Laboratório Controle Dinâmico Lab_CD6
|
|
|
- Eliana Franco Clementino
- 7 Há anos
- Visualizações:
Transcrição
1 Faculdade de Engenharia Elétrica Universidade de Brasília Laboratório Controle Dinâmico Lab_CD6 Marco A. Egito Levitação Magnética Compensador Digital A compensação digital é feita através da inserção de um circuito digital, normalmente um microcontrolador, na malha de realimentação do processo. Estes sistemas operam em tempo discreto, ou tempo amostrado, o que significa que a realimentação não está presente a todo instante como ocorre com os sistemas analógicos. Na figura acima (extraída do livro N.Nise cap 13) vemos que o computador digital ocupa o lugar do amplificador e compensador na malha de controle. Os blocos A/D e D/A fazem a tradução da informação de analógica para digital e de digital para analógica em intervalos de tempo fixos na maioria dos casos. Quanto menor o tempo entre uma conversão e a seguinte (ou maior frequência de amostragem), mais o sistema digital se aproxima de um sistema analógico. No nosso laboratório, o computador digital é um microcontrolador operando a 14.3 Mhz. Um conversor A/D interno de 10 bits faz a conversão do sinal analógico para digital com frequências ajustáveis pelo usuário. A conversão D/A é feita pelas saídas PWM do também com resolução de 10 bits além de um filtro passa-baixas que praticamente remove toda a componente de ~14 Khz presente nos sinais PWM. A atualização do ciclo de trabalho dos canais PWM é feita com a mesma frequência da aquisição A/D. Neste laboratório, evitaremos as complexidades de projeto de compensadores digitais, simplesmente trabalhando com frequências de amostragem suficientemente altas para que o sistema digital seja considerado quase-contínuo. Estas frequências devem ser tais que permitam (no mínimo) entre 6 e 8 amostras durante o tempo de subida do processo quando submetido a um degrau (ref). No nosso caso, considerando que este tempo pode chegar a 18 ms em alguns kits,teremos: f am = 1.8=444 hz Mesmo operando com frequências de amostragem superiores a esta, o sistema digital introduz um atraso no sinal que pode causar uma alteração em relação ao caso de tempo contínuo. Quanto maior o tempo entre 2 amostras maiores os atrasos. (1)
2 Implementação de um compensador analógico equivalente Como exemplo da maneira de se implementar um equivalente do compensador analógico no microcontrolador, considere a função de transferência do compensador PD analógico: E (s) =K (1+s.T d ) (2) No sistema digital, trabalharemos no domínio do tempo, portanto: u(t)= K (e(t)+ė(t ).T d ) (3) Substituindo o tempo contínuo pelo tempo discreto, t kt onde k é um nº inteiro e T o período de amostragem, supostamente pequeno. Também temos uma aproximação para a derivada, baseada no quociente de Newton: e(kt ) e((k 1)T ) ė(t) = = e(k) e(k 1) (4) T T Onde simplificamos a notação fazendo e(kt) = e(k). Substituindo (4) em (3) acima: u(k)=k [(1+ T d T )e(k) T d T e(k 1)] Esta última equação é conhecida como equação de diferenças e é análoga a uma equação diferencial para sistemas de tempo discreto. Observe que em um instante de tempo qualquer, múltiplo inteiro de T o valor da saída do compensador pode ser calculado a partir da entrada atual e da entrada anterior, multiplicadas por constantes e somadas. O aluno poderá desenvolver equações de diferenças semelhantes para os compensadores em avanço e PID. Acoplamento entre o Sinal Ss e o (5) Se o sinal Ss varia entre -2V e +2V e a entrada do conversor A/D de ATMEGA 8 pode ser ajustada para aceitar sinais entre 0 e ou 0 e +2.56V ou ainda uma referência externa sempre positiva. Utilizando a opção de 0 a 2.56V o circuito ao lado é utilizado para o acoplamento: Ss O resultado da conversão A/D somado a uma constante de polarização de entrada é o valor de e(k) referido na equação (5). Vref Acoplamento entre o e o Sinal Ep Os sinais PWM na saída do ATMEGA 8 variam entre 0V e 5V com uma frequência de ~14 Khz e ciclo de trabalho calculado pela equação de diferenças (5) e com 1 constante de polarização de saída somada. O sinal Ep deve variar entre -0.5V e +0.5V, portanto é necessário utilizar o circuito ao lado para o acoplamento: -12V Ep Onde o capacitor faz a filtragem do sinal de 14 Khz presente no sinal PWM
3 Funções de transferência dos compensadores implementados P: E (s) =K PD: PID: Avanço: E (s) =K (1+s.T d ) E (s) =K (1+s.T d + 1 st i ) (1+s/ z) =K E (s) (1+s/ p) onde K= K Prop, T d = T Der, T i = T Int, z = Zero, p = Polo Ziegler-Nichols O trecho a seguir, extraído de site da Wikipédia dá um resumo do método de Ziegler-Nichols. Porém é preciso alertar que estes métodos frequentemente apresentam resultados inadequados. The Ziegler Nichols tuning method is a heuristic method of tuning a PID controller. It was developed by John G. Ziegler and Nathaniel B. Nichols. It is performed by setting the I (integral) and D (derivative) gains to zero. The "P" (proportional) gain, Kp is then increased (from zero) until it reaches the ultimate gain Ku, at which the output of the control loop oscillates with a constant amplitude. Ku and the oscillation period Tu are used to set the P, I, and D gains depending on the type of controller used: Ziegler Nichols method Control Type Kp Ki Kd P Ku/2 - - PI Ku/ Kp/Tu - classic PID 0.6Ku 2Kp/Tu KpTu/8 Pessen Integral Rule 0.7Ku 2.5Kp/Tu 0.15KpTu some overshoot 0.33Ku 2Kp/Tu KpTu/3 no overshoot 0.2Ku 2Kp/Tu KpTu/3 Bibliografia Nise, N. S.; Engenharia de Sistemas de Controle; LTC, Apêndice: Circuito completo placa do compensador digital. O software do está disponível sob pedido.
