SOLUÇÃO PRATIQUE EM CASA

Tamanho: px
Começar a partir da página:

Download "SOLUÇÃO PRATIQUE EM CASA"

Transcrição

1 SOLUÇÃO PC1. [D] SOLUÇÃO PRATIQUE EM CASA A análise da situação permite concluir que o carretel F gira no mesmo sentido que o carretel R, ou seja, horário. Como se trata de uma acoplamento tangencial, ambos têm mesma velocidade linear, igual à velocidade linear da fita. ff r v R F v R πffrf πfr r R ff r F fr r R. fr rf Essa expressão final mostra que a frequência de rotação é inversamente proporcional ao raio. Como o carretel F tem maior raio ele gira com menor frequência, ou seja dá menos voltas que o carretel R. SOLUÇÃO PC. [A] Observe o esquema abaixo. As velocidades lineares de A e B são iguais. Portanto: ωr ΩR ωr Ω R Para que a velocidade angular da roda traseira ser a maior possível é que r seja maior e R menor. INDUÇÃO ELETROMAGNÉTICA 1

2 SOLUÇÃO PC3. [B] No acoplamento coaxial as frequências são iguais. No acoplamento tangencial as frequências (f) são inversamente proporcionais aos números (N) de dentes; Assim: fa fmotor 18 rpm. fb NB fa N A fb fb 6 rpm. fc fb 6 rpm. fd ND fc N C fd fd rpm. A frequência do ponteiro é igual à da engrenagem D, ou seja: f rpm. SOLUÇÃO PC4. [A] A figura ilustra a situação, considerando a Terra esférica. Todos os pontos da Terra têm a mesma velocidade angular. Assim, para V v, tem-se: v V v v R r. r R r R Mas: r R 1 cos θ cos θ θ 60. R R INDUÇÃO ELETROMAGNÉTICA

3 SOLUÇÃO PC5. [C] A velocidade angular média ( ω ) depende basicamente da frequência da π rotação (f) ou do período (T) sendo dada por: ω πf T Para ambos os observadores (A e B), tanto suas frequências como seus períodos de rotação são os mesmos, pois quando a Terra dá uma volta completa, qualquer ponto do planeta também dá uma rotação completa, então suas velocidades angulares médias ( ω ) devem ser exatamente iguais. f A fb ωa A TB T ω B Já a velocidade escalar média (v) dessas duas pessoas, depende do raio (R) de curvatura da Terra. Pontos mais próximos dos polos têm raios menores que pontos próximos ao Equador, portanto temos que: RA RB Como a velocidade escalar média (v) é diretamente proporcional ao raio e dada por: SOLUÇÃO PC6. [C] πr v πrf, temos que va v B. T A aceleração máxima que o piloto pode ser submetido nas manobras à velocidade máxima é de 9 vezes a aceleração da gravidade, sendo assim, a aceleração centrípeta para a curva solicitada na velocidade máxima da aeronave é: 1m s 400 km h v 3,6 km h 666,67 m s ,44 m s ac ac R 1000 m 1000 m 1000 m ac 444,44 m s INDUÇÃO ELETROMAGNÉTICA 3

4 O valor da aceleração fica 44,4 vezes maior do que a aceleração da gravidade, portanto nas condições impostas fica impossível executar a tarefa sem que haja o desmaio do piloto. Aplicando o limite de aceleração tolerável ao piloto, podemos recalcular a velocidade máxima para executar a curva solicitada ou ainda determinar o raio mínimo para executar a manobra com a velocidade máxima. v ac vmáx ac R vmáx 9gR 9 10 m s 1000 m R v m s 1080 km h máx Nota-se que a velocidade deve ser reduzida de 55% em relação à velocidade máxima da aeronave. Já para o piloto fazer a manobra com a velocidade máxima, o raio mínimo será: v v v ,44 m s ac Rmín Rmín R mín 4938,3 m R ac 9g 9 10 m s Logo, a resposta correta corresponde à alternativa [C]. SOLUÇÃO PC7. [B] A velocidade angular ω em rad s é: rad ω π π ω π rad s T 4 s E a aceleração centrípeta é calculada com: π 3π ac ω R rad s 6 mac m s SOLUÇÃO PC8. [C] No eixo horizontal, o movimento é uniforme com velocidade constante portanto com a distância percorrida e o tempo, podemos calculá-la. v H, 4 INDUÇÃO ELETROMAGNÉTICA

