EXERCÍCIOS RESOLVIDOS CURVAS CÔNICAS

Documentos relacionados
EXERCÍCIOS RESOLVIDOS TANGÊNCIA

EXERCÍCIOS RESOLVIDOS POLÍGONOS

EXERCÍCIOS RESOLVIDOS CIRCUNFERÊNCIA

EXERCÍCIOS RESOLVIDOS TRIÂNGULOS

EXERCÍCIOS RESOLVIDOS ARCOS ARQUITETÔNICOS

EXERCÍCIOS RESOLVIDOS - RETAS

EXERCÍCIOS RESOLVIDOS - ÂNGULOS

Profª.. Deli Garcia Ollé Barreto

EXERCÍCIOS RESOLVIDOS SEGMENTOS PROPORCIONAIS

DESENHO GEOMÉTRICO AULA 4T EXERCÍCIOS RESOLVIDOS

DESENHO GEOMÉTRICO AULA 3T EXERCÍCIOS RESOLVIDOS

DESENHO GEOMÉTRICO ETECVAV

Coletânea Desenhos Geométricos PUC - Goiás 2018/1 Escola de Engenharia - Prof. Dr. Luciano Mendes Caixeta

7. Determine a equação da parábola que passa pelos pontos P (0, 6), Q(3, 0) e R(4, 10).

APLICAÇÕES DE CÔNICAS NA ENGENHARIA

Revisão de Círculos. Geometria Básica Profa Lhaylla Crissaff

3 ano E.M. Professores Cleber Assis e Tiago Miranda

5. Desenhos geométricos

Desenho Geométrico e Concordâncias

RETAS E ARCOS Prof. Robson Naoto Shimizu

Geometria Analítica. Cônicas. Prof Marcelo Maraschin de Souza

Cilindro. MA13 - Unidade 23. Resumo elaborado por Eduardo Wagner baseado no texto: A. Caminha M. Neto. Geometria. Coleção PROFMAT

SECÇÕES CÔNICAS E SUPERFÍCIES QUÁDRICAS Prof. Vasco Ricardo Aquino da Silva

CADERNO DE ATIVIDADES DE GEOMETRIA PLANA DESENHO GEOMÉTRICO. Aluno: nº: turma: Disciplina: Profº: data: Disciplina: Matemática QUESTIONÁRIO

RETAS. A marca de uma ponta de lápis bem fina no papel dá a idéia do que é um ponto. Toda figura geométrica é considerada um conjunto de pontos.

Aula 1. Exercício 1: Exercício 2:

Geometria Analítica - AFA

Lista 3. Geometria, Coleção Profmat, SBM. Problemas selecionados da seção 2.5, pág. 81 em diante.

Ricardo Bianconi. Fevereiro de 2015

PROBLEMAS SELECIONADOS DE DESENHO GEOMÉTRICO Parte III: Cônicas e Outras Curvas. Sergio Lima Netto

ATIVIDADE: METODOS DE DIVISÃO DE SEGMENTOS E DA CIRCUFERENCIA.

Este trabalho foi licenciado com a Licença Creative Commons Atribuição - NãoComercial - SemDerivados 3.0 Não Adaptada

Os problemas em Desenho Geométrico resumem-se em encontrar pontos. E para determinar um ponto basta obter o cruzamento entre duas linhas.

Matemática. Resolução das atividades complementares. M21 Geometria Analítica: Cônicas

INSTITUTO FEDERAL DE BRASILIA 4ª Lista. Nome: DATA: 09/11/2016

ARCOS CAD. bhttp://

Cone. MA13 - Unidade 23. Resumo elaborado por Eduardo Wagner baseado no texto: A. Caminha M. Neto. Geometria. Coleção PROFMAT

Circunferência. MA092 Geometria plana e analítica. Interior e exterior. Circunferência e círculo. Francisco A. M. Gomes

c) F( 4, 2) r : 2x+y = 3 c) a = 3 F 1 = (0,0) F 2 = (1,1)

Anel enrijecedor anel externo ou interno ao costado do vaso, feito em perfil metálico com a qualidade de enrijecer o costado.

