Violação dos pressupostos básicos do modelo clássico de regressão linear
|
|
|
- Giuliana Fernandes Lancastre
- 7 Há anos
- Visualizações:
Transcrição
1 AGOSTO 2017 Lutemberg Florencio Doutorando em Eng. Civil (Real Estate) USP Engenheiro Civil (POLI-UPE) Espec. em Aval. e Perícias de Eng. (FOC-SP) Mestre em Estatística (UFPE) Eng. Civil do Banco do Nordeste (BNB) Prof. da disc. de Eng. de Aval. da UNINASSAU Vice-presidente técnico da SOBREA Violação dos pressupostos básicos do modelo clássico de regressão linear
2 Motivação > O bom da Estatística é que: para uma mesma amostra coletada, temos diversas possibilidades de modelos de regressão para avaliar um bem... > E, dependendo da situação, pode-se estimar o valor de mercado do avaliando em50.000, , ou ; > Tudo respaldado nas fórmulas Estatísticas do modelo de regressão linear.
3 Motivação Imóvel na realidade
4 Motivação Modelo 1
5 Motivação Modelo 2
6 Motivação Modelo 3
7 Motivação Modelo 4
8 Motivação PERGUNTA: Por que os modelos levam a valores tão diferentes?
9 Contextualização VD x VI Análise de regressão Y i VD é expressa por uma combinação linear das VIs, e respectivas estimativas dos parâmetros populacionais, acrescida do erro aleatório: ˆ ˆ 0 1X1i k X ki ˆ eˆ i Modelo clássico de regressão linear (MCRL) > Com base em uma amostra extraída do mercado, os parâmetros populacionais são estimados por inferência estatística (MMQO). > Teorema de Gauss-Markov: Os estimadores de MQO BLUE
10 Contextualização Estimadores MQO: não-tendenciosidade, eficiência e consistência.
11 Contextualização Mercado imobiliário: teoria dos preços hedônicos (Lancaster & Rosen (1974): o preço do bem pode ser decomposto nos preços de suas k características, por meio de uma função do tipo: P q = P q 1, q 2,, q k. Teoria dos preços hedônicos MCRL V ˆI i ˆ ˆ ˆ. D 0 1Ai 2 i
12 Contextualização V ˆI i ˆ ˆ ˆ. D 0 1Ai 2 i Valor Grau de fundamentação Grau de precisão > O modelo inferido é o elemento central de uma avaliação pelo MCDDM. NBR , e A.2: Quaisquer que sejam os modelos utilizados para inferir o comportamento do mercado e formação de valores, seus pressupostos devem ser devidamente explicitados e testados [...] com o objetivo de obter avaliações não tendenciosas, eficientes e consistentes.
13 Contextualização > No caso de utilização de modelos de regressão linear, deve ser observado o Anexo A, item A.2.1 Verificação dos pressupostos do modelo: (i) Linearidade (ii) Normalidade (iii) Homocedasticidade (iv) Autocorrelação (v) Multicolinearidade (vi) Inexistência de pontos atípicos (influenciantes ou outliers)
14 Contextualização > Três perguntas: PERGUNTA (1): Como verificar se os pressupostos básicos do modelo foram atendidos? PERGUNTA (2/3): Quais as consequências e medidas corretivas a serem seguidas quando há violação de algum dos pressupostos do modelo?
15 Objetivo Como verificar LINEARIDADE Quais as medidas corretivas Pressupostos do modelo Quais as Consequências NORMALIDADE HOMOCEDASTICIDADE
16 Violação dos pressupostos básicos do MCRL Linearidade (correta especificação do modelo) Como verificar? > No R: - Teste RESET de Ramsey Nem sempre é possível uma análise conclusiva
17 Violação dos pressupostos básicos do MCRL Linearidade (correta especificação do modelo) Medidas corretivas - Linearização (transformação das escalas de medição das variáveis: testes de Tukey, Box-Cox) Consequências - Estimador MQO não é BLUE - Previsão errada (subestimação e superestimação) O modelo de regressão linear pode não ser o melhor modelo explicativo para o estudo das variáveis envolvidas, sendo necessário o emprego de outra classe de modelos de regressão.
18 Violação dos pressupostos básicos do MCRL Normalidade Como verificar?
19 Violação dos pressupostos básicos do MCRL Normalidade Como verificar? Pela regra de decisão do teste, W calculado = 0,840 < W (0,05;10) = 0,842. Assim, podemos afirmar com nível de significância de 5% que a amostra não provém de uma população normal. > No R: - Kolmogorov- Smirnov - Anderson- Darling - Teste Jarque- Bera - Shapiro-Wilk - Q-Q plot Como Dn = 0,17 < 0,41, não há evidências para rejeitar a hipótese de normalidade dos resíduos ao nível de significância de 5%.