4 RELATÓRIO kit LEVITAÇÃO MAGNÉTICA compensação digital Considerando que o compensador digital se comporta como um compensador analógico, monte o kit no modo estável em malha aberta com o compensador digital. A partir do polo e zero do compensador padrão e com a frequência de amostragem mais alta e sem filtragem, faça o seguinte:: 1 z padrao = Rca.Cc 1 p padrao = Rca.Cc + 1 Rba.Cc Compensador PD. Através da observação da resposta à onda quadrada, e partindo partindo do mesmo zero (=1/Td) do compensador padrão e um baixo ganho altere Td e ganho do compensador de maneira a tornar a resposta tão rápida como possível e com baixo sobressinal. Tire uma foto da tela do osciloscópio para o melhor ajuste e anote os valores dos parâmetros utilizados. Compensador em avanço Faça o mesmo com o compensador em avanço, a partir do mesmo polo e zero do compensador padrão e baixo ganho. Compensador PID Utilize o resumo do método de Ziegler-Nichols para o ajuste inicial do compensador e depois faça o ajuste fino de modo semelhante aos anteriores. Inclua em seu relatório: 1) Fotografia da saída Ss1/Vref1 com o compensador em avanço otimizado em laboratório sob excitação com onda quadrada. Informe os parâmetros do compensador otimizado. 2) Fotografia da saída Ss1/Vref1 com o compensador PD otimizado em laboratório sob excitação com onda quadrada. Informe os parâmetros do compensador otimizado. 3) Fotografia da saída Ss1/Vref1 com o compensador PID do item anterior. Informe os parâmetros do compensador otimizado. 4) LGR do canal x desprezando o efeito de acoplamento com o canal y com os 3 compensadores anteriores (utilize MATLAB, Maple ou outro software). 5) Tabelas e medidas do roteiro anterior com todas as medidas feitas no kit 6) Substitua os parâmetros calculados no item anterior no modelo do kit fornecido e gere as saídas do simulador referentes aos itens 1), 2) e 3)
5 Tomada Ft_Et_Sd S1 S2 S3 S4 Prog 100nF 22pF 22pF MHZ RST PD0 PD1 PD2 PD3 PD4 VCC GND XTL1 XTL2 PD5 PD6 PD7 PB0 OC1A OC1B PB3 PB4 PB5 AVCC AREF GND ADC0 ADC1 ADC2 ADC3 ADC4 ADC5 100nF LCD16x2 VSS V0 RS RW E D2 D3 VDD D1 D0 D4 D5 D6 D7 A K LCD16x2 1k 1k -12V +12V Ss1 Ss2 Ep2 Ep1 Vref1 Vref2 Ss1 Ss2 PWM2PWM1 Ep2 Ep1 KIT IN COM OUT 7805 Placa Ft_Et_Sd
Controlador digital para sistemas de 1 a ordem
Controlador digital para sistemas de 1 a ordem Um sistema de 1 a ordem, possui uma resposta temporal ao degrau do tipo exponencial decrescente, dada pela seguinte equação: PV (t)=k (CV CV 0 )(1 e ( t τ
COMPARAÇÃO ENTRE CONTROLADORES PID CLÁSSICO E PID FUZZY COM GANHO PROGRAMADO NO SISTEMA DE AZIMUTE
COMPARAÇÃO ENTRE CONTROLADORES PID CLÁSSICO E PID FUZZY COM GANHO PROGRAMADO NO SISTEMA DE AZIMUTE Brehme D. R. de MESQUITA (1); Jefferson A. L. e SILVA (2); André M. D. FERREIRA (3) (1) Instituto Federal
6. O SISTEMA DE CONTROLE COMO FERRAMENTA DIDÁTICA
71 6. O SISTEMA DE CONTROLE COMO FERRAMENTA DIDÁTICA 6.1 SOFTWARE DIDÁTICO O sistema de controle que compreende um software didático e um hardware de aquisição de dados, poderá servir como ferramenta didática
Seminário de programação em sistemas embarcados
Seminário de programação em sistemas embarcados Implementando controle PID digital em sistemas embarcados Felipe S. Neves Agenda Compensadores, o compensador PID; Implementação PID em sistemas embarcados;
Laboratório Controle Dinâmico
Faculdade de Engenharia Elétrica Universidade de Brasília Laboratório Controle Dinâmico Marco A. Egito it Impressora Este kit consiste basicamente de motor CC acoplado a um carro através de uma correia
Sintonia do compensador PID
Sintonia do compensador PID 0.1 Introdução DAELN - UTFPR - Controle I Paulo Roberto Brero de Campos Neste capítulo será estudado um problema muito comum na indústria que consiste em fazer o ajuste dos
28/05/2017. Interface com Conversores A/D e D/A. Interface com Conversores A/D e D/A SEL-433 APLICAÇÕES DE MICROPROCESSADORES I
SEL-433 APLICAÇÕES DE MICROPROCESSADORES I Interface com Conversores A/D e D/A Conversor A/D ADC Converte um Valor Analógico para Digital Conversor D/A DAC Converte um Valor Digital para Analógico Prof.