5 Δs 60 m vh vh vh 15 m s Δt 4 s Com o auxílio da trigonometria e com a velocidade horizontal a velocidade de lançamento v. vh vh 15 m s cosβ v v 5 m s v cosβ 0,6 v H, calculamos Portanto, na ordem solicitada na questão a resposta correta é alternativa [C]. SOLUÇÃO PC9. [D] Para o caso de não haver resistência do ar, devemos considerar o ângulo de lançamento teórico para o maior alcance possível de 45. Então a componente horizontal da velocidade, eixo x, que é constante, é dada por: v v cosθ v v cos 45 v x 0 x 0 0 No ponto mais alto da trajetória, a velocidade no eixo vertical y é nula e, consequentemente, a energia cinética associada a esse eixo. vy 0 e Ey 0 Usando a expressão para a energia cinética do lançamento E e a componente horizontal E x : m v E 0 m vx e Ex Substituindo o valor da velocidade na equação da componente horizontal e comparando com a energia cinética inicial: m vx m m 1 E Ex v0 v0 Ex E INDUÇÃO ELETROMAGNÉTICA 5

6 SOLUÇÃO PC10. [E] Primeiro vamos calcular a distância do trecho AB : Vamos analisar o eixo x 1 S S0 V0y t at 1 H 0 V0 senθ t ( g) t 1 H V0 senθ t g t No final do trecho AB, a altura máxima atingida será V0 senθ t g t 1 0 (V0 senθ g t) t Para a solução ser igual a zero só existe duas possibilidades t 0 (que é o caso inicial) ou então: 1 V0 senθ g t 0 V0senθ t (i) g Agora vamos ver o deslocamento no eixo x 1 S S0 V0x t at 1 S 0 V0xt 0 t S V t 0x S V0 cosθ t (ii) 6 INDUÇÃO ELETROMAGNÉTICA

7 (i) em (ii) V0 senθ S V0 cosθ g V0 S cosθ senθ g V0 S cosθ senθ g V0 S sen( θ) g S na verdade é o trecho AB. Agora vamos calcular o trecho BC : S V0xt S V0 cosθ t Onde S' é o trecho BC. O trecho AC é igual ao trecho AB BC, logo o trecho AC é igual a: V0 AC θ 0 S sen( ) V cosθ t g SOLUÇÃO PC11. [A] Fazendo algumas definições na figura: INDUÇÃO ELETROMAGNÉTICA 7

8 Por semelhança de triângulos, extraímos a primeira relação entre h e D: 85 h 8 h 165 8D (1) D 10 1 Do lançamento horizontal, tem-se a expressão do alcance D: h h h D vx D 5 D 5 () g 10 5 Substituindo (1) em (): 165 8D 165 8D D 5 D D D D 40D 85 0 D' 55 e D'' 15 Como a distância D é positiva, então D 15 m. SOLUÇÃO PC1. [B] Observações: Obviamente que Galileu estava desconsiderando os efeitos do ar; Na afirmativa [II] entenda-se tempos de movimento e não tempos de lançamento. [I] Incorreta. Pelo princípio da independência dos movimentos, na vertical os dois projéteis sofrem a mesma aceleração, que é a própria aceleração da gravidade, tendo o mesmo tempo de movimento que o de um corpo em simples queda livre. [II] Correta. Os tempos de movimento são iguais independente da massa e da velocidade. [III] Incorreta. A ideia está correta. [IV] Correta. SOLUÇÃO PC13. [D] A passagem de corrente pela bobina B 1 induzirá uma corrente inicial na bobina B o que fará o galvanômetro indicar uma corrente inicial. 8 INDUÇÃO ELETROMAGNÉTICA

