UNIVERSIDADE FEDERAL DE PERNAMBUCO

Documentos relacionados
UNIVERSIDADE FEDERAL DE PERNAMBUCO

UNIVERSIDADE FEDERAL DE PERNAMBUCO. Resumo. Nesta aula, discutiremos a noção de continuidade que, juntamente com a diferenciação,

UNIVERSIDADE FEDERAL DE PERNAMBUCO

UNIVERSIDADE FEDERAL DE PERNAMBUCO. Resumo. Nesta aula, veremos que o sinal da derivada segunda de uma função dá informações

UNIVERSIDADE FEDERAL DE PERNAMBUCO

UNIVERSIDADE FEDERAL DE PERNAMBUCO

1. As funções tangente e secante As expressões para as funções tangente e secante são

Todos os exercícios sugeridos nesta apostila se referem ao volume 3. MATEMÁTICA III 1 ESTUDO DA CIRCUNFERÊNCIA

Distância entre duas retas. Regiões no plano

3 ano E.M. Professores Cleber Assis e Tiago Miranda

54 CAPÍTULO 2. GEOMETRIA ANALÍTICA ( ) =

Geometria Analítica - AFA

Preliminares de Cálculo

O ESTUDO DA CIRCUNFERÊNCIA

54 CAPÍTULO 2. GEOMETRIA ANALÍTICA ( ) =

Curso de Geometria Analítica. Hipérbole

INSTITUTO FEDERAL DE BRASILIA 4ª Lista. Nome: DATA: 09/11/2016

GEOMETRIA ANALI TICA PONTO MEDIANA E BARICENTRO PLANO CARTESIANO DISTÂNCIA ENTRE DOIS PONTOS CONDIÇÃO DE ALINHAMENTO DE TRÊS PONTOS

SISTEMA DE EIXOS COORDENADOS

1. A partir da definição, determinar a equação da parábola P, cujo foco é F = (3, 4) e cuja diretriz é L : x + y 2 = 0. (x 3) 2 + (y + 4) 2 =

Noções Elementares Sobre Derivadas

MAT Poli Roteiro de Estudos sobre as Cônicas

GEOMETRIA ANALÍTICA. 2) Obtenha o ponto P do eixo das ordenadas que dista 10 unidades do ponto Q (6, -5).

Elipse. 3 ano E.M. Professores Cleber Assis e Tiago Miranda

Capítulo 2. Retas no plano. 1. Retas verticais e não-verticais. Definição 1

A(500, 500) B( 600, 600) C(715, 715) D( 1002, 1002) E(0, 0) F (711, 0) (c) ao terceiro quadrante? (d) ao quarto quadrante?

A velocidade instantânea (Texto para acompanhamento da vídeo-aula)

ALUNO(A): Prof.: André Luiz Acesse: 02/05/2012

MATRIZES VETORES E GEOMETRIA. Reginaldo J. Santos Departamento de Matemática-ICEx Universidade Federal de Minas Gerais

Geometria Analítica - Aula

Notas de Aula Disciplina Matemática Tópico 05 Licenciatura em Matemática Osasco -2010

Aula Exemplos diversos. Exemplo 1

Portal da OBMEP. Material Teórico - Módulo de Geometria Anaĺıtica 1. Terceiro Ano - Médio

Material Teórico - Módulo de Geometria Anaĺıtica 1. Terceiro Ano - Médio. Autor: Prof. Angelo Papa Neto Revisor: Prof. Antonio Caminha M.

Geometria Analítica - Aula

PROFESSOR FLABER 2ª SÉRIE Circunferência

Posição relativa entre retas e círculos e distâncias

O problema proposto possui alguma solução? Se sim, quantas e quais são elas?