20 Violação dos pressupostos básicos do MCRL Normalidade Como verificar?
21 Violação dos pressupostos básicos do MCRL Normalidade Medidas corretivas - Ampliação da amostra - Inclusão (em função da omissão) de variáveis importantes - transformação das escalas de medição das variáveis (forma funcional incorreta) Consequências - Estimador MQO continua sendo BLUE - Os procedimentos empregados para os testes estatísticos t e F não serão válidos, assim como não será a construção do intervalo de confiança. Outras distribuições de probabilidade devem ser analisadas e testadas, a exemplo da distribuição Gama via MLG.
22 Resíduo Resíduo Violação dos pressupostos básicos do MCRL Homocedasticidade Como verificar? Y Y > No R: - Teste de Goldfeld-Quandt - Teste de Breusch-Pagan - Teste de Koenker
23 Violação dos pressupostos básicos do MCRL Homocedasticidade Medidas corretivas - Análise (mediante eventual exclusão) de pontos atípicos - Inclusão (em função da omissão) de variáveis importantes - Transformação das escalas de medição das variáveis Consequências - Estimador MQO continua sendo não-tendencioso e consistente, mas deixa de ser eficiente. Ou seja, os testes estatísticos t e F fornecerão resultados inexatos, resultando em conclusões equivocadas, haja vista que a variância do parâmetro estimado torna-se muito grande. Outros processos de estimação serão requeridos: - Ex: estimador consistente da matriz de covariâncias proposto por White (1980) ; estimador HC3 sugerido por Davidson e MacKinnon (1993); estimador de bootstrap ponderado proposto por Wu (1986)
24 Violação dos pressupostos básicos do MCRL Linearidade x Normalidade x Homocedasticidade s 2 s 2 y1 = m1 y2 = m2 Fonte: Antão (2017) y = a + x
25 Conclusão "Some individuals use statistics as a drunk man uses lamp-posts for support rather than for illumination. (Andrew Lang, escritor escocês).
26 ... geralmente dirigimos sobre as pontes sem nos preocuparmos com a solidez de sua construção porque estamos razoavelmente certos de que o engenheiro calculista conferiu rigorosamente os princípios e a prática de sua engenharia. Os engenheiros de avaliações devem fazer o mesmo quando se utilizam do modelo clássico de regressão linear ou, então, incluir a advertência: 'não nos responsabilizamos pelo colapso'... (Texto adaptado de Hendry, D., Dynamic Econometrics, 1998). Obrigado! ([email protected])
Estimativa intervalar na Engenharia de Avaliações: mitos e verdades
Estimativa intervalar na Engenharia de Avaliações: mitos e verdades Lutemberg Florencio Doutorando em Engenharia Civil(Real Estate) USP Engenheiro Civil(POLI-UPE) Especialista em Avaliações e Perícias
Métodos Quantitativos Aplicados
Métodos Quantitativos Aplicados Aula 10 http://www.iseg.utl.pt/~vescaria/mqa/ Tópicos apresentação Análise Regressão: Avaliação de relações de dependência em que se explica o comportamento de uma/várias
Prova de Estatística
UNIVERSIDADE FEDERAL DO PARÁ CURSO DE MESTRADO EM ECONOMIA PROCESSO SELETIVO 2010 Prova de Estatística INSTRUÇÕES PARA A PROVA Leia atentamente as questões. A interpretação das questões faz parte da prova;
Prova de Estatística
Prova de Estatística 1. Para um número-índice ser considerado um índice ideal, ele precisa atender duas propriedades: reversão no tempo e o critério da decomposição das causas. Desta forma, é correto afirmar
AGOSTO 2017 INTERPRETAÇÃO DE RESULTADOS ESTATÍSTICOS EM MODELOS DE REGRESSÃO MÚLTIPLA
Sérgio Antão Paiva AGOSTO 2017 INTERPRETAÇÃO DE RESULTADOS ESTATÍSTICOS EM MODELOS DE REGRESSÃO MÚLTIPLA ENFOQUE DA COMPARAÇÃO Princípio da semelhança: numa mesma data, dois bens semelhantes, em mercados
Análise de Regressão Linear Múltipla III
Análise de Regressão Linear Múltipla III Aula 6 Hei et al., 4 Capítulo 3 Suposições e Propriedades Suposições e Propriedades MLR. O modelo de regressão é linear nos parâmetros O modelo na população pode
ECONOMETRIA. Prof. Patricia Maria Bortolon, D. Sc.