9 SOLUÇÃO PC14. [E] Para o caso em que o número de espiras N 1 é menor que N, a tensão U será maior que a tensão aplicada U 1. Assim, o transformador será aumentador. SOLUÇÃO PC15. [E] [II] Falso. Quando o detector se aproxima de um objeto metálico, a variação do fluxo magnético induz correntes elétricas (correntes de Ampère) nesse objeto. Sendo variáveis, essas correntes produzem campos variáveis que induzem novas correntes na bobina, modificando a intensidade da corrente original. A variação da intensidade de corrente é detectada por um amperímetro que aciona um alarme sonoro e um sinal luminoso, indicando a presença do objeto. [III] Falso. Quando o detector é aproximado de um objeto metálico, a variação do fluxo elétrico magnético induz correntes induzidas nesse objeto. Sendo variáveis, essas correntes produzem campos variáveis que induzem novas correntes na bobina, modificando a intensidade da corrente original. A variação da intensidade de corrente é detectada por um amperímetro que aciona um alarme sonoro e um sinal luminoso, indicando a presença do objeto. A lei de Lenz diz que existirá uma corrente induzida em uma espira condutora fechada se, e somente se, o fluxo magnético através da mesma estiver variando. O sentido da corrente induzida é tal que o campo magnético induzido se opõe à variação do fluxo. INDUÇÃO ELETROMAGNÉTICA 9

10 10 INDUÇÃO ELETROMAGNÉTICA

11 INDUÇÃO ELETROMAGNÉTICA 11

12 1 INDUÇÃO ELETROMAGNÉTICA

SOLUÇÃO PRATIQUE EM CASA

SOLUÇÃO PRATIQUE EM CASA SOLUÇÃO PAIQUE EM CASA SOLUÇÃO PC1. [D] A análise da situação permite concluir que o carretel F gira no mesmo sentido que o carretel, ou seja, horário. Como se trata de uma oplamento tangencial, ambos

Leia mais

SOLUÇÃO COMECE DO BÁSICO

SOLUÇÃO COMECE DO BÁSICO SOLUÇÃO COMECE DO BÁSICO SOLUÇÃO CB1. [B] π ωterra 4 π π v ωr R v R 4 1 SOLUÇÃO CB. [B] ω πf 1 3 f 5 f Hz 3 Como o ponto material completa 5 3 voltas a cada segundo, após 1 s ele terá dado: 5 N 1 3 N 166

Leia mais

LISTA DE EXERCÍCIOS 1º ANO

LISTA DE EXERCÍCIOS 1º ANO Como se deslocam no mesmo sentido, a velocidade relativa entre eles é: V rel = V A - V C = 80-60 = 20 km/h Sendo a distância relativa, S rel = 60 km, o tempo necessário para o alcance é: S rel 60 t = =

Leia mais

SOLUÇÃO PRATIQUE EM CASA

SOLUÇÃO PRATIQUE EM CASA SOLUÇÃO PRATIQUE EM CASA SOLUÇÃO PC1. [D] Primeiramente é necessário encontrar o sentido da força magnética. Para tal, é direto verificar, utilizando a regra da mão esquerda, que o sentido desta força

Leia mais

Movimento Circular Uniforme

Movimento Circular Uniforme . (Unifesp 07) Um avião, logo após a aterrissagem, está em movimento retilíneo sobre a pista horizontal, com sua hélice girando com uma frequência constante de 4 Hz. Considere que em um determinado intervalo

Leia mais

Física E Intensivo v. 2

Física E Intensivo v. 2 Física E Intensivo v. Exercícios ) A ) D Polos com indicações contrárias se atraem e polos com indicações iguais se repelem. 8. Incorreta. O principio da inseparidade magnética assegura que todo rompimento