UNIVERSIDADE FEDERAL DE ALAGOAS INSTITUTO DE MATEMÁTICA Aluno(a): Professor(a): Curso:

1 Construções geométricas fundamentais

CÔNICAS - MAT Complementos de Matemática para Contabilidade FEAUSP - Diurno 2 o semestre de 2015 Professor Oswaldo Rio Branco de Oliveira ELIPSE

A B C A 1 B 1 C 1 A 2 B 2 C 2 é zero (exceto o caso em que as tres retas são paralelas).

FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano de escolaridade Versão 3

CÔNICAS - MAT CÁLCULO 1 - IO Bacharelado Oceanografia - Diurno 1 o semestre de 2010 Professor Oswaldo Rio Branco de Oliveira ELIPSE

DEFINIÇÃO. Dados dois pontos F 1 e F 2 chamamos elipse o conjunto dos pontos P do plano tais que d(p,f 1 )+d(p,f 2 )=2a. Cônicas 4

Geometria Analítica? Onde usar os conhecimentos. os sobre Geometria Analítica?

TANGÊNCIA. rectas tangentes a circunferências.

Elipse. 3 ano E.M. Professores Cleber Assis e Tiago Miranda

I. Para concordar um arco com uma reta é necessário que o ponto de concordância e o centro do arco, estejam ambos sobre uma mesma perpendicular.

Plano de Recuperação Final EF2

ELIPSE. Figura 1: Desenho de uma elipse no plano euclidiano (à esquerda). Desenho de uma elipse no plano cartesiano (à direita).

c) F( 4, 2) r : 2x+y = 3 c) a = 3 F 1 = (0,0) F 2 = (1,1)

Expressões Algébricas

Material by: Caio Guimarães (Equipe Rumoaoita.com) Referência: cadernos de aula: Professor Eduardo Wagner

FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano de escolaridade Versão 4

DESENHO BÁSICO AULA 03. Prática de traçado e desenho geométrico 14/08/2008

DESENHO GEOMÉTRICO E GEOMETRIA DESCRITIVA

Matemática B Extensivo v. 8

Instituto de Matemática UFBA Disciplina: Geometria Analítica Mat A01 Última Atualização ª lista - Cônicas

Universidade Tecnológica Federal do Paraná Câmpus Campo Mourão Departamento de Matemática

Basta duplicar o apótema dado e utilizar o problema 1 (pág.: 45).

Curso: Engenharia Disciplina: Desenho Técnico Prof.ª Me. Aline Ribeiro CONSTRUÇÕES GEOMÉTRICAS 1. DESENHO GEOMÉTRICO

MÓDULO 1 - AULA 21. Objetivos

A Matemática no Vestibular do IME. Material Complementar 1: Soluções de Desenho Geométrico. c 2014, Sergio Lima Netto

Universidade Federal de Ouro Preto Departamento de Matemática MTM131 - T84 Geometria Analítica e Cálculo Vetorial Cônicas - Tiago de Oliveira

1 Processos Aproximativos

Curiosidades relacionadas com o Cartaz da OBMEP 2017

Unidade. Educação Artística 171. l- Limpeza e organização com os materiais são requisitos básicos nesta disciplina.

CÔNICAS - MAT CÁLCULO II - Bacharelado Química - Diurno 2 o SEMESTRE de 2009 Professor Oswaldo Rio Branco ELIPSE

MATEMÁTICA - 3o ciclo Lugares geométricos (9 o ano) Propostas de resolução

Lista 5. Geometria, Coleção Profmat, SBM. Problemas selecionados da seção 4.1, pág. 147 em diante.