ECONOMETRIA Prof. Patricia Maria Bortolon, D. Sc. Cap. 11 Heterocedasticidade: o que acontece se a variância do erro não é constante? Fonte: GUJARATI; D. N. Econometria Básica: 4ª Edição. Rio de Janeiro.
TESTES DE NORMALIDADE E SIGNIFICÂNCIA. Profª. Sheila Regina Oro
TESTES DE NORMALIDADE E SIGNIFICÂNCIA Profª. Sheila Regina Oro A suposição de normalidade dos dados amostrais ou experimentais é uma condição exigida para a realização de muitas inferências válidas a respeito
Correlação Serial e Heterocedasticidade em Regressões de Séries Temporais. Wooldridge, Cap. 12
Correlação Serial e Heterocedasticidade em Regressões de Séries Temporais Wooldridge, Cap. 1 Porto Alegre, 11 de novembro de 010 1 CORRELAÇÃO SERIAL Ocorrência Conseqüência Análise gráfica Autocorrelação
Análise da Regressão múltipla: MQO Assintótico y = β 0 + β 1 x 1 + β x +... β k x k + u 3. Propriedades assintóticas Antes, propriedades sobre amostra
Análise da Regressão múltipla: MQO Assintótico Capítulo 5 do Wooldridge Análise da Regressão múltipla: MQO Assintótico y = β 0 + β 1 x 1 + β x +... β k x k + u 3. Propriedades assintóticas Antes, propriedades
AULA 10 - MQO em regressão múltipla: Propriedades Estatísticas (Variância)
AULA 10 - MQO em regressão múltipla: Propriedades Estatísticas (Variância) Susan Schommer Econometria I - IE/UFRJ Variância dos estimadores MQO Vamos incluir mais uma hipótese: H1 [Linear nos parâmetros]
RESUMO DOS PRINCIPAIS ELEMENTOS DE ANÁLISE DE MODELOS DE REGRESSÃO LINEAR (NBR partes 1 e 2)
RESUMO DOS PRINCIPAIS ELEMENTOS DE ANÁLISE DE MODELOS DE REGRESSÃO LINEAR (NBR-14653 - partes 1 e 2) O trabalho de Avaliação de Imóveis se desenvolve em duas etapas distintas: Primeira etapa: Identificação
AULA 10 - MQO em regressão múltipla: Propriedades Estatísticas (Variância)
AULA 10 - MQO em regressão múltipla: Propriedades Estatísticas (Variância) Susan Schommer Econometria I - IE/UFRJ Variância dos estimadores MQO Vamos incluir mais uma hipótese: H1 [Linear nos parâmetros]
Distribuições Amostrais e Estimação Pontual de Parâmetros
Distribuições Amostrais e Estimação Pontual de Parâmetros ESQUEMA DO CAPÍTULO 7.1 INTRODUÇÃO 7.2 DISTRIBUIÇÕES AMOSTRAIS E TEOREMA DO LIMITE CENTRAL 7.3 CONCEITOS GERAIS DE ESTIMAÇÃO PONTUAL 7.3.1 Estimadores
Análise da Regressão múltipla: Inferência. Aula 4 6 de maio de 2013
Análise da Regressão múltipla: Inferência Revisão da graduação Aula 4 6 de maio de 2013 Hipóteses do modelo linear clássico (MLC) Sabemos que, dadas as hipóteses de Gauss- Markov, MQO é BLUE. Para realizarmos
Análise Multivariada Aplicada à Contabilidade
Mestrado e Doutorado em Controladoria e Contabilidade Análise Multivariada Aplicada à Contabilidade Prof. Dr. Marcelo Botelho da Costa Moraes www.marcelobotelho.com [email protected] Turma: 2º / 2016 1 Agenda
ECONOMETRIA. Prof. Patricia Maria Bortolon, D. Sc.
ECONOMETRIA Prof. Patricia Maria Bortolon, D. Sc. Cap. 10 Multicolinearidade: o que acontece se os regressores são correlacionados? Fonte: GUJARATI; D. N. Econometria Básica: 4ª Edição. Rio de Janeiro.