Leia mais

Revisão EsPCEx 2018 Cinemática Prof. Douglão. Gabarito:

Revisão EsPCEx 2018 Cinemática Prof. Douglão. Gabarito: Revisão EsPCEx 018 Cinemática Prof. Doulão Gabarito: Resposta da questão 1: Orientando a trajetória no sentido do joador para a parede, na ida o movimento é proressivo, portanto a velocidade escalar é

Leia mais

Bacharelado Engenharia Civil

Bacharelado Engenharia Civil Bacharelado Engenharia Civil Física Geral e Experimental I Prof.a: Érica Muniz 1 Período Lançamentos Movimento Circular Uniforme Movimento de Projéteis Vamos considerar a seguir, um caso especial de movimento

Leia mais

FÍSICA. 1ª Série. Prof.: Walfredo A 24 B 72 D 108. Aluno(a):

FÍSICA. 1ª Série. Prof.: Walfredo A 24 B 72 D 108. Aluno(a): FÍSICA Prof.: Walfredo Aluno(a): 05 9/0/07 ª Série. (Unifesp 07) Um avião, logo após a aterrissagem, está em movimento retilíneo sobre a pista horizontal, com sua hélice girando com uma frequência constante

Leia mais

Pequim 2008 Londres 2012 Rio m 9,69 9,63 9, m 19,3 19,32 19, m

Pequim 2008 Londres 2012 Rio m 9,69 9,63 9, m 19,3 19,32 19, m 1. Ainda que tenhamos a sensação de que estamos estáticos sobre a Terra, na verdade, se tomarmos como referência um observador parado em relação às estrelas fixas e externo ao nosso planeta, ele terá mais

Leia mais

NESSE CADERNO, VOCÊ ENCONTRARÁ OS SEGUINTES ASSUNTOS:

NESSE CADERNO, VOCÊ ENCONTRARÁ OS SEGUINTES ASSUNTOS: NESSE CADERNO, VOCÊ ENCONTRARÁ OS SEGUINTES ASSUNTOS: CAPÍTULO 5 INDUÇÃO ELETROMAGNÉTICA... 8 Fluxo Magnético de um Carro... 8 Interpretação Física... 8 Lei de Lenz... 8 Lei de Faraday Neumann... 9 CAPÍTULO

Leia mais

SOLUÇÃO PRATIQUE EM CASA

SOLUÇÃO PRATIQUE EM CASA SOLUÇÃO PC1. A) Verdadeira. O enrolamento primário do transformador, tendo menor número de espiras, terá a menor tensão e a maior corrente em relação ao secundário, pois a potência se conserva. B) Falsa.

Leia mais

Aula 05 - Avançado 05/05/2018

Aula 05 - Avançado 05/05/2018 Frente 1: Cinemática do movimento circular 1. (Unicamp 014) As máquinas cortadeiras e colheitadeiras de cana-de-açúcar podem substituir dezenas de trabalhadores rurais, o que pode alterar de forma significativa

Leia mais

Física A Extensivo V. 3

Física A Extensivo V. 3 ) 8 6 4 y (m) m 3m 4m 4 m 6 5m a) s = m s = 4 m + 3 m + m + 5 m s = 5 m GRIO Física Extensivo V. 3 8 s (m) Exercícios x (m) ) C 8 6 4 v m = m/s (veja o vetor v m abaixo) y (m) 4 m 6 4 4 8 6 v m 8 6 s (m)

Leia mais

Física Unidade VI Série 2

Física Unidade VI Série 2 01 A força magnética F é perpendicular, simultaneamente, ao campo indução B e a velocidade v. No entanto v e B não são, necessariamente, perpendiculares entre si. Resposta: B 1 02 Como a velocidade é paralelo

Leia mais

GABARITO - LISTA EