNCIA E CÍRCULO

Seja AB = BC = CA = 4a. Sendo D o ponto de interseção da reta s com o lado AC temos, pelo teorema de Tales, AD = 3a e DC = a.

Exercício 1) Uma praça circular tem 200 m de raio. Quantos metros de grade serão necessários para cerca-la?

Tarefa: SIMULADO DE MATEMÁTICA SIMULADO_2010 DE MATEMÁTICA APLICADO ÀS TURMAS DO 3 O ANO DO ENSINO MÉDIO DO COLÉGIO ANCHIETA EM JULHO DE 2010.

MATEMÁTICA PLANEJAMENTO 3º BIMESTRE º B - 11 Anos

DEMONSTRAÇÃO DOS TEOREMAS DE NAPOLEÃO E PITÁGORAS COM AUXÍLIO DO GEOGEBRA

Prova final de MATEMÁTICA - 3o ciclo a Chamada

PROBLEMA PLATEAU: SUPERFÍCIES MÍNIMAS CONSTRUÇÕES GEOMÉTRICAS

MATEMÁTICA PLANEJAMENTO 4º BIMESTRE º B - 11 Anos

MATEMÁTICA - 3o ciclo Circunferência - ângulos e arcos (9 o ano)

EMENTA ESCOLAR I Trimestre Ano 2017 Disciplina: Matemática Professor: Flávio Calônico Júnior Turma: 2 ano do Ensino Médio

RETAS E CIRCUNFERÊNCIAS

Desenho Geométrico e Concordâncias

Geometria. Nome: N.ª: Ano: Turma: POLÍGONOS = POLI (muitos) + GONOS (ângulos)

Departamento de Matemática

Os problemas em Desenho Geométrico resumem-se em encontrar pontos. E para determinar um ponto basta obter o cruzamento entre duas linhas.

MATEMÁTICA A - 12o Ano N o s Complexos - Potências e raízes Propostas de resolução

ESCOLA SECUNDÁRIA DE ALBERTO SAMPAIO. 1- Ângulos Definição: Chama-se ângulo à porção de plano limitada por duas semirretas com a mesma origem.

MATEMÁTICA MÓDULO 16 CONE E CILINDRO. Professor Haroldo Filho

COLÉGIO SHALOM Ensino Fundamental 8 Ano Prof.º: Wesley Disciplina Geometria Aluno (a):. No.

Planificação de Matemática 9º ano. Ano letivo: 2014/15

Transcrição:

seção Hipócrates de hios, matemático do século V a.. história & histórias responsável Sérgio Roberto Nobre Unesp Rio laro 1 no. 8 revista do professor de matemática

S LUS HIPÓRTS: LONG HISTÓRI UM PROLM N HISTÓRI MTMÁTI Maria lisa. L. Galvão Vera H. G. de Souza Universidade UNIN nhanguera x x H história & histórias medição e o cálculo de áreas, entre as civilizações mais antigas, estavam relacionados a figuras geométricas simples como triângulos, quadriláteros e regiões poligonais. ntre os gregos, dada a importância das construções com a régua e o compasso, estabeleceu-se o procedimento da quadratura: dada um figura geométrica, fazer a sua quadratura é construir, com o auxílio desses dois instrumentos, um quadrado equivalente a ela, ou seja, com a mesma área da figura dada. Usando a régua e o compasso, podemos fazer a quadratura do triângulo da figura 1, observando, inicialmente, que ele é equivalente ao retângulo. figura mostra como, a partir do retângulo, construir o quadrado equivalente a ele, pelos métodos elementares utilizados no período clássico da matemática grega. figura Para passar da quadratura do triângulo à das regiões poligonais, o primeiro passo pode ser ilustrado considerando um quadrilátero ; é possível encontrar um triângulo equivalente a ele tomando, por exemplo, a reta (pelo vértice, na figura 3) paralela a uma de suas diagonais (na figura 3, a diagonal ) e determinando o triângulo equivalente ao triângulo (têm a mesma base e mesma altura). ntão o triângulo é equivalente o quadrilátero. F figura 1 O triângulo é equivalente ao retângulo, quando o lado do retângulo é a metade da altura do triângulo Na figura a seguir, o retângulo é equivalente ao quadrado em vermelho, cujo lado x é a altura do triângulo retângulo FH. hipotenusa do triângulo FH tem medida F = + F, sendo F = =, pois x =. F =.. figura 3 O triângulo é equivalente ao quadrilátero esde aproximadamente 500 a.., uma pergunta esteve presente entre os matemáticos e só foi completamente respondida no século XIX: Podemos construir, com régua e compasso, um quadrado equivalente a um círculo? ou seja, como encontrar a quadratura do círculo? Hoje, sabemos que a quadratura do círculo é impossível. No entanto, a primeira quadratura de revista do professor de matemática n o. 8 13