Geometria Analítica: Cônicas

Geometria Analítica - Aula

1. Quantos são os planos determinados por 4 pontos não coplanares?justifique.

Mat. Monitor: Roberta Teixeira

Lista de exercícios de GA na reta e no plano Período de Prof. Fernando Carneiro Rio de Janeiro, Janeiro de 2017

18/06/13 REVISTA DO PROFESSOR DE MATEMÁTICA - SOCIEDADE BRASILEIRA DE MATEMÁTICA

Polígonos PROFESSOR RANILDO LOPES 11.1

1. Seja θ = ang (r, s). Calcule sen θ nos casos (a) e (b) e cos θ nos casos (c) e (d): = z 3 e s : { 3x + y 5z = 0 x 2y + 3z = 1

13. (Uerj) Em cada ponto (x, y) do plano cartesiano, o valor de T é definido pela seguinte equação:

Hewlett-Packard CIRCUNFERÊNCIA. AULAS 01 e 02. Prof. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Ramos

O TRIÂNGULO PSEUDO-RETÂNGULO E A HIPÉRBOLE EQUILÁTERA

Resposta de alguns exercícios pares do Simmons - Capítulo 1

Resolução das atividades adicionais

GEOMETRIA ANALÍTICA Respostas da 10 a Lista de exercícios. a) x 2 = 8y b) y 2 = 8x c) x 2 = 12y. d) y 2 = 12x e) x 2 = 4y f) 3x 2 + 4y = 0

Explorando construções de cônicas *

SISTEMAS DE PROJEÇÃO. 1. Conceito de projeção cônica (ou central)

Geometria Analítica I - MAT Lista 1 Profa. Lhaylla Crissaff

Curso de Traçados de Caldeiraria

Hipérbole. Sumário. 6.1 Introdução Hipérbole Forma canônica da hipérbole... 6

REVISÃO FUVEST Ensino Médio Geometria Prof. Sérgio Tambellini

SISTEMAS DE PROJEÇÃO

Exercícios de Aprofundamento Matemática Geometria Analítica

Lugares geométricos básicos I

Matemática I Cálculo I Unidade B - Cônicas. Profª Msc. Débora Bastos. IFRS Campus Rio Grande FURG UNIVERSIDADE FEDERAL DO RIO GRANDE

Desenho Técnico Página 11

Transcrição:

1 EXERCÍCIOS RESOLVIDOS CURVAS CÔNICAS 1. ENCONTRAR OS FOCOS DE UMA ELIPSE SENDO DADOS O EIXO MAIOR E O MENOR. Sejam os eixos AA' e BB' dados que se intersectam no ponto O (centro da elipse). Coloque a ponta seca do compasso no ponto B e com abertura igual à OA trace um arco que corte o eixo AA', encontrando assim os pontos F e F' (focos da elipse). 2. ENCONTRAR O EIXO MENOR DE UMA ELIPSE SENDO DADOS O EIXO MAIOR E A DISTÂNCIA ENTRE OS FOCOS. Sejam dados o eixo AA' e a distância focal FF'. Trace a mediatriz de AA' encontrando assim o centro O da elipse. Centre a ponta seca do compasso no ponto F e com abertura igual à OA trace um arco que corte a reta mediatriz nos pontos B e B'. O eixo menor procurado é o segmento BB'.

2 3. TRAÇAR UMA ELIPSE PELO MÉTODO DO JARDINEIRO (BARBANTE) SENDO DADOS O EIXO MAIOR E OS FOCOS. Sejam o eixo menor BB' e a distância focal FF' dados que se intersectam no ponto O (centro da elipse). Prolongue o segmento FF' para a esquerda e para a direita. Coloque aponta seca do compasso em O e com abertura igual à distância FB trace um arco que corte a reta que passa por FF' em A e A', encontrando assim o eixo maior da elipse. 4. TRAÇAR UMA ELIPSE PELO MÉTODO DO JARDINEIRO (BARBANTE) SENDO DADOS O EIXO MAIOR E OS FOCOS. Sejam dados o eixo maior AA' e a distância focal FF'. Corte um barbante que tem por comprimento a distância do eixo maior AA' e fixe-o em F e F'. Coloque a ponta do lápis no ponto B tomando o cuidado de esticar o barbante.

