Exame MACS- Iferêcia-Itervalos. No iício deste capítulo, surgem algumas ideias que devemos ter presetes: O objectivo da iferêcia estatística é usar uma amostra e tirar coclusões para toda a população. Os pricipais cuidado a ter com a escolha da amostra são: ela ser represetativa, isto é, represetar bem a população a que se refere e também o tamaho. A amostra ão pode ser muito pequea, caso cotrário, a margem de erro é muito grade. Exemplos: ) Explique por suas palavras os cuidados que devemos ter para obtermos uma boa qualidade a estimação da média. ) Num pequeo texto, explique qual é o pricipal objectivo da iferêcia estatística. Dê exemplos ilustrativos. Teorema do Limite Cetral O Teorema do Limite cetral diz-os que, se tivermos amostras com 30 ou mais elemetos, as médias das mostras têm distribuição aproximadamete ormal. No caso da amostragem da média, a distribuição de amostragem é do tipo: X distribuição Normal A média das médias amostrais é igual à própria média populacioal, isto é: E X e o desvio- padrão de amostragem da média é igual ao desvio-padrão populacioal, a dividir pela raiz quadrada do úmero de elemetos da amostra: X
1) Os pacotes de açucar produzidos por uma máquia têm peso médio 15 gramas e desvio-padrão 3 gramas. Cosidere uma amostra aleatória com 50 elemetos. Idique a média e o desvio-padrão(ou erro padrão) de amostragem da média. Do mesmo modo, o teorema do limite Cetral pode ser aplicado o caso de uma proporção: Pˆ tem distribuição Normal A média é a própria proporção EP P e o desvio padrão amostral é do tipo: Pˆ ˆ 1 ) Admitido que 10% dos aluos de uma escola usam óculos, cosidere uma amostra aleatória com 50 elemetos. Idique a média e o desvio padrão de amostragem da proporção de aluos com óculos. Itervalo de Cofiaça para a média: Itervalo de cofiaça para o valor médio: x z, x z Repare que a margem de erro é dada pela expressão: A Amplitude do itervalo é o dobro da margem de erro. z ) Pretedemos avaliar os cohecimetos em Matemática de uma população de 5000 aluos de uma escola. Sabemos que o desvio padrão é 2,6. Recolhemos uma amostra com 50 aluos e obtivemos a média amostral x 8.35..1) Obteha um itervalo de 95% de cofiaça para a média..2) Idique o valor da margem de erro do itervalo da alíea aterior.
Itervalo de cofiaça para a proporção: p ˆ - z 1-1- ; z A margem de erro é dada por: z 1 ) Cosidere uma amostra de 500 estudates que respoderam a um teste de Matemática a ível acioal, dos quais 105 tiraram egativa. Determie, com ível de cofiaça de 95%, um itervalo para estimar a proporção de estudates que a ível acioal tiraram egativa o exame. ( sugestão: faça 105 p ˆ ) 500 Tamaho da amostra Média Quado os pedem o tamaho da amostra para uma determiada margem de erro, devemos começar por fazer: z igual à margem de erro pretedida e, o fial, devemos garatir que a expressão fica com o aspecto: 2 z. Proporção Págia 218 do livro Quado os pedem o tamaho da amostra para uma determiada margem de erro, devemos começar por fazer: z 1 igual à margem de erro pretedida z e o fial, garatir que fica com o aspecto. 1 ode Ɛ é a margem de erro. 2
Exemplos: ) Pretedemos avaliar os cohecimetos em Matemática de uma população de 5000 aluos de uma escola. Para isso foi feito um teste de cohecimetos gerais desta disciplia e aalisados os resultados uma escala de zero a vite valores. Sabemos que o desvio padrão foi de 2,6. Recolhemos uma amostra com 50 aluos e obtivemos a média amostral x 12.35. 3.1) Obteha um itervalo de 95% de cofiaça para a média e idique também o valor da amplitude e o valor da margem de erro desse itervalo. 3.2) matedo o ível de cofiaça, o desvio padrão e a média amostral, qual deveria ser o tamaho da amostra de modo a obter uma margem de erro iferior a 0.2 ) Supoha que estamos iteressados em estimar a proporção de portugueses que vão votar o partido "A" as próximas eleições e que os resultados de uma sodagem aterior apotam para uma proporção de 15%. Qual é a dimesão da amostra ecessária de forma a obtermos um itervalo de 95% de cofiaça com uma margem de erro de 4 %? Formulário Itervalo de cofiaça para a proporção: p ˆ - z 1-1- ; z dimesão da amostra x - média amostral - proporção amostral - desvio padrão da variável z valor relacioado com o ível de cofiaça (*) (*) Valores de z para os íveis de cofiaça mais usuais Nível de cofiaça 90% 95% 99% z 1,645 1,960 2,576
Cosidere o itervalo: ] 5; 18 [ a amplitude é 18-5=13 e a margem de erro é 13/2 = 6.5 Neste caso, a média seria o úmero (5+18)/2 = 11.5 Notas: Quado aumetamos o tamaho da amostra, a margem de erro dimiui e o itervalo fica com melhor precisão. Quado aumetamos a cofiaça, z, o itervalo fica com maior margem de erro e o itervalo fica com meor precisão. Exemplo ) Cosidere que foi obtido um itervalo de cofiaça para a média..1) Matedo a média, desvio padrão e a dimesão da amostra e aumetado o grau de cofiaça, o que acotece à amplitude do itervalo?.2) Matedo a média, desvio padrão e o grau de cofiaça e aumetado a dimesão da amostra, o que acotece à amplitude do itervalo?