Interface com A/D e D/A
Interface com A/D e D/A Interface com Conversores A/D e D/A Conversor A/D ADC Converte um Valor Analógico para Digital Conversor D/A DAC Converte um Valor Digital para Analógico Um Microcontrolador/Microprocessador
Capítulo 11) Interface com o mundo analógico
Capítulo 11) Interface com o mundo analógico Conversores DA Conversores AD Compreender, Especificar, Comparar os tipos Conceitos Básicos de PROCESSAMENTO DIGITAL DE SINAIS 11.1) Quantidade Digital x Analógica
Transformada z. ADL 25 Cap 13. A Transformada z Inversa
ADL 25 Cap 13 Transformada z A Transformada z Inversa Qualquer que seja o método utilizado a transformada z inversa produzirá somente os valores da função do tempo nos instantes de amostragem. Portanto,
EXERCÍCIOS RESOLVIDOS
ENG JR ELETRON 2005 29 O gráfico mostrado na figura acima ilustra o diagrama do Lugar das Raízes de um sistema de 3ª ordem, com três pólos, nenhum zero finito e com realimentação de saída. Com base nas
Documento: Descritivo Simplificado do Projeto SPDMAI
1/5 Descritivo Simplificado do Projeto SPDMAI O Sistema de Processamento Digital para Medição e Automação Industrial (SPDMAI) é baseado no kit de desenvolvimento DSP TMS320C6711 DSK da Texas Instruments,
Aula 6: Controladores PI
Aula 6: Controladores PI prof. Dr. Eduardo Bento Pereira Universidade Federal de São João del-rei [email protected] 31 de agosto de 2017. prof. Dr. Eduardo Bento Pereira (UFSJ) Controle II 31 de agosto
Controlador PID discreto
1 Capítulo 1 Controlador PID discreto 1.1 Objetivo O objetivo deste experimento é introduzir ao estudante as noções básicas de um controlador PID discreto para um motor de corrente contínua. 1.2 Modelo
Técnicas de Interface: conversor A/D e D/A
Técnicas de Interface: conversor A/D e D/A Prof. Adilson Gonzaga Interface com Conversores A/D e D/A Conversor A/D ADC Converte um Valor Analógico para Digital Conversor D/A DAC Converte um Valor Digital
TÍTULO: CÁLCULO NUMÉRICO APLICADO AO CONTROLE DE ATUADORES EM SISTEMAS EMBARCADOS POR MEIO DE CÁLCULO DIFERENCIAL E INTEGRAL
TÍTULO: CÁLCULO NUMÉRICO APLICADO AO CONTROLE DE ATUADORES EM SISTEMAS EMBARCADOS POR MEIO DE CÁLCULO DIFERENCIAL E INTEGRAL CATEGORIA: CONCLUÍDO ÁREA: CIÊNCIAS EXATAS E DA TERRA SUBÁREA: Engenharias INSTITUIÇÃO(ÕES):
Laboratório de controle 2018/1. Professores: Adolfo Bauchspiess ENE/UnB Lélio R. Soares Júnior ENE/UnB
Laboratório de controle 2018/1 Professores: Adolfo Bauchspiess ENE/UnB Lélio R. Soares Júnior ENE/UnB Kit impressora (Carro sobre eixo) Desenvolvido pelo Professor: Marco Antônio do Egito Coelho - ENE/UnB
Capítulo 9. Projeto por Intermédio do Lugar das Raízes (Continuação)
Capítulo 9 Projeto por Intermédio do Lugar das Raízes (Continuação) Fig. 9.50 Lugar das raízes para o sistema não-compensado do Exemplo 9.7 UP plano s 2 Tabela 9.8 Características previstas de sistemas
SINAIS E SISTEMAS MECATRÓNICOS
SINAIS E SISTEMAS MECATRÓNICOS Laboratório #4 1 : Projecto, implementação e validação da cadeia de actuação e medida Mestrado Integrado em Engenharia Mecânica Novembro 2011 ou Dezembro 2011 Realizar na
SEM 538 Sistemas de Controle II
SEM 538 Sistemas de Controle II - 07 Prof.: Adriano Almeida Gonçalves Siqueira Descrição: Sistemas discretos no tempo, equações a diferenças. Transformada Z e transformações de sistemas contínuos para