MÓDULO 1 - AULA 21. Objetivos

Aula 17 Superfícies quádricas - parabolóides

LTDA APES PROF. RANILDO LOPES SITE:

Capítulo 3 - Geometria Analítica

Exercícios de Revisão 1º Ano Ensino Médio Prof. Osmar 2º. BIMESTRE

Matemática. Resolução das atividades complementares. M21 Geometria Analítica: Cônicas

Apostila organizada por: Vanderlane Andrade Florindo Silvia Cristina Freitas Batista Carmem Lúcia Vieira Rodrigues Azevedo

A x,y e B x,y, as coordenadas do ponto médio desse segmento serão dadas por:

Portal OBMEP. Material Teórico - Módulo Cônicas. Terceiro Ano do Ensino Médio

Lista 3: Geometria Analítica

MATEMÁTICA A - 11o Ano Funções - Derivada (extremos, monotonia e retas tangentes) Propostas de resolução

6.1 equações canônicas de círculos e esferas

GGM Geometria Analítica e Cálculo Vetorial Geometria Analítica Básica 20/12/2012- GGM - UFF Dirce Uesu

Retas e círculos, posições relativas e distância de um ponto a uma reta

Matemática I Cálculo I Unidade B - Cônicas. Profª Msc. Débora Bastos. IFRS Campus Rio Grande FURG UNIVERSIDADE FEDERAL DO RIO GRANDE

1. Seja θ = ang (r, s). Calcule sen θ nos casos (a) e (b) e cos θ nos casos (c) e (d): = z 3 e s : { 3x + y 5z = 0 x 2y + 3z = 1

Aula Elipse. Definição 1. Nosso objetivo agora é estudar a equação geral do segundo grau em duas variáveis:

Título do Livro. Capítulo 5

Plano cartesiano, Retas e. Alex Oliveira. Circunferência

13. (Uerj) Em cada ponto (x, y) do plano cartesiano, o valor de T é definido pela seguinte equação:

Conjuntos Numéricos. I) Números Naturais N = { 0, 1, 2, 3,... }

UNIVERSIDADE FEDERAL DE PERNAMBUCO

Exercícios de Matemática Geometria Analítica

Instituto de Matemática UFBA Disciplina: Geometria Analítica Mat A01 Última Atualização ª lista - Cônicas

Instituto Federal de Educação, Ciência e Tecnologia Rio Grande do Sul Campus Rio Grande CAPÍTULO 4 GEOMETRIA ANALÍTICA

Ricardo Bianconi. Fevereiro de 2015

Geometria Analítica. Superfícies. Prof Marcelo Maraschin de Souza

RETA E CIRCUNFERÊNCIA

Funções de Uma Variável - 1 a Avaliação - Turma B3 31 de outubro de Prof. Armando Caputi

UNIVERSIDADE FEDERAL DE PERNAMBUCO

GEOMETRIA ANALÍTICA CONTEÚDOS. Distância entre pontos Equação da reta Distância ponto reta Coeficientes Equação da circunferência.

3º. EM Prof a. Valéria Rojas Assunto: Determinante, Área do Triângulo, Equação da reta, Eq. Reduzida da Reta

Ponto 1) Representação do Ponto

TÓPICOS DE MATEMÁTICA I. O Curso está dividido em três unidades, temos que concluir todas.

Funções de Uma Variável - 1 a Avaliação - Turma B3 31 de outubro de Prof. Armando Caputi

1 Geometria Analítica Plana

Questão 1 a) A(0; 0) e B(8; 12) b) A(-4; 8) e B(3; -9) c) A(3; -5) e B(6; -2) d) A(2; 3) e B(1/2; 2/3) e) n.d.a.

A primeira coisa a fazer é saber quais são as equações das curvas quando elas já se encontram na melhor

MAT 105- Lista de Exercícios

A B C A 1 B 1 C 1 A 2 B 2 C 2 é zero (exceto o caso em que as tres retas são paralelas).

Concluimos dai que o centro da circunferência é C = (6, 4) e o raio é

Continuidade e Limite

18REV - Revisão. LMAT 3B-2 - Geometria Analítica. Questão 1

Nome: nº Professor(a): UBERLAN / CRISTIANA Série: 3ª EM Turmas: 3301 / 3302 Data: / /2013

Estudante: Circunferência: Equação reduzida da circunferência: Circunferência: Consideremos uma circunferência de centro C (a, b) e raio r.

matemática geometria analítica pontos, baricentro do triângulo, coeficiente angular e equações da reta Exercícios de distância entre dois pontos

1 FUNÇÃO - DEFINIÇÃO. Chama-se função do 1. grau toda função definida de por f(x) = ax + b com a, b e a 0.

Universidade Federal de Ouro Preto Departamento de Matemática MTM131 - T84 Geometria Analítica e Cálculo Vetorial Cônicas - Tiago de Oliveira

UNIVERSIDADE FEDERAL DE PERNAMBUCO. Resumo. Nesta aula, apresentaremos a noção de integral indefinidada. Também discutiremos

UECEVEST - ESPECÍFICA Professor: Rikardo Rodrigues

FUNÇÕES CONSTANTE, DE PRIMEIRO E DE SEGUNDO GRAUS. DEFINIÇÕES:

3.2 Determine a equação da circunferência de raio 5, tangente à reta 3x +4y =16no ponto A (4, 1).

Mat. Monitor: Roberta Teixeira

Colégio Santa Maria Lista de exercícios 1º médio 2011 Prof: Flávio Verdugo Ferreira.

Notas de aula: Cálculo e Matemática Aplicados às Notas de aula: Ciências dos Alimentos

Capítulo 1-Sistemas de Coordenadas, Intervalos e Inequações

3ª série do Ensino Médio Turma 1º Bimestre de 2017 Data / / Escola Aluno

Banco de questões. Geometria analítica: ponto e reta ( ) ( ) ( )

dosteoremasdepascaledepappus

1 Cônicas Não Degeneradas

Resolvendo inequações: expressões com desigualdades (encontrar os valores que satisfazem a expressão)

CÁLCULO FUNÇÕES DE UMA E VÁRIAS VARIÁVEIS Pedro A. Morettin, Samuel Hazzan, Wilton de O. Bussab.

Transcrição:

CÁLCULO L1 NOTAS DA PRIMEIRA AULA UNIVERSIDADE FEDERAL DE PERNAMBUCO Resumo. Nesta aula discutiremos como obter as equações das retas tangentes a uma curva planar que é o gráfico de uma função. 1. Introdução Nesta primeira aula responderemos a seguinte questão: Como encontrar a reta que é tangente a uma curva planar em um ponto P? Denotaremos tal reta por t P. Na terceira aula, definiremos esta reta. P t P Que propriedades possui a reta tangente a uma curva em um ponto P? Descreveremos duas: uma geométrica e outra física: De todas as retas que passam pelo ponto P, a reta tangente t P é a reta mais próxima da curva nas proximidades do ponto P. Se as forças que agem em uma partícula, tendo como trajetória esta curva, cessam quando a partícula cega em P, então a partícula passa a descrever um movimento retilíneo uniforme com trajetória t P. Isto é, a partícula sai pela tangente à curva. Estas duas propriedade serão estabelecidas ao longo deste curso. Note que t P, que é a reta tangente à curva no ponto P, pode interceptar a curva em outros pontos. Em geral, t P não é tangente à curva nestes outros pontos de interseção. Este é o caso da curva representada na figura anterior. Esta característica das retas tangentes pode parecer estrana incialmente, pois estamos abituados a considerar apenas retas tangentes às cônicas: circunferências, elipses, ipérboles e parábolas. Com algumas exceções, uma reta é tangente a uma cônica se e somente se a intercepta em um único ponto. Iremos trabalar com geometria analítica para encontrar retas tangentes a curvas. Para simplificar nossa abordagem, vamos supor que a curva seja o gráfico de uma função f, isto é, a equação da curva será = f(). Caso a abscissa do ponto P seja x 0, a sua ordenada será f(x 0 ), que denotaremos por y 0, isto é, y 0 = f(x 0 ). Incorporamos esta notação na figura a seguir. Estas notas foram escritas pelo professor da disciplina, Manoel Lemos. 1