Análise de dados para negócios. Cesaltina Pires
Análise de dados para negócios Cesaltina Pires Janeiro de 2003 Índice geral 1 Representação grá ca de dados 1 1.1 Variáveis discretas e contínuas.......................... 1 1.2 Distribuições de frequência
CONHECIMENTOS ESPECÍFICOS
fonte de graus de soma de quadrado variação liberdade quadrados médio teste F regressão 1 1,4 1,4 46,2 resíduo 28 0,8 0,03 total 2,2 A tabela de análise de variância (ANOVA) ilustrada acima resulta de
RESUMO DO CAPÍTULO 3 DO LIVRO DE WOOLDRIDGE ANÁLISE DE REGRESSÃO MÚLTIPLA: ESTIMAÇÃO
RESUMO DO CAPÍTULO 3 DO LIVRO DE WOOLDRIDGE ANÁLISE DE REGRESSÃO MÚLTIPLA: ESTIMAÇÃO Regressão simples: desvantagem de apenas uma variável independente explicando y mantendo ceteris paribus as demais (ou
Regressões: Simples e MúltiplaM. Prof. Dr. Luiz Paulo Fávero 1
Regressões: Simples e MúltiplaM Prof. Dr. Luiz Paulo FáveroF Prof. Dr. Luiz Paulo Fávero 1 1 Técnicas de Dependência Análise de Objetivos 1. Investigação de dependências entre variáveis. 2. Avaliação da
Prof. Adriano Mendonça Souza, Dr. Departamento de Estatística PPGEMQ / PPGEP - UFSM
Prof. Adriano Mendonça Souza, Dr. Departamento de Estatística PPGEMQ / PPGEP - UFSM Estimação de Parâmetros O objetivo da Estatística Indutiva é tirar conclusões probabilísticas sobre aspectos da população,
Notas de Aulas Econometria I ** Eduardo P. Ribeiro, 2010 PARTE II
Notas de Aulas Econometria I ** Eduardo P Ribeiro, 00 PARTE II Autocorrelação Autocorrelação: violação da hipótese: E [ε t ε t-s ] = 0, para s > 0, como por exemplo, ε t = ε t- + υ t, onde υ t é ruído
Pressuposições à ANOVA
UNIVERSIDADE FEDERAL DE RONDÔNIA CAMPUS DE JI-PARANÁ DEPARTAMENTO DE ENGENHARIA AMBIENTAL Estatística I - UNIR Estatística II Pressuposições à ANOVA Prof. a Renata Gonçalves Aguiar 1 2 A análise de variância
Correlação e Regressão
Correlação e Regressão Vamos começar com um exemplo: Temos abaixo uma amostra do tempo de serviço de 10 funcionários de uma companhia de seguros e o número de clientes que cada um possui. Será que existe
* *
Eng.º Richard Gebara 1 EXCELENTÍSSIMO SENHOR DOUTOR JUÍZ DE DIREITO DA 4.ª VARA CÍVEL BAURU *1023817-38.2015.8.26.0071* RICHARD GEBARA, brasileiro, Engenheiro Civil, CREA n.º 060020304-9, PERITO nomeado
ÍNDICE. Variáveis, Populações e Amostras. Estatística Descritiva PREFÁCIO 15 NOTA À 3ª EDIÇÃO 17 COMO USAR ESTE LIVRO? 21 CAPÍTULO 1 CAPÍTULO 2
COMO USAR ESTE LIVRO ÍNDICE PREFÁCIO 15 NOTA À 3ª EDIÇÃO 17 COMO USAR ESTE LIVRO? 21 CAPÍTULO 1 Variáveis, Populações e Amostras 1.1. VARIÁVEIS ESTATÍSTICAS E ESCALAS DE MEDIDA 27 1.2. POPULAÇÃO VS. AMOSTRA
Teste de Homocedasticidade.