3 Movimente o lápis sempre com o barbante esticado de forma a marcar vários pontos no papel. Em seguida, trace a elipse movimentando o lápis que se encontra preso no ponto B do barbante. 5. TRAÇAR UMA ELIPSE PELO MÉTODO DE "SCHOOTEN" (TIRA DE PAPEL) SENDO DADOS OS DOIS EIXOS. Sejam dados os eixos AA' e BB'. Corte uma tira de papel como indicado abaixo, e marque nela os pontos P, A e B. O segmento PB deve ser igual ao eixo maior e o segmento PA deve ser igual ao eixo menor. Coloque a tira de papel posicionada de tal forma que o ponto A fique sobre o eixo AA' e o ponto B fique sobre o eixo BB' e marque um ponto onde estiver o ponto P. Mude a posição da tira de papel, mas tomando o cuidado de deixar o ponto A sempre sobre o eixo AA' e o ponto B sempre sobre o eixo BB'.

4 Assim vá mudando sucessivamente a posição da tira e marcando os pontos da elipse. Ao marcar todos os pontos, trace a elipse. 6. TRAÇAR A ELIPSE PELO MÉTODO DOS PONTOS SENDO DADOS OS DOIS EIXOS. Sejam os eixos AA' e BB' dados. Encontre os focos F e F'. Marque a partir do ponto F os pontos 1, 2, 3, 4, 5 e a partir do ponto F' os pontos 1', 2', 3', 4' e 5'. Coloque a ponta seca do compasso no ponto F e com abertura igual a 1'A', 2'A', 3'A', 4'A' e 5'A' trace cinco arcos.

5 Coloque a ponta seca do compasso no ponto F' e com abertura igual a 1A, 2A, 3A, 4A e 5A trace mais cinco arcos. Depois, coloque a ponta seca no ponto F' e com abertura igual a 1A', 2A', 3A', 4A' e 5A', trace mais cinco arcos que cortam os anteriores, encontrando assim dez pontos da elipse. Com centro em F e abertura 1'A, 2'A, 3'', 4'A e 5'A trace arcos que cortam os anteriores encontrando assim os pontos da elipse.

6 7. TRAÇAR A ELIPSE PELO MÉTODO DOS CÍRCULOS PRINCIPAIS SENDO DADOS OS DOIS EIXOS. Sejam os dois eixos AA' e BB'. Encontre os Focos F e F'. Trace um dos círculos principais: centre o compasso no ponto O e trace uma circunferência de raio OA. Trace o outro círculo principal com centro em O e raio OB. Divida o círculo maior em n partes iguais (n = 16, por exemplo). Divida o círculo menor no mesmo número de partes. Em seguida, trace retas perpendiculares ao eixo AA' pelos pontos que dividem a circunferência maior. Em seguida trace retas perpendiculares ao eixo BB' pelos pontos que dividem a circunferência menor.

7 Na interseção das retas temos os pontos da elipse. Ligue os pontos para obter a elipse. 8. TRAÇAR A ELIPSE PELO MÉTODO DO PARALELOGRAMO. Sejam os dois eixos AA' e BB' da elipse inscrita no paralelogramo que tem os lados iguais aos eixos maior e menor da elipse: AA' e BB'. Trace o paralelogramo PQRS. Divida o lado RS em seis partes iguais. Divida o lado PQ em seis partes iguais transportando os pontos 2, 1 e 1', 2' (com o uso dos esquadros) fazendo paralelas aos lados PS e QR.

8 Divida os segmentos OB e OB' em três partes iguais cada um e em seguida, divida os segmentos PQ e SR em seis partes iguais cada. Para obter os pontos da elipse ligue o ponto A ao ponto 2''' e o ponto B ao ponto 3 e prolongue até encontrar o segmento A2'''. No cruzamento dessas duas retas tem-se um ponto da elipse. Em seguida, ligue o ponto A ao ponto 1''' e o ponto B ao ponto 4 e prolongue até encontrar o segmento A1'''. No cruzamento dessas duas retas tem-se mais um ponto da elipse. Repita o mesmo procedimento para as outras três partes do paralelogramo obtendo assim, todos os pontos da elipse.

9 9. TRAÇAR A ELIPSE PELO MÉTODO DO RETÂNGULO. Primeiro trace os eixos maior e menor (AA' e BB') da elipse inscrita no retângulo. Depois trace o retângulo PQRS cujos lados são retas paralelas aos dois eixos da elipse. Divida os lados do retângulo em n partes iguais (no caso n = 6). Transporte essas 6 divisões para o eixo BB' e em seguida trace retas partindo de A' que chegam nos pontos do lado SR e depois trace retas que partem de A e passam pelas divisões do eixo BB'. No cruzamento das retas teremos os pontos da elipse. Ligue os pontos encontrados obtendo assim a elipse.