história & histórias uma região não poligonal que conhecemos é devida a Hipócrates de hios, que viveu no século V a.. stima-se que, entre 450 e 430 a.., Hipócrates tenha escrito seu trabalho mais importante, os lementos de Geometria. mbora os originais tenham se perdido, a obra é considerada precursora dos primeiros livros dos lementos de uclides e nela foram registrados importantes avanços para a Geometria do seu tempo. figura 6. s luas estudadas por Hipócrates de hios (figura 4) ficam determinadas quando traçamos duas circunferências em um plano, com centros distintos e que têm exatamente dois pontos em comum; são as duas regiões não convexas (ou também ditas côncavo-convexas) limitadas pelos arcos de circunferência. figura 4 s luas de Hipócrates O 1 O figura 6.3 figuras 6: Segmentos e setores circulares onsidera-se que o estudo de Hipócrates sobre a quadratura das luas foi, provavelmente, uma tentativa para chegar à quadratura do círculo. Hipócrates utilizou uma propriedade simples dos setores circulares (figura 5): a razão entre as áreas de dois setores cujos ângulos centrais são congruentes é igual à razão entre os quadrados dos comprimentos de suas respectivas cordas. Ou seja, se 1 e são as áreas dos setores circulares O e O ou dos triângulos O e O na figura 5, temos então 1 =. ssa razão é também a razão entre as áreas dos correspondentes segmentos circulares de cordas e. O figura 5 O primeiro exemplo estudado por Hipócrates trata da quadratura de luas construídas sobre os lados de um triângulo retângulo isósceles, como o triângulo nas figuras 6. F figura 6.1 hipotenusa e o lado do triângulo são tais que =. estratégia de Hipócrates para chegar à área das luas é simples e criativa; ele observou que se juntarmos ao triângulo retângulo isósceles (cuja área chamaremos t ) as semicircunferências menores (de área 1 ) cujos diâmetros são seus catetos e retirarmos a semicircunferência maior 14 n o. 8 revista do professor de matemática

(cuja área é ), ficamos com as duas luas (cuja soma das áreas denotaremos ). omo acrescentamos e retiramos áreas iguais (de = temos = 1 ), sabemos que a área do triângulo inicial é igual à soma das áreas das duas luas. Ou seja, de = t + 1 segue que = t e, portanto, a área da lua será a metade da área do triângulo, ou ainda igual à área do triângulo. O problema da quadratura da primeira figura não poligonal nos fornece uma maneira interessante para trabalhar com áreas de figuras circulares sem usarmos fórmulas. Hipócrates exibiu dois outros exemplos de luas cuja quadratura pode ser descrita com argumentos semelhantes aos que acabamos de descrever. No primeiro deles, o arco exterior é maior do que uma semicircunferência e, no segundo, menor. No exemplo em que o arco exterior é maior do que uma semicircunferência, o arco foi dividido em três arcos congruentes e a solução, que seguiu a mesma ideia já descrita para o triângulo retângulo isósceles, baseou-se na construção de um trapézio isósceles cuja base menor é congruente aos lados não paralelos; na figura 7, = =. lém disso, Hipócrates supôs que = 3 e que os correspondentes setores são semelhantes. aí, a razão entre as áreas 1 e dos segmentos circulares correspondentes às cordas e, respectivamente (ou, consequentemente, e ), é 3, ou seja, 1 = 3. Novamente, podemos escrever a igualdade: = T + 3 1, onde é a área da lua e T é a área do trapézio. Hipócrates verificou que o trapézio pode ser construído com régua e compasso, o que garante a quadratura da lua. figura 8 ilustra o último exemplo de Hipócrates, o caso em que o arco externo é menor do que uma semicircunferência. Novamente, teremos um trapézio isósceles, cuja base menor é congruente aos lados não paralelos (o arco externo dividido em três partes iguais); o ponto de encontro das diagonais divide o arco interno em dois arcos congruentes, e todos os arcos correspondem a um mesmo ângulo central. Novamente, para poder usar o argumento de compensação de áreas, 3 supondo =, teremos que as áreas 1 e dos segmentos circulares correspondentes às cordas e, respectivamente, satisfaçam a relação 1 = 3. Q P história & histórias figura 7 figura 8 revista do professor de matemática n o. 8 15