Teste de Homocedasticidade. Aula 4 Gujarati, 000, Capítulo Heij et al., Seção 5.4 Wooldridge, 0 Capítulo 8 (seções 8. a 8.4) HETEROCEDASTICIDADE Essa aula objetiva responder às seguintes perguntas: Qual
Capítulo 4 Inferência Estatística
Capítulo 4 Inferência Estatística Slide 1 Resenha Intervalo de Confiança para uma proporção Intervalo de Confiança para o valor médio de uma variável aleatória Intervalo de Confiança para a diferença de
AULA 11 - Normalidade e Inferência em Regressão Múltipla - Parte 1
AULA 11 - Normalidade e Inferência em Regressão Múltipla - Parte 1 Susan Schommer Econometria I - IE/UFRJ Distribuições amostrais dos estimadores MQO Nas aulas passadas derivamos o valor esperado e variância
1 Que é Estatística?, 1. 2 Séries Estatísticas, 9. 3 Medidas Descritivas, 27
Prefácio, xiii 1 Que é Estatística?, 1 1.1 Introdução, 1 1.2 Desenvolvimento da estatística, 1 1.2.1 Estatística descritiva, 2 1.2.2 Estatística inferencial, 2 1.3 Sobre os softwares estatísticos, 2 1.4
(iv) Ausência de correlação serial nos erros, dados dois valores quaisquer de X, X i e X j (i j), a correlação entre ε i e ε j é zero,, /,
4 Metodologia O método de estimação por mínimos quadrados está fundamentado em algumas premissas, que são necessárias para realizar inferências estatísticas sobre a variável dependente Y. As principais
Verificando as pressuposições do modelo estatístico
Verificando as pressuposições do modelo estatístico Prof. a Dr. a Simone Daniela Sartorio de Medeiros DTAiSeR-Ar 1 As pressuposições do modelo estatístico: 1) os efeitos do modelo estatístico devem ser
Os Mínimos Quadrados Ordinários Assintóticos
Os Mínimos Quadrados Ordinários Assintóticos Enquadramento 1. A analise assintótica, é o método matemático que descreve a limitação de um determinado comportamento. O termo assintótico significa aproximar-se
ECONOMETRIA. Prof. Danilo Monte-Mor
ECONOMETRIA Prof. Danilo Monte-Mor Econometria (Levine 2008, Cap. 13) ECONOMETRIA Aplicação da estatística matemática aos dados econômicos para dar suporte empírico aos modelos construídos pela economia
Salário, educação e experiência: uma abordagem econométrica
Salário, educação e experiência: uma abordagem econométrica Felipe Resende Oliveira 1 Dieison Lenon Casagrande 2 Guilherme Studart 3 Inaldo Bezerra da Silva 4 Paulo Henrique Monteiro Guimarães 5 Resumo:
Variância pop. * conhecida Teste t Paramétrico Quantitativa Distribuição normal Wilcoxon (teste dos sinais, Wilcoxon p/ 1 amostra)
Testes de Tendência Central (média, mediana, proporção) Classificação Variável 1 Variável 2 Núm ero Gru pos Dependência Teste Z Paramétrico Quantitativa - 1 - Premissas Variância pop. * conhecida Teste
Inferência Estatística:
Inferência Estatística: Amostragem Estatística Descritiva Cálculo de Probabilidade Inferência Estatística Estimação Teste de Hipótese Pontual Por Intervalo Conceitos básicos Estimação É um processo que
4. ANÁLISE DOS RESULTADOS DA PESQUISA
68 4. ANÁLISE DOS RESULTADOS DA PESQUISA Conforme já comentado, este estudo visa analisar a relação entre o EVA e o retorno das ações no mercado acionário brasileiro, através da aplicação de dois modelos
Gabarito - Lista 5 - Questões de Revisão
Gabarito - Lista 5 - Questões de Revisão Monitores: Camila Steffens e Matheus Rosso Parte I - Teoria assintótica 1. Enuncie a lei dos grandes números e o teorema central do limite. A LGN em sua expressão
MOQ-14 PROJETO e ANÁLISE de EXPERIMENTOS. Professor: Rodrigo A. Scarpel
MOQ-14 PROJETO e ANÁLISE de EXPERIMENTOS Professor: Rodrigo A. Scarpel [email protected] www.mec.ita.br/~rodrigo Programa do curso: Semana Conteúdo 1 Apresentação da disciplina. Princípios de modelos lineares
Hipóteses do modelo linear clássico (CLM) Análise da Regressão múltipla: Inferência. Hipóteses do CLM (cont.) O teste t. Distribuição normal amostral
9/03/0 Hipótes do modelo linear clássico (CLM) Análi da Regressão múltipla: Inferência Sabemos que, dadas as hipótes de Gauss- Markov, MQO é BLUE Para realizarmos os testes de hipótes clássicos, precisamos
INSTITUTO SUPERIOR DE ECONOMIA E GESTÃO Estatística II - Licenciatura em Gestão Época de Recurso - Parte prática (14 valores) 24/01/2011.