2 UNIVERSIDADE FEDERAL DE PERNAMBUCO y 0 P t P = f() x 0 Na próxima seção recordaremos como obter a equação de uma reta. 2. Equação de uma reta Uma reta fica completamente determinada caso sejam conecidos dois de seus pontos. Supona que uma reta r passa pelos pontos P 0 e P 1, com P 0 P 1, e que as coordenadas destes pontos sejam respectivamente (x 0, y 0 ) e (x 1, y 1 ). Qual será a equação de r? Quando x 0 = x 1, temos que r é uma reta vertical e sua equação será = x 0. Isto é, um ponto de coordenadas (, ) pertence à reta r se e somente se = x 0. Vamos assumir que r não é uma reta vertical. Em particular, x 0 x 1. y P y1 y 0 P 0 P 1 x 0 x 1 x Necessitamos caracterizar os pontos que pertencem a reta r. Supona que P seja um ponto com coordenadas (x, y). Note que P está em r se e somente se y 1 y 0 (1) = y y 0 x 1 x 0 x x 0 O lado esquedo desta identidade é um número, que será denotado por m, e é conecido como o coeficiente angular da reta r, por ser a tangente do ângulo que a reta r forma com o semi-eixo positivo das abscissas, e independe das coordenadas dos pontos P 0 e P 1 escolidos na reta r. Isto é, Podemos reescrever (1) como m = y 1 y 0 x 1 x 0 (2) y y 0 = m(x x 0 ) Portanto, um ponto P com coordenadas (x, y) está na reta r se e somente se (2) é satisfeita. Conseqüentemente a equação da reta que passa pelo ponto de coordenadas (x 0, y 0 ) e tem coeficiente angular m é y 0 = m( x 0 ) Em particular, a equação da reta fica completamente determinada caso seja conecido:

o seu coeficiente angular e um de seus pontos. Esta equação pode ser reescrita como (3) m + (y 0 mx 0 ) = 0 MANOEL LEMOS 3 Exercício 1. Encontre a equação da reta que passa pelo ponto ( 2, 3) e possui coeficiente angular igual a 3. Exercício 2. Encontre a equação da reta que passa pelos pontos de coordenadas ( 2, 3) e (4, 1). Quando a, b e c são números reais, com a 0 ou b 0, (4) a + b + c = 0 é conecida como a equação geral de uma reta. Note que (4) coincide com (3) ao tomarmos (a, b, c) = (m, 1, y 0 mx 0 ). Isto é, a equação da reta r é desta forma. Quando a = 0, (4) é a equação de uma reta orizontal, pois pode ser reescrita como: = c b Quando b = 0, (4) é a equação de uma reta vertical, pois pode ser reescrita como: = c a Vamos supor que ab 0. Neste caso reescrevemos (4) como: = a ( + c ) b a Isto é, é a equação da reta com coeficiente angular a passando pelo ponto com abscissa b e ordenada 0. Logo (4) é a equação de alguma reta. c a Exercício 3. Ace o coeficiente angular da reta com equação 2 5 + 14 = 0. Exercício 4. Determine o valor de b para o qual o ponto de coordenadas (b, b) pertence à reta de equação 2 5 + 14 = 0. Exercício 5. Encontre as coordenadas do ponto de interseção das retas de equações + 2 + 3 = 0 e 2 5 + 15 = 0. 3. Equação da reta tangente Na primeira parte desta aula, desejávamos encontrar a equação da reta tangente t P ao gráfico da função f no ponto P com coordenadas (x 0, y 0 ), onde y 0 = f(x 0 ). Em particular, P é um ponto de t P, já que t P é tangente ao gráfico de f no ponto P. Para determinarmos a equação de t P será suficiente encontrar o seu coeficiente angular, que será denotado por m P. Descreveremos como isto pode ser feito: (1) Escola um ponto auxiliar Q no gráfico de f, com Q P. Assuma que a abscissa de Q é x 0 +, para algum número real, com 0. Portanto, a ordenada de Q será f(x 0 + ). (2) Seja m P Q o coeficiente angular da reta secante ao gráfico de f que passa pelos pontos P e Q. Esta reta será denotada por s P Q. (3) Quando Q se aproxima de P, a reta secante s P Q se aproxima da reta tangente t P e conseqüentemente o coeficiente angular da reta secante m P Q se aproxima de m P. Mas Q se aproxima de P se e somente se se aproxima de 0.