10 10. ENCONTRAR O FOCO DE UMA PARÁBOLA, SENDO DADOS O EIXO, A DIRETRIZ E O VÉRTICE. Sejam a diretriz d e o vértice V contido no eixo da parábola. Centre o compasso no ponto V e com abertura VO trace um arco que corta o eixo no ponto F. As distâncias OV e VF são semiparâmetro e a distância OF é o parâmetro. 11. TRAÇAR A PARÁBOLA PELO MÉTODO DOS PONTOS, SENDO DADOS O FOCO E A DIRETRIZ. Sejam dados a diretriz d e o foco F da parábola. Para construir a parábola, primeiro encontre o vértice, que está no ponto médio do segmento FO que é a distância entre o foco e a diretriz. Marque pontos no eixo a partir de F (no caso 5 pontos a uma distância arbitrária). Trace retas perpendiculares ao eixo pelos pontos F, 1, 2, 3, 4 e 5. Centre a ponta seca do compasso no ponto F e com abertura igual a medida de F até a diretriz, trace um arco que corte a reta que passa pelo ponto F em dois pontos da parábola. Depois, sempre com centro do compasso no ponto F e com abertura igual à distância que vai do ponto até a diretriz d, trace arcos que cortem as retas que passam pelos mesmos pontos, encontrando assim os pontos da parábola.

11 Ligue os pontos e obtenha a parábola (em cor azul). 12. TRAÇAR A PARÁBOLA PELO MÉTODO DO RETÂNGULO, SENDO DADOS O VÉRTICE, O EIXO E UM PONTO DA CURVA (ARCO PARABÓLICO). Seja o vértice A e o ponto P da parábola. Trace duas retas perpendiculares entre si e que passam pelo ponto A. Em seguida, trace uma reta pelo ponto P que seja perpendicular à reta horizontal que passa pelo ponto A.

12 Trace uma reta paralela àquela que passa pelo ponto P, a uma mesma distância. Depois, trace pelo ponto P uma reta paralela à reta horizontal que passa pelo ponto A, formando assim o retângulo PP' RR'. Divida os lados PR e P'R' em N partes iguais (no caso N = 4). Divida os segmentos PQ e QP' em quatro partes iguais.

13 Trace retas perpendiculares ao lado RR' pelos pontos 4, 5, 6, 6', 5' e 4'. Ligue o ponto A aos pontos 1, 2, 3 e 1', 2' e 3'. Na intersecção das retas têm-se os pontos da parábola. Ligue os pontos obtendo assim a parábola inscrita no retângulo 13. TRAÇAR AS "ASSINTOTAS" DE UMA HIPÉRBOLE SENDO DADOS OS EIXO REAL E IMAGINÁRIO. Sejam os eixos AA' e BB'. Trace por B e B' retas paralelas ao eixo real AA'.

14 Trace por A e A' retas paralelas ao eixo imaginário BB'. Construído o retângulo, trace as duas diagonais. Agora, prolongue as diagonais do retângulo. As assíntotas da hipérbole passam pelas diagonais do retângulo. 14. ENCONTRAR OS FOCOS DE UMA HIPÉRBOLE SENDO DADOS O EIXO REAL E O EIXO IMAGINÁRIO Sejam dados os vértices AA' que se encontram no eixo real xx' e o eixo imaginário BB'.

15 Centre o compasso no ponto O (que está na interseção dos dois eixos) e com abertura igual à distância AB trace um arco que corte o eixo real nos pontos F e F' encontrando assim os focos da hipérbole (F e F ). 15. ENCONTRAR O EIXO REAL DE UMA HIPÉRBOLE SENDO DADOS OS FOCOS E O EIXO IMAGINÁRIO. Sejam dados o eixo imaginário BB', a distância focal FF' e o eixo real que passa pelos pontos F e F'. Pede-se encontrar o segmento AA' (vértices da hipérbole) conhecido por eixo real.