Sistemas de Controle 2
Pontifícia Universidade Católica de Goiás Escola de Engenharia Sistemas de Controle 2 Projeto de sistema de controle digital PID com Arduino Prof. Dr. Marcos Lajovic Carneiro Referência: Ivan Seidel https://www.youtube.com/watch?v=txftr4tqkya
Algoritmo de um controlador PID para microprocessadores utilizando método Ziegler-Nichols
Algoritmo de um controlador PID para microprocessadores utilizando método Ziegler-Nichols Jonas Rodrigues Vieira dos Santos 1, Rômulo Lopes Frutuoso 2, Luiz Daniel Santos Bezerra 3 1 Bacharelando em Ciência
1 RESUMO. Palavras-chave: Controle, encoders, motor CC. 2 INTRODUÇÃO
1 RESUMO Na sociedade moderna se tornou cada vez mais presente e necessário meios de controlar dispositivos levando em consideração precisões maiores e perdas menores. Em diversos cenários o controle de
Kit didático para controle de velocidade e posição de um motor de corrente contínua
https://eventos.utfpr.edu.br//sicite/sicite2017/index Kit didático para controle de velocidade e posição de um motor de corrente contínua RESUMO Marcos Antonio Ribeiro da Silva [email protected]
Fundamentos de Controlo
Licenciatura em Engenharia Electrónica LEE - IST Fundamentos de Controlo 1º semestre 2012-2013 Guia de trabalho de Laboratório Controlo de um motor d.c. elaborado por: Eduardo Morgado Outubro 2012 I. Introdução
Experimento 5 Circuitos RLC com onda quadrada
Experimento 5 Circuitos RLC com onda quadrada 1. OBJETIVO O objetivo desta aula é estudar a variação de voltagem nas placas de um capacitor, em função do tempo, num circuito RLC alimentado com onda quadrada.
EEL711 Processamento de Sinais. Introdução
EEL711 Processamento de Sinais Introdução Classificação de Sinais Um sinal que pode assumir qualquer valor num intervalo continuamente definido no eixo horizontal é usualmente denominado sinal analógico.
Experiência 5: Circuitos osciladores e conversores digital-analógicos
Experiência 5: Circuitos osciladores e conversores digital-analógicos Esta experiência analisa circuitos osciladores e conversores digital-analógicos. Circuitos osciladores são fundamentais em eletrônica,
UFJF FABRICIO CAMPOS
Cap 11) Interface com o mundo analógico Conversores DA Conversores AD Compreender, Especificar, Comparar os tipos Introdução ao PROCESSAMENTO DIGITAL DE SINAIS Capítulo 11) Conversores DA/AD 11.1) Quantidade
Conversor A/D por aproximações sucessivas
Conversor A/D por aproximações sucessivas É baseado no mesmo princípio do A/D de rampa digital, onde o sinal analógico de entrada i é comparado sucessivamente com a saída analógica do conversor D/A acoplado
Instituto Superior Técnico Licenciatura em Engenharia Electrotécnica e de Computadores. Controlo 2005/2006
Instituto Superior Técnico Licenciatura em Engenharia Electrotécnica e de Computadores Controlo 2005/2006 Controlo digital de velocidade e de posição de um motor D.C. Elaborado por E. Morgado 1 e F. M.
Experimento 6 Corrente alternada: circuitos resistivos
1. OBJETIVO Experimento 6 Corrente alternada: circuitos resistivos O objetivo desta aula é estudar o comportamento de circuitos resistivos em presença de uma fonte de alimentação de corrente alternada.