4 UNIVERSIDADE FEDERAL DE PERNAMBUCO (4) Portanto, m P será o valor para o qual m P Q se aproxima quando se aproxima de 0. Utilizaremos a notação para significar se aproxima de. De posse desta notação, podemos reescrever este item da seguinte forma: m P Q m P quando 0. t P f(x 0 ) f(x 0 + ) P Q = f() s P Q x 0 x 0 + Observe que (5) m P Q = f(x 0 + ) f(x 0 ) é uma expressão que depende apenas de, de x 0 e de f. Exemplo 6. Encontre a equação da reta tangente ao gráfico da função f() = 2, que é uma parábola, no ponto de coordenadas (1, 1). O coeficiente angular da reta secante ao gráfico da função f() = 2, passando pelos pontos com coordenadas (1, f(1)) e (1 +, f(1 + )), com 0, é f(1 + ) f(1) m P Q = = (1 + )2 1 Fazendo a = 1 e b = na identidade (a + b) 2 = a 2 + 2ab + b 2, obtemos m P Q = (1 + 2 + 2 ) 1 2 + 2 = Como multiplica todos os termos do numerador da última fração desta identidade, podemos por em evidência. Logo (2 + ) m P Q = Como divide o numerador e o denominador desta fração e 0, podemos cancelar e daí m P Q = 2 + Na figura seguinte, que ilustra este exemplo, por razões estéticas, a escala do eixo das abscissas é 3 vezes maior que a do eixo das ordenadas. = 2 = 2 1 1 1

MANOEL LEMOS 5 Note que 2 + 2 quando 0. Portanto o coeficiente angular da reta tangenta à parábola de equação = 2 no ponto (1, 1) é 2. A equação desta reta é dada por que pode ser reescrita como = 2 1. 1 = 2( 1) Exercício 7. Para cada um dos itens abaixo, encontre a equação da reta tangente ao gráfico de f no ponto P indicado. (i) f() = 2 e P = ( 2, 4) (ii) f() = 3 2 7 + 2 e P = (2, 0) (iii) f() = 1 e P = ( 1, 1) (iv) f() = 3 + 1 e P = ( 1, 0) Existem funções cujos gráficos não possuem retas tangentes em alguns de seus pontos. A seguir apresentamos um exemplo de uma função com esta propriedade. Exemplo 8. O gráfico da função f() = não possui reta tangente no ponto de coordenadas (0, 0). Começamos apresentando a função modular, que está definida para todo número real : { quando 0 = quando < 0 O gráfico desta função está representado na próxima figura. = O coeficiente angular da reta secante ao gráfico da função f() =, passando pelos pontos com coordenadas (0, f(0)) e (0 +, f(0 + )), com 0, é Portanto, m P Q = f(0 + ) f(0) m P Q = = 0 { 1 quando > 0 1 quando < 0 = Observe que, quando 0 por valores maiores que 0, m P Q 1 e, quando 0 por valores menores que 0, m P Q 1. Conseqüentemente m P Q não se aproxima de nenum valor quando se aproxima de 0. Isto é, gráfico da função modular possui um bico na origem. Qual a interpretação física deste fato?

6 UNIVERSIDADE FEDERAL DE PERNAMBUCO 4. Família de retas tangentes É possível descrever todas as equações das retas tangentes a uma curva em uma única expressão dependendo de um parâmetro. Por exemplo, considere a curva = 2, que é o gráfico da função f() = 2. No Exemplo 6 encontramos a equação da reta tangente a esta curva no ponto de coordenadas (1, 1). Agora determinaremos a equação da reta tangente a esta curva no ponto P tendo como abscissa x 0. Esta equação terá um parâmetro que será x 0. Conecemos um ponto pelo qual a reta tangente passa, que é o ponto de tangência P e tem coordenadas (x 0, x 2 0). Necessitamos determinar apenas o coeficiente angular desta reta. Escolemos um ponto genérico Q nesta curva, diferente de P, e calculamos o coeficiente angular m P Q da reta que passa por P e Q. Caso a abscissa do ponto Q seja x 0 +, por (5), temos que m P Q = (x 0 + ) 2 x 2 0 = (x2 0 + 2x 0 + 2 ) x 2 0 = (2x 0 + ) = 2x 0 + Quando Q P, isto é, 0, temos que m P Q 2x 0, que será o valor do coeficente angular da reta tangente à curva passando pelo ponto P. A equação desta reta será y 0 = m( x 0 ) na qual (x 0, y 0 ) são as coordenadas do ponto pelo qual esta reta passa e m é o seu coeficiente angular, ou seja, y 0 = x 2 0 e m = 2x 0. Logo x 2 0 = 2x 0 ( x 0 ) é a equação da reta tangente à curva = 2 no ponto de coordenadas (x 0, x 2 0). Esta equação pode ser reescrita como (6) = 2x 0 x 2 0 Conseqüentemente (6) é a família das equações de todas as retas tangentes à curva = 2. Note que esta família depende de um parâmetro que é o x 0. Na tabela seguinte listamos algumas das equações destas retas tangentes: x 0 equação da reta 0 = 0 1 = 2 1 2 = 4 4 3 = 6 9 1 = 2 1 2 = 4 4 3 = 6 9 Representamos as retas tangentes à parábola = 2 cujas equações estão descritas na tabela acima na próxima figura a escala no eixo das abscissas é 3 vezes maior que no das ordenadas. Em cada reta assinalamos o ponto de tangência. Note que uma destas retas coincide com o eixo das abscissas. Para não gerar confusão, o eixo das ordenadas é representado por uma lina pontilada.

MANOEL LEMOS 7 = 6 9 = 4 4 = 2 1 = 6 9 = 4 4 = 2 1 = 0 Uma parábola divide o plano em duas regiões: uma que contêm o foco da curva e que camaremos de seu interior; a outra é camada de seu exterior. Da ilustração acima intuímos o seguinte: Não existe reta tangente a esta parábola que contena um ponto pertencente a seu interior. Cada ponto pertencente ao exterior desta parábola está em exatamente duas de suas retas tangentes. Um ponto nesta parábola pertence a uma única reta tangente a esta curva. Iremos estabelecer estes fatos para a parábola de equação = 2. Contudo são resultados que valem para qualquer que seja a cônica não-degenerada, exceto no caso da ipérbole, para pontos pertencentes as suas assíntotas. Por isso, a falsa idéia de que uma reta tangente a uma curva a intercepta apenas no ponto de tangência é tão generalizada. Sejam (a, b) as coordenadas de um ponto genérico no plano. Desejamos saber quais das retas com equações descritas na família (6) contêm este ponto. Isto irá ocorrer se e somente se (7) b = 2x 0 a x 2 0 Como a e b são parâmetros fixos, (6) pode ser reescrita como uma equação quadrática em x 0 : (8) x 2 0 2ax 0 + b = 0 O número de soluções de (8) depende de seu discriminante que é: = ( 2a) 2 4b = 4(a 2 b) Conseqüentemente: Existem dois valores de x 0 para os quais (a, b) satisfaz a equação da reta descrita em (6) se e somente se > 0 ou seja a 2 > b. Isto é, (a, b) é um ponto na região exterior da parábola. Existe um único valor de x 0 para o qual (a, b) satisfaz a equação da reta descrita em (6) se e somente se = 0 ou seja a 2 = b. Isto é, (a, b) é um ponto sobre a parábola. Não existe valor de x 0 para o qual (a, b) satisfaz a equação da reta descrita em (6) se e somente se < 0 ou seja a 2 < b. Isto é, (a, b) é um ponto na região interior da parábola. Acou muito teórico? Sim! Então vamos fazer um exemplo numérico. Sejam P 1, P 2 e P 3 pontos tendo como coordendas (1, 2), (1, 0) e (1, 1) respectivamente. Note que P 1, P 2 e P 3 estão no interior, no exterior e sobre a parábola de equação = 2 respectivamente. Veja a ilustração a seguir.