16 Centre a ponta seca do compasso no ponto O e com a distância FB trace um arco que corte o eixo real nos pontos A e A' que são os vértices da hipérbole. 16. ENCONTRAR O EIXO IMAGINÁRIO DE UMA HIPÉRBOLE SENDO DADOS O EIXO REAL E A DISTÂNCIA ENTRE OS FOCOS. Sejam dados a distância focal e o eixo imaginário BB'. Para encontrar os vértices AA' da hipérbole, centre a ponta seca do compasso no ponto B e com raio igual à distância OF trace um arco que corte o eixo real nos pontos A e A'. 17. TRAÇAR A HIPÉRBOLE PELO MÉTODO DOS PONTOS SENDO DADOS OS DOIS EIXOS. Sejam dados o eixo imaginário BB', os vértices AA' e os focos FF' da hipérbole.

17 Marque a partir do ponto F para a esquerda os pontos 1', 2' e 3'. Marque a partir de F' para a direita os pontos 1, 2 e 3. Centre o compasso no ponto F e com abertura igual à F'1, F'2 e F'3 trace três arcos. Proceda da mesma forma do outro lado centrando o compasso em F'.

18 Agora com a ponta seca do compasso no ponto F e com abertura igual a 1A, 2A e 3A trace arcos que cortam os anteriores encontrando assim os pontos de um ramo da hipérbole. Proceda da mesma forma do outro lado centrando o compasso em F'. Ligue os pontos obtendo assim os dois ramos da hipérbole.

19 18. TRAÇAR A HIPÉRBOLE PELO MÉTODO DOS PONTOS SENDO DADOS OS DOIS EIXOS. Sejam os vértices A e A' e um ponto P da hipérbole e seus dois eixos: real e imaginário. Trace pelo ponto P uma paralela ao eixo real e uma paralela ao eixo imaginário e com os valores PP1 e PP3 construa o retângulo P, P1, P2, P3 encontrando os pontos A e Q' no eixo imaginário. Trace pelos pontos A e A' retas paralelas ao eixo imaginário encontrando R, R', R'' e R'''.

20 Divida o segmento P1R em N partes iguais (no caso N = 4). Em seguida divida os segmentos QP1 e QP2 também em quatro partes iguais. Transporte com os esquadros estas divisões para os outros lados paralelos dos retângulos. Ligue o vértice A aos pontos do segmento PP3.

21 Ligue o vértice A' aos pontos dos segmentos PR'' e P3R''' encontrando na interseção das linhas os pontos de um dos ramos da hipérbole. Repita o mesmo procedimento do outro lado para encontrar o outro ramo da hipérbole. Ligue A' aos pontos de P1P2. Ligue A aos pontos de P1R e P2R' e na interseção das linhas marque os pontos.

22 Os dois ramos da hipérbole aparecem em cor azul. 19. TRAÇAR A HIPÉRBOLE PELO MÉTODO DOS PONTOS SENDO DADOS OS DOIS EIXOS. Seja a elipse dada abaixo. Trace uma reta secante que corta a elipse em dois pontos A e B. Trace outra reta secante que seja paralela à primeira e corte a elipse nos pontos C e D. Encontre os pontos médios M e M' das cordas AB e CD respectivamente.

23 Ligue os pontos M e M' encontrando o diâmetro DD'. Encontre o ponto médio O do diâmetro DD'. Centre o compasso no ponto O e com um raio arbitrário trace um arco que corte a elipse em três pontos: H, I e J estabelecendo as cordas HI e IJ da elipse. O eixo maior AA' da elipse será a mediatriz da corda IJ o eixo menor BB' da elipse será a mediatriz de HI.

24 BIBLIOGRAFIA BRAGA, Theodoro. Desenho Linear Geométrico. São Paulo : Ícone. 13 ed. 230 p. MELLO E CUNHA, G. N. de. Curso de Desenho Geométrico e Elementar. São Paulo: Livraria Francisco Alves, 460p, 1951. RIVERA, Félix ; NEVES, Juarenze; GONÇALVES, Dinei (1986). Traçados em Desenho Geométrico. Rio Grande: editora da Furg, 389 p.