INSTITUTO SUPERIOR DE ECONOMIA E GESTÃO Estatística II - Licenciatura em Gestão Época de Recurso - Parte prática (14 valores) 24/01/2011 Nome: Nº Espaço reservado para a classificação (não escrever aqui)
AULA 13 Análise de Regressão Múltipla: MQO Assimptótico
1 AULA 13 Análise de Regressão Múltipla: MQO Assimptótico Ernesto F. L. Amaral 15 de abril de 2010 Métodos Quantitativos de Avaliação de Políticas Públicas (DCP 030D) Fonte: Wooldridge, Jeffrey M. Introdução
Aula 2 Tópicos em Econometria I. Porque estudar econometria? Causalidade! Modelo de RLM Hipóteses
Aula 2 Tópicos em Econometria I Porque estudar econometria? Causalidade! Modelo de RLM Hipóteses A Questão da Causalidade Estabelecer relações entre variáveis não é suficiente para a análise econômica.
AULA 9 - MQO em regressão múltipla: Propriedades Estatísticas (Valor Esperado)
AULA 9 - MQO em regressão múltipla: Propriedades Estatísticas (Valor Esperado) Susan Schommer Econometria I - IE/UFRJ Valor esperado dos estimadores MQO Nesta aula derivamos o valor esperado dos estimadores
Mais Informações sobre Itens do Relatório
Mais Informações sobre Itens do Relatório Amostra Tabela contendo os valores amostrados a serem utilizados pelo método comparativo (estatística descritiva ou inferencial) Modelos Pesquisados Tabela contendo
Modelos de Regressão Linear Simples - Análise de Resíduos
Modelos de Regressão Linear Simples - Análise de Resíduos Erica Castilho Rodrigues 1 de Setembro de 2014 3 O modelo de regressão linear é dado por Y i = β 0 + β 1 x i + ɛ i onde ɛ i iid N(0,σ 2 ). O erro
Modelos de Regressão Linear Simples - Análise de Resíduos
1 Modelos de Regressão Linear Simples - Análise de Resíduos Erica Castilho Rodrigues 27 de Setembro de 2016 2 3 O modelo de regressão linear é dado por 3 O modelo de regressão linear é dado por Y i = β
UNIVERSIDADE FEDERAL DA FRONTEIRA SUL Campus CERRO LARGO. PROJETO DE EXTENSÃO Software R: de dados utilizando um software livre.
UNIVERSIDADE FEDERAL DA FRONTEIRA SUL Campus CERRO LARGO PROJETO DE EXTENSÃO Software R: Capacitação em análise estatística de dados utilizando um software livre. Fonte: https://www.r-project.org/ Módulo
Séries Temporais e Modelos Dinâmicos. Econometria. Marcelo C. Medeiros. Aula 9
em Econometria Departamento de Economia Pontifícia Universidade Católica do Rio de Janeiro Aula 9 Data Mining Equação básica: Amostras finitas + muitos modelos = modelo equivocado. Lovell (1983, Review
SOLICITANTE: PREFEITURA MUNICIPAL DE VENÂNCIO AIRES
SOLICITANTE: PREFEITURA MUNICIPAL DE VENÂNCIO AIRES OBJETO: Valorização Imobiliária decorrente de pavimentação Bairros São Francisco Xavier, União, Diettrich e Morsch Venâncio Aires - RS 1. OBJETIVO E
AULA 7 - Inferência em MQO: ICs e Testes de
AULA 7 - Inferência em MQO: ICs e Testes de Hipóteses Susan Schommer Econometria I - IE/UFRJ Nosso primeiro objetivo aqui é relembrar a diferença entre estimação de ponto vs estimação de intervalo. Vamos
Tópicos Extras 1ª parte. Testes Não Paramétricos, Análise Multivariada, Outras Técnicas
Tópicos Extras 1ª parte Testes Não Paramétricos, Análise Multivariada, Outras Técnicas 1 2 Técnicas de dependência 3 4 Situações Comparar 3 tipos de rede de computadores, C1, C2 e C3, em termos do tempo
Estimação e Testes de Hipóteses
Estimação e Testes de Hipóteses 1 Estatísticas sticas e parâmetros Valores calculados por expressões matemáticas que resumem dados relativos a uma característica mensurável: Parâmetros: medidas numéricas
Delineamento e Análise Experimental Aula 3
Aula 3 Castro Soares de Oliveira Teste de hipótese Teste de hipótese é uma metodologia estatística que permite tomar decisões sobre uma ou mais populações baseando-se no conhecimento de informações da
Análise de Regressão Linear Simples e
Análise de Regressão Linear Simples e Múltipla Carla Henriques Departamento de Matemática Escola Superior de Tecnologia de Viseu Introdução A análise de regressão estuda o relacionamento entre uma variável
Estimação parâmetros e teste de hipóteses. Prof. Dr. Alberto Franke (48)
Estimação parâmetros e teste de hipóteses Prof. Dr. Alberto Franke (48) 91471041 Intervalo de confiança para média É um intervalo em que haja probabilidade do verdadeiro valor desconhecido do parâmetro
Carga Horária: 80 horas (correspondem a aulas e atividades extra-classe)
Curso: Economia Disciplina: ECONOMETRIA Turma 4ECO Carga Horária: 80 horas (correspondem a aulas e atividades extra-classe) Período Letivo: 2014/1 Professor: Hedibert Freitas Lopes (www.hedibert.org) OBJETIVO:
Modelo de Regressão Múltipla
Modelo de Regressão Múltipla Modelo de Regressão Linear Simples Última aula: Y = α + βx + i i ε i Y é a variável resposta; X é a variável independente; ε representa o erro. 2 Modelo Clássico de Regressão
LISTA DE EXERCÍCIOS - TÉCNICAS DE REGRESSÃO SIMPLES E MÚLTIPLA
LISTA DE EXERCÍCIOS - TÉCNICAS DE REGRESSÃO SIMPLES E MÚLTIPLA 1 1) Em um estudo foi utilizada, erroneamente, uma amostra de apenas 3 observações para se estimarem os coeficientes de uma equação de regressão.