Sistemas de Controle 2
Pontifícia Universidade Católica de Goiás Escola de Engenharia Sistemas de Controle 2 Cap.7 - Erros de Estado Estacionário Prof. Dr. Marcos Lajovic Carneiro Sistemas de Controle 2 Prof. Dr. Marcos Lajovic
Projeto de um Controlador PID
ALUNOS 1 - NOTA 2- DATA Projeto de um Controlador PID 1.1 Objetivo Este experimento tem como objetivo a implementação de um controlador PID para um dos processos da MPS-PA Estação Compacta. Supõe-se que
Eletrônica Digital. Conversores A/D e D/A PROF. EDUARDO G. BERTOGNA UTFPR / DAELN
Eletrônica Digital Conversores A/D e D/A PROF. EDUARDO G. BERTOGNA UTFPR / DAELN Conversores A/D e D/A Os conversores A/D e D/A, como o próprio nome indica, convertem sinais de natureza Analógica para
Projeto de Compensadores/Controladores pelo Diagrama de Lugar das Raízes
Projeto de Compensadores/Controladores pelo Diagrama de Lugar das Raízes Carlos Eduardo de Brito Novaes [email protected] http://professorcarlosnovaes.wordpress.com 2 de novembro de 202 Introdução
DESENVOLVIMENTO DE UM KIT DIDÁTICO PARA DEMONSTRAÇÃO DA ATUAÇÃO DE UM CONTROLADOR PID DIGITAL EM UMA PLANTA REAL
DESENVOLVIMENTO DE UM KIT DIDÁTICO PARA DEMONSTRAÇÃO DA ATUAÇÃO DE UM CONTROLADOR PID DIGITAL EM UMA PLANTA REAL Jefferson Luis Griebeler, Thaísa A. Kienen, Wagner Rosa sob orientação Prof. Dr. Roger Gules
AULA LAB 02 LABORATÓRIO DE CONVERSORES CC-CC 2 GERAÇÃO DOS SINAIS DE COMANDO (PWM) NO ARDUINO
INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DE SANTA CATARINA DEPARTAMENTO ACADÊMICO DE ELETRÔNICA CURSO TÉCNICO DE ELETRÔNICA Eletrônica de Potência AULA LAB 02 LABORATÓRIO DE CONVERSORES CC-CC
UNIVERSIDADE FEDERAL DE CAMPINA GRANDE CENTRO DE ENGENHARIA ELÉTRICA E INFORMÁTICA DEPARTAMENTO DE ENGENHARIA ELÉTRICA ELETRÔNICA
UNIVERSIDADE FEDERAL DE CAMPINA GRANDE CENTRO DE ENGENHARIA ELÉTRICA E INFORMÁTICA DEPARTAMENTO DE ENGENHARIA ELÉTRICA ELETRÔNICA SÉRIE DE EXERCÍCIO ESCOLAR #3 2018_1 PARTE I (Série de Exercício) PARTE
Controle de Processos Aula: Ações de Controle
Aula 7484 Controle de Processos Aula: Prof. Eduardo Stockler Tognetti Departamento de Engenharia Elétrica Universidade de Brasília UnB o Semestre 26 E. S. Tognetti UnB) Controle de processos / Ação proporcional
CONVERSOR DELTA-SIGMA
Marcelo Samsoniuk Fernando Zanella PROJETO FINAL DA DISCIPLINA DE PROJETO DE CIRCUITOS INTEGRADOS ANALÓGICOS CONVERSOR DELTA-SIGMA Projeto final para a disciplina de Projeto de Circuitos Integrados Analógicos
ELT703 - EXPERIÊNCIA N 3: ERROS DC (OFFSET) E SLEW RATE
ELT03 EXPERIÊNCIA N 3: ERROS DC (OFFSET) E SLEW RATE 1. OBJETIVOS: Levantamento da V IO, I B, I B e seus efeitos na relação de saída; Ajuste de Offset externo e interno; Medição do Slew Rate (Taxa de Subida)..
Modelação, Identificação e Controlo Digital
Modelação, Identificação e Controlo Digital 1-Aspectos Gerais 1 Modelação, Identificação e Controlo Digital Semestre de Inverno 2005/2006 Área Científica de Sistemas de Decisão e Controlo Modelação, Identificação
CONTROLE DE UMA VENTOINHA DE MICROPROCESSADOR UTILIZANDO CONTROLADOR PID DIGITAL
Universidade Regional do Noroeste do Estado do Rio Grande do Sul Faculdade de Engenharia Elétrica DCEEng Departamento de Ciências Exatas e Engenharias Disciplina: Controle Digital Professor: Gilson Rogério
Projeto de um Controlador PID
ALUNOS 1 - NOTA 2- DATA Projeto de um Controlador PID 1.1 Objetivo Este experimento tem como objetivo a implementação de um controlador PID para um dos processos da Estação Compacta MPS-PA usando LabView.
DESENVOLVIMENTO DE UM SISTEMA DE CONTROLE DE TEMPERATURA PID, ATRAVÉS DE ARDUINO E LABVIEW
DESENVOLVIMENTO DE UM SISTEMA DE CONTROLE DE TEMPERATURA PID, ATRAVÉS DE ARDUINO E LABVIEW Lair Santos de Oliveira (1); Josué da Silva Sousa (2); Antônio Almeida da Silva (3); Moisés Hamsses Sales de Souza
2 Objetivos Verificação e análise das diversas características de amplificadores operacionais reais.
Universidade Federal de Juiz de Fora Laboratório de Eletrônica CEL 037 Página 1 de 6 1 Título Prática 6 Características dos Amplificadores Operacionais 2 Objetivos Verificação e análise das diversas características
Sistemas de Controle 2
Pontifícia Universidade Católica de Goiás Escola de Engenharia Sistemas de Controle 2 Cap.9 Projeto por Intermédio do Lugar das Raízes Prof. Dr. Marcos Lajovic Carneiro AED Cap.8 8.8 Lugar das Raízes Generalizado
EES-20: Sistemas de Controle II. 20 Outubro 2017 (Manhã)
EES-20: Sistemas de Controle II 20 Outubro 2017 (Manhã) 1 / 57 Recapitulando: Discretização de controladores analógicos - Limitações Trata-se de aproximação Não se leva em conta o efeito do segurador de
Princípios de Telecomunicações. PRT60806 Aula 19: Modulação por Código de Pulso (PCM) Professor: Bruno Fontana da silva 2014
1 Princípios de Telecomunicações PRT60806 Aula 19: Modulação por Código de Pulso (PCM) Professor: Bruno Fontana da silva 2014 Bloco de Comunicação Genérico Emissor sinais analógicos x sinais digitais Sinais
Controladores PID - Efeitos e sintonia
- Efeitos e sintonia Guilherme Luiz Moritz 1 1 DAELT - Universidade Tecnológica Federal do Paraná 03 de 2013 Guilherme Luiz Moritz Avaliação UTFPR - Engenharia industrial elétrica - ênfase em eletrônica/telecomunicações
ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO Departamento de Engenharia de Sistemas Eletrônicos PSI - EPUSP
ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO Departamento de Engenharia de Sistemas Eletrônicos PSI - EPUSP PSI 322 - LABORATÓRIO DE CIRCUITOS ELÉTRICOS PROJETO DO CURSO MULTÍMETRO DIGITAL MICROCONTROLADO
Experimento 6 Corrente alternada: circuitos resistivos
1 OBJETIVO Experimento 6 Corrente alternada: circuitos resistivos O objetivo desta aula é estudar o comportamento de circuitos resistivos em presença de uma fonte de alimentação de corrente alternada 2
Sintonia de Controladores PID
Sintonia de Controladores PID Objetivo: Determinar K p, K i e K d de modo a satisfazer especificações de projeto. Os efeitos independentes dos ganhos K p, K i e K d na resposta de malha fechada do sistema
Lista de Exercícios 2
Universidade de Brasília Faculdade de Tecnologia Departamento de Engenharia Elétrica 107484 Controle de Processos 1 o Semestre 2015 Lista de Exercícios 2 Para os exercícios abaixo considere (exceto se
Conversores A/D e D/A
Conversores A/D e D/A Walter Fetter Lages [email protected] Universidade Federal do io Grande do Sul Escola de Engenharia Departamento de Engenharia Elétrica Programa de Pós-Graduação em Engenharia Elétrica
EFEITOS DIGITAIS APLICADOS VIA MATLAB EM SINAIS DE ÁUDIO DE UM INSTRUMENTO MUSICAL
EFEITOS DIGITAIS APLICADOS VIA MATLAB EM SINAIS DE ÁUDIO DE UM INSTRUMENTO MUSICAL ¹ Matheus Vaz Castro (SENAI CIMATEC) [email protected]; 2 Flora Araújo Valverde (SENAI CIMATEC) [email protected];
Capítulo 8 Interface com o mundo analógico
Capítulo 8 Interface com o mundo analógico.0 Introdução A maioria das grandezas físicas é analógica por natureza e pode assumir qualquer valor dentro de uma faixa de valores contínuos. Podemos citar: temperatura,
2.1 - Análise de Sistemas Realimentado pelo Lugar das Raízes- G 4 (s) = G 2 5 (s) = (s+5) G 6 (s) =
ENG04035 - Sistemas de Controle I Prof. João Manoel e Prof. Romeu LISTA DE EXERCÍCIOS 2.1 - Análise de Sistemas Realimentado pelo Lugar das Raízes- 1. Considere os seguintes processos: 5 1 G 1 (s) = (s2)(s10)
Sumário. CAPÍTULO 1 Introdução 1. CAPÍTULO 2 Terminologia dos Sistemas de Controle 14
Sumário CAPÍTULO 1 Introdução 1 1.1 Sistemas de controle 1 1.2 Exemplos de sistemas de controle 2 1.3 Sistemas de controle de malha aberta e malha fechada 3 1.4 Realimentação 3 1.5 Características da realimentação
Universidade Federal do Rio Grande do Sul Escola de Engenharia Departamento de Engenharia Elétrica ENG04037 Sistemas de Controle Digitais
Universidade Federal do Rio Grande do Sul Escola de Engenharia Departamento de Engenharia Elétrica ENG04037 Sistemas de Controle Digitais Digitalização de Controladores Contínuos 1 Introdução Prof. Walter
UNIP 1.a Prova Sistemas Digitais EE - 8P/7W-01 Turma A Sem Consulta Tempo 180 min. Permitido o uso de calculadora a interpretação faz parte da prova.
UNIP 1.a Prova Sistemas Digitais EE - 8P/7W-01 Turma A Sem Consulta Tempo 180 min. Permitido o uso de calculadora a interpretação faz parte da prova. N.o - Nome... Nota 1.a) Questão : (Valor 3,0) Um ADC
Guia de Laboratório de Electrónica II. Amplificadores Operacionais
Instituto Superior Técnico Departamento de Engenharia electrotécnica e de Computadores Secção de Electrónica Guia de Laboratório de Electrónica II Amplificadores Operacionais (º trabalho) Grupo Nº Número
Sistemas de Controle 2
Pontifícia Universidade Católica de Goiás Escola de Engenharia Sistemas de Controle 2 Cap.9 Projeto por Intermédio do Lugar das Raízes Prof. Dr. Marcos Lajovic Carneiro Sistemas de Controle 2 Prof. Dr.
Kit Didático de Motor de Corrente Contínua para Laboratórios de Controle
Kit Didático de Motor de Corrente Contínua para Laboratórios de Controle Geovany A. Borges Laboratório de Robótica e Automação (LARA) Departamento de Engenharia Elétrica - ENE Faculdade de Tecnologia -
Roteiro-Relatório da Experiência N o 5
Roteiro-Relatório da Experiência N o 5 1. COMPONENTES DA EQUIPE: ALUNOS 1 2 3 NOTA 4 Prof.: Celso José Faria de Araújo 5 Data: / / : hs 2. OBJETIVOS: 2.1. Fazer uma análise teórica e experimental do filtro
PLANO DE ENSINO. 1 Ementa
Fone (49) 353-4300 PLANO DE ENSINO Engenharia de Controle e Automação Componente Curricular:Controle Discreto Turma: ECA 013 Carga Horária: 60h Créditos: 4 Professor: Thiago Javaroni Prati Período: 016.
5.1 INTRODUÇÃO AO SISTEMA DE CONTROLE GAIN SCHEDULING
54 5. SISTEMA DE CONTROLE GAIN SCHEDULING 5.1 INTRODUÇÃO AO SISTEMA DE CONTROLE GAIN SCHEDULING O sistema de controle tipo gain scheduling [14] é um sistema adaptativo [15], onde os parâmetros do controlador
Sistemas a Tempo Discreto
Sistemas a Tempo Discreto 1. Caracterização de sistemas dinâmicos a tempo discreto 2. Transformada-Z 3. FT discreta, estabilidade e analogia com domínio-s 4. Sistemas amostrados 4.1 Amostragem e retenção
CADERNO DE EXPERIÊNCIAS
CADERNO DE EXPERIÊNCIAS Disciplina: ELETRÔNICA III Curso: ENGENHARIA ELÉTRICA Fase: 8ª Conteúdo: Carga horária: 75 horas Semestre: 01/2011 Professor: PEDRO BERTEMES FILHO / RAIMUNDO NONATO G. ROBERT 1.
PID digital Método de cálculo numérico
1 / 18 PID digital Método de cálculo numérico por Henrique Frank W Puhlmann Introdução No artigo técnico Controlador PID digital: Uma modelagem prática para microcontroladores Parte 1, é apresentado com
Experiência 2. Controle de Motor de Corrente Contínua com Tacômetro usando Lugar Geométrico das Raízes
Experiência 2 Controle de Motor de Corrente Contínua com Tacômetro usando Lugar Geométrico das aízes Professores: Adolfo Bauchspiess e Geovany A. Borges O objetivo deste experimento é realizar o controle
Sistemas de Controle 2
Pontifícia Universidade Católica de Goiás Escola de Engenharia Sistemas de Controle 2 Prof. Dr. Marcos Lajovic Carneiro Sistemas de Controle 2 Prof. Dr. Marcos Lajovic Carneiro Planejamento da disciplina
Aula S8. Introdução a Engenharia Elétrica Módulo 1 Conversores AD e DA
Introdução a Engenharia Elétrica - 323100 Aula S8 Módulo 1 Conversores AD e DA Escola Politécnica da Universidade de São Paulo Departamentos da Engenharia Elétrica PCS Computação e Sistemas Digitais PEA
Experimento #2 AMPLIFICADOR OPERACIONAL
UNIVERSIDADE FEDERAL DE CAMPINA GRANDE CENTRO DE ENGENHARIA ELÉTRICA E INFORMÁTICA DEPARTAMENTO DE ENGENHARIA ELÉTRICA LABORATÓRIO DE ELETRÔNICA Experimento #2 AMPLIFICADOR OPERACIONAL Aplicações com amplificadores
Sistemas Embarcados:
Universidade Federal do Rio Grande do Norte Departamento de Engenharia de Computação e Automação Sistemas Embarcados: Interfaces com o Mundo Analógico DCA0119 Sistemas Digitais Heitor Medeiros Florencio