história & histórias relação entre as áreas, neste caso, é dada pela expressão: = P + 3 1, onde P é a área do polígono, que será equivalente à lua original. Novamente, verifica-se que o polígono pode ser construído com régua e compasso a partir do trapézio. s hipóteses feitas por Hipócrates garantiram que houvesse o cancelamento das áreas acrescentadas e retiradas, nos dois casos. o longo de mais de dois mil anos, as três luas de Hipócrates foram as únicas luas cujas quadraturas eram conhecidas e podiam ser realizadas utilizando recursos acessíveis a um estudante do ensino médio. expansão do mundo árabe a partir do século VIII permitiu o contato com o conhecimento dos períodos clássico e helênico e o surgimento de importantes centros de estudos na península ibérica, no Oriente Médio e no gito. Um nome de destaque nesse mundo árabe é o de Ibn l-haytham, que viveu no início do século X (965-1040). Reproduzindo os argumentos de Hipócrates, l-haytham exibiu a quadratura da reunião de luas limitadas por semicircunferências construídas sobre os lados de um triângulo retângulo qualquer, como na figura 9, provando que a reunião das luas é equivalente ao triângulo retângulo. relação entre as áreas dos semicírculos, neste caso, será consequência do teorema de Pitágoras. figura 9 xceto essa pequena contribuição de l- Haytham, não encontramos avanços na solução do problema da quadratura das luas, desde Hipócrates até o século XVIII. Passaram-se mais de dois milênios até que fossem descobertas duas novas luas cujas quadraturas se mostraram possíveis. Os avanços da Trigonometria, com a obtenção das fórmulas gerais para senos e cossenos de arcos múltiplos, dadas por Viète ao final do século XVII, permitiram que Wallenius, em 1766, e uler, em 177, exibissem os dois novos exemplos. Wallenius, além disso, conduziu o problema para a sua discussão mais geral, encontrando as equações polinomiais, cujas soluções ele só sabia discutir quando os graus se reduziam a ou 4. Vamos examinar alguns detalhes do trabalho de Wallenius. le escreveu a área da lua (figura 10) como a diferença das áreas dos segmentos circulares correspondentes aos ângulos centrais medindo α e β e obteve a expressão: 1 1 r α r R β R β = r 1 R β r sen α 1 P O O 1 r R β. figura 10 Observou que a expressão fica mais simples com a hipótese de que r α R β = 0. omo os dois segmentos circulares têm a corda em comum, usou ainda a relação trigonométrica: P = r sen α = sen sen β R sen β. aí, =. screveu R = ur, α β 16 n o. 8 revista do professor de matemática

sendo u = α β, e, voltando à expressão para P, ficou com sen( ) senβ. hipótese para a simplificação da expressão para a área equivale às relações entre as áreas dos setores inicialmente considerados por Hipócrates, 1 R lembrando que = = u. Somente ao final do r século XX os matemáticos conseguiram provar que essa hipótese é necessária para que a quadratura da lua seja possível. descoberta de novas luas é consequência da existência de soluções construtíveis para equação obtida de sen( ) sen( ). Wallenius encontrou as soluções construtíveis das equações correspondentes aos valores: u =, 3, 3/, 5 e 5/3. Os novos exemplos exibidos por Wallenius (figuras 11) correspondem a u = 5 e u = 5/3. Por exemplo, quando R se escreve 5, r a equação u n( ) sen(u ) 5 senβ = 5senβ 0sen 3 β + 16sen 5 β, cuja solução positiva para sen β é 5 4 5 5 ; 8 o ângulo β será construtível com medida aproximada de 3, 5º ( Wallenius utilizou logaritmos para chegar a esse valor). ado u, lembrando que, sendo α R u = = β r, escolhido um dos raios, a construtibilidade do ângulo β (e do ângulo α = 5β), podemos construir, com régua e compasso, a primeira lua, na figura 11.1. segunda lua, figura 11., corresponde a u = 5/3. figura 11. O problema, em sua forma mais geral, que conduz à investigação sobre a possibilidade da quadratura para novos exemplos depende, essencialmente, do estudo das equações resultantes da utilização das fórmulas da trigonometria para as funções de arcos múltiplos. quadratura das luas tem, portanto, desde a antiguidade até o século XVIII, uma formulação que começa na Geometria, passa pela Trigonometria e chega à Álgebra; deparamo-nos com a questão da construtibilidade das raízes de uma equação algébrica, esta agora não elementar, com respostas iniciais somente na segunda metade do século XIX. resposta, do ponto de vista geral, para existência de luas quadráveis só foi conseguida na primeira metade do século XX e está nos trabalhos de vários matemáticos (TSHKLOFF, 199; TSHO- TÖW, 1934; OROONOV, 1947; POSTINOV, 000). epois de aproximadamente dois milênios, a conclusão é que não temos outros exemplos de luas cujas quadraturas sejam possíveis, além dos descobertos por Hipócrates e Wallenius. Referências Heath, Sir Thomas Little. 198. History of Greek Mathematics. vol. I. NY: over Pub. Inc. Wallenius, Martin Johan. 1766. issertatio Gradualis: Lunulas Quasdam irculares Quadrabilis. Translated and annotated by Ian ruce. http:// www.17centurymaths.com/contents/lunes.pdf, acesso em 05/013. história & histórias figura 11.1 revista do professor de matemática n o. 8 17