EVOLUÇÃO DA DÍVIDA PÚBLICA MOBILIÁRIA FEDERAL INTERNA NO BRASIL DE 1995 A 2002
EVOLUÇÃO DA DÍVIDA PÚBLICA MOBILIÁRIA FEDERAL INTERNA NO BRASIL DE 1995 A 2002 Vanessa Lucas Gonçalves 1 Sérgio Luiz Túlio 2 RESUMO Este artigo tem por objetivo analisar a evolução da Dívida Pública Mobiliária
ECONOMETRIA. Prof. Patricia Maria Bortolon, D. Sc.
ECONOMETRIA Prof. Patricia Maria Bortolon, D. Sc. Introdução Teoria Econômica Inferência Estatística Matemática Fenômenos Econômicos Teoria Econômica Teoria Microeconômica Preço Demanda Mas quanto????
AULA 11 Heteroscedasticidade
1 AULA 11 Heteroscedasticidade Ernesto F. L. Amaral 30 de julho de 2012 Análise de Regressão Linear (MQ 2012) www.ernestoamaral.com/mq12reg.html Fonte: Wooldridge, Jeffrey M. Introdução à econometria:
Estatística Aplicada
Estatística Aplicada Intervalos de Confiança Professor Lucas Schmidt www.acasadoconcurseiro.com.br Estatística Aplicada INTERVALOS DE CONFIANÇA Processos de estimação Estimação por ponto: o processo em
DISTRIBUIÇÃO AMOSTRAL E ESTIMAÇÃO PONTUAL INTRODUÇÃO ROTEIRO POPULAÇÃO E AMOSTRA. Estatística Aplicada à Engenharia
ROTEIRO 1. Introdução; DISTRIBUIÇÃO AMOSTRAL E ESTIMAÇÃO PONTUAL. Teorema Central do Limite; 3. Conceitos de estimação pontual; 4. Métodos de estimação pontual; 5. Referências. 1 POPULAÇÃO E AMOSTRA População:
EPGE / FGV MFEE - ECONOMETRIA. Monitoria 01-18/04/2008 (GABARITO)
EGE / FGV MFEE - ECONOMETRIA Monitoria 01-18/04/008 (GABARITO) Eduardo. Ribeiro [email protected] ofessor Ilton G. Soares [email protected] Monitor Tópicos de Teoria: 1. Hipóteses do Modelo Clássico
Probabilidade e Estatística. Estimação de Parâmetros Intervalo de Confiança
Probabilidade e Estatística Prof. Dr. Narciso Gonçalves da Silva http://páginapessoal.utfpr.edu.br/ngsilva Estimação de Parâmetros Intervalo de Confiança Introdução A inferência estatística é o processo
Modelos de Análise de Variância
Modelos de Análise de Variância Delineamento Completamente Aleatorizado: k tratamentos, r réplicas (balanceado) yi iid ~ N ; i i Normalidade Variância constante ( homocedasticidade ) Independência Análise
Aula 2 Uma breve revisão sobre modelos lineares
Aula Uma breve revisão sobre modelos lineares Processo de ajuste de um modelo de regressão O ajuste de modelos de regressão tem como principais objetivos descrever relações entre variáveis, estimar e testar
Definição. Os valores assumidos pelos estimadores denomina-se estimativas pontuais ou simplesmente estimativas.