8 UNIVERSIDADE FEDERAL DE PERNAMBUCO = 2 P 1 P 2 P 3 Considere P 1. Neste caso a = 1 e b = 2 e (8) se torna x 2 0 2x 0 + 2 = 0 Esta equação não tem solução real em x 0. Portanto, não existe reta tangente à parábola = 2 passando por P 1. Para P 2, a = 1 e b = 0. Logo (8) se transforma em x 2 0 2x 0 = x 0 (x 0 2) = 0 Esta equação tem x 0 = 0 e x 0 = 2 como soluções. Isto é, ao substituirmos estes valores de x 0 em (6), obtemos as equações de duas retas tangentes à parábola = 2, que são = 0 e = 4 4. Finalmente, quando a = b = 1, a equação (8) passa a ser x 2 0 2x 0 + 1 = (x 0 1) 2 = 0 que possui apenas x 0 = 1 como solução. Conseqüentemente existe uma única reta tangente à parábola = 2 passando por P 3 que tem equação = 2 1. Exercício 9. Para a ipérbole de equação = 1 (i) Determine o coeficiente angular da reta tangente no ponto de coordenadas (x 0, y 0 ), com x 0 y 0 = 1. (ii) Ace a equação da reta tangente no ponto de coordenadas (x 0, y 0 ), com x 0 y 0 = 1. (iii) Encontre as equações das retas tangentes que passam pelo ponto ( 8, 3). (iv) Quando A e B são os pontos de interseção de uma reta tangente a esta ipérbole com os eixos coordenados, calcule a área do triângulo OAB, onde O é a origem do sistema cartesiano. 5. Cônicas Na segunda seção, estabelecemos que as soluções de um polinômio de grau 1 nas variáveis e formam uma reta. O que ocorre com este conjunto quando o grau do polinômio passa a ser 2? Quando a, b, c, d, e e f são números reais, com a 0 ou b 0 ou c 0, o conjunto de soluções da equação (9) a 2 + b + c 2 + d + e + f = 0 pode ser: (1) Vazio. Isto ocorre, por exemplo, para 2 + 2 + 1 = 0. (2) Um ponto. Isto ocorre, por exemplo, para 2 + 2 = 0. (3) Uma reta. Isto ocorre, por exemplo, para 2 = 0. (4) Um par de retas. Isto ocorre, por exemplo, para 2 2 = 0.

MANOEL LEMOS 9 (5) Uma circunferência. Isto ocorre, por exemplo, para 2 + 2 1 = 0. (6) Uma elipse. Isto ocorre, por exemplo, para 2 + 2 2 1 = 0. (7) Uma parábola. Isto ocorre, por exemplo, para 2 = 0. (8) Uma ipérbole. Isto ocorre, por exemplo, para = 1. Mais ainda, qualquer cônica é o conjunto das soluções de algum polinômio de grau 2. É fácil mostrar que a interseção de uma reta com uma cônica pode ser 0, 1 ou 2 pontos, desde que a reta não esteja contida na cônica. Para encontrarmos a reta tangente t P a uma curva no ponto P, consideramos a reta secante s P Q passando por P e um ponto auxiliar Q, diferente de P e também na curva. Ao aproximarmos Q de P, a reta secante s P Q aproxima-se da reta tangente. No limite, é como se P fosse um ponto de interseção dupla da reta t P com a curva. Quando esta curva é uma circunferência, elipse, ipérbole ou parábola, t p intercepta esta curva em 1 ponto que, será de interseção dupla. Quando uma reta intercepta uma circunferência, elipse, ipérbole ou parábola em um único ponto, esta reta será tangente a esta cônica, já que este ponto será de interseção dupla, exceto quando esta cônica é uma parábola e a reta é paralela ao seu eixo. 6. Respostas dos exercícios 2 1. 3 + 9 = 0 2. + 3 + 7 = 0 3. 4. 2 5. ( 5, 1) 7. (i) 4 + + 4 = 0 5 (ii) 5 10 = 0 (iii) + + 2 = 0 (iv) 3 + 3 = 0 9. (i) 1 ou y x 2 0 0 x 0 (ii) + x 2 0 2x 0 = 0 ou y 0 + x 0 2 = 0 (iii) + 4 4 = 0 e 9 + 16 + 24 = 0 (iv) 2 Conteúdo da primeira aula da disciplina Cálculo L1, oferecida para os cursos de licenciatura em Física, Matemática e Química e o bacarelado em Química Idustrial, no segundo semestre de 2008 na Universidade Federal de Pernambuco, tendo como professor Manoel Lemos