ROTEIRO OFICIAL 12 Amplificador Operacional no Modo Sem Realimentação Comparador
UTFPR DAELT Engenharia Elétrica e/ou Controle e Automação Disciplina: Laboratório de Eletrônica ET74C Prof.ª Elisabete Nakoneczny Moraes ROTEIRO OFICIAL 12 Amplificador Operacional no Modo Sem Realimentação
Ações de controle básicas: uma análise do desempenho em regime
Capítulo 3 Ações de controle básicas: uma análise do desempenho em regime estático 3. Introdução Neste capítulo, as ações de controle básicas utilizadas em controladores industriais e o seu desempenho
Experiência 3. Identificação de motor de corrente contínua com tacômetro. 1-Introdução. 2-Modelo do processo
Experiência 3 Identificação de motor de corrente contínua com tacômetro Autores: Adolfo Bauchspiess e Geovany A. Borges O objetivo deste experimento é levantar o modelo dinâmico do conjunto atuador e motor
FACULDADE LEÃO SAMPAIO
FACULDADE LEÃO SAMPAIO Sistemas analógicos e digitais Curso de Análise e Desenvolvimento de Sistemas 1 Analógico x Digital Sinal analógico: O sinal analógico varia continuamente ao longo de uma faixa de
PMR3404 Controle I Aula 3
PMR3404 Controle I Aula 3 Resposta estática Ações de controle PID Newton Maruyama 23 de março de 2017 PMR-EPUSP Classificação de sistemas de acordo com o seu desempenho em regime estático Seja o seguinte
Sistemas de Controle 2
Pontifícia Universidade Católica de Goiás Escola de Engenharia Sistemas de Controle 2 Cap.9 Projeto por Intermédio do Lugar das Raízes Prof. Dr. Marcos Lajovic Carneiro Sistemas de Controle 2 Prof. Dr.
SUMÁRIO BACKGROUND. Referências 62 MATLAB Seção B: Operações Elementares 62 Problemas 71
SUMÁRIO BACKGROUND B.l Números Complexos 17 B.l-l Nota Histórica 17 B.I-2 Álgebra de Números Complexos 20 B.2 Senóides 30 B.2-1 Adição de Senóides 31 B.2-2 Senóides em Termos de Exponenciais: A Fórmula
DERIVADOR E INTEGRADOR
EXPERIÊNCIA N 08 DERIVADOR E INTEGRADOR Fundação Universidade Federal de Rondônia Núcleo de Tecnologia Departamento de Engenharia Elétrica - DEE Disciplina de Eletrônica II I. OBJETIVOS Observar na prática
EES-20: Sistemas de Controle II. 02 Outubro 2017
EES-20: Sistemas de Controle II 02 Outubro 2017 1 / 39 Recapitulando Ementa de EES-20 Relações entre as equações de estado e a função de transferência. Realizações de funções de transferência. Análise
Aula 12. Cristiano Quevedo Andrea 1. Curitiba, Outubro de DAELT - Departamento Acadêmico de Eletrotécnica
Aula 12 Cristiano Quevedo Andrea 1 1 UTFPR - Universidade Tecnológica Federal do Paraná DAELT - Departamento Acadêmico de Eletrotécnica Curitiba, Outubro de 2011. Resumo 1 Introdução 2 3 4 5 Podemos melhorar
SEM Sistemas de Controle. Aula 4 - Controladores PID, Avanço, Atraso, Esp. Estados
SEM 5928 - Sistemas de Controle Aula 4 - Controladores PID, Avanço, Atraso e no Espaço de Estados Universidade de São Paulo Controlador PID Controlador Proporcional Controlador Integral Controlador PID
Experimento 5 Circuitos RLC com onda quadrada
Experimento 5 Circuitos RLC com onda quadrada 1. OBJETIVO O objetivo desta aula é estudar a variação de voltagem nas placas de um capacitor, em função do tempo, num circuito RLC alimentado com onda quadrada.
CONCURSO DE ADMISSÃO AO CURSO DE FORMAÇÃO ENGENHARIA ELETRÔNICA CADERNO DE QUESTÕES
CONCURSO DE ADMISSÃO AO CURSO DE FORMAÇÃO EXÉRCITO BRASILEIRO ENGENHARIA ELETRÔNICA CADERNO DE QUESTÕES 2012 l a QUESTÃO Valor: 1,00 Um filtro digital é especificado pela seguinte equação: y[n] = 4n-1]
8. Instrumentação Digital 1
8. Instrumentação Digital 8. Instrumentação Digital Conversão analógico-digital Quantum x b Q = 2 n Relação entrada-saída v i x b = Int Q + 0,5 = Int 2 n v i + 0,5 V F Estados da saída 7 6 5 4 3 2 Código