1. Inferência Estatística Inferência Estatística é o uso da informção (ou experiência ou história) para a redução da incerteza sobre o objeto em estudo. A informação pode ou não ser proveniente de um experimento
Introdução Regressão linear Regressão de dados independentes Regressão não linear. Regressão. Susana Barbosa
Regressão Susana Barbosa Mestrado em Ciências Geofísicas 2012-2013 Regressão linear x : variável explanatória y : variável resposta Gráfico primeiro! Gráfico primeiro! Gráfico primeiro! Modelo linear x
Prof. Caio Piza CCSA - Depto de Economia/NPQV
Workshop de Econometria: Introdução ao uso do Eviews Prof. Caio Piza CCSA - Depto de Economia/NPQV Motivação: Como estimar o impacto de um variável vel sobre a outra, o efeito causal,, com base em uma
Aula 3 - Revisão de Probabilidade e Estatística: Esclarecimento de Dúvidas
Aula 3 - Revisão de Probabilidade e Estatística: Esclarecimento de Dúvidas Matheus Rosso e Camila Steffens 19 de Março de 2018 Independência de variáveis aleatórias Duas V.A. são independentes se, e somente
AULAS 25 E 26 Heteroscedasticidade
1 AULAS 25 E 26 Heteroscedasticidade Ernesto F. L. Amaral 10 e 15 de junho de 2010 Métodos Quantitativos de Avaliação de Políticas Públicas (DCP 030D) Fonte: Wooldridge, Jeffrey M. Introdução à econometria:
AGOSTO 2017 Tratamento por Fatores x Regressão Linear
Arq. Urb Ana Maria de Biazzi Dias de Oliveira [email protected] AGOSTO 2017 Tratamento por Fatores x Regressão Linear Tratamento por Fatores x Regressão Linear Uma resposta aproximada para o problema
Casos. Índice. Parte I. Caso 1 Vendas da empresa Platox. Caso 2 Importação de matéria-prima. Caso 3 Carteira de acções. Caso 4 Lançamento de produto
Índice PREFÁCIO 15 NOTA INTRODUTÓRIA 17 CONVENÇÕES UTILIZADAS 19 Parte I Casos Caso 1 Vendas da empresa Platox 1. Enquadramento e objectivos 25 2. Aspectos metodológicos 26 3. Resultados e comentários
Análise de Séries Temporais. Modelos estacionários Processos puramente aleatórios, AR(p), MA(q) ARIMA(p,q)
UNIVERSIDADE DE SÃO PAULO Faculdade de Economia, Administração e Contabilidade de Ribeirão Preto Análise de Séries Temporais. Modelos estacionários Processos puramente aleatórios, AR(p), MA(q) ARIMA(p,q)
Notas de Aulas Econometria I ** Eduardo P. Ribeiro, 2011 PARTE II
Notas de Aulas Econometria I ** Eduardo P Ribeiro, 0 PARTE II Autocorrelação Autocorrelação: violação da hipótese: E [ε t ε t-s ] = 0, para s > 0, como por exemplo, ε t = ρ ε t- + υ t, onde υ t é ruído
REGRESSÃO LINEAR Parte II. Flávia F. Feitosa
REGRESSÃO LINEAR Parte II Flávia F. Feitosa BH1350 Métodos e Técnicas de Análise da Informação para o Planejamento Julho de 2015 ANÁLISE DE REGRESSÃO Análise de regressão é uma ferramenta estatística que
INSTRUÇÕES. O tempo disponível para a realização das duas provas e o preenchimento da Folha de Respostas é de 5 (cinco) horas no total.
INSTRUÇÕES Para a realização desta prova, você recebeu este Caderno de Questões. 1. Caderno de Questões Verifique se este Caderno de Questões contém a prova de Conhecimentos Específicos referente ao cargo
AULAS 21 E 22 Análise de Regressão Múltipla: Estimação
1 AULAS 21 E 22 Análise de Regressão Múltipla: Estimação Ernesto F. L. Amaral 28 de outubro e 04 de novembro de 2010 Metodologia de Pesquisa (DCP 854B) Fonte: Cohen, Ernesto, e Rolando Franco. 2000. Avaliação
MOQ-14 PROJETO e ANÁLISE de EXPERIMENTOS. Professor: Rodrigo A. Scarpel
MOQ-14 PROJETO e ANÁLISE de EXPERIMENTOS Professor: Rodrigo A. Scarpel [email protected] www.mec.ita.br/~rodrigo Programa do curso: Semana Conteúdo 1 Apresentação da disciplina. Princípios de modelos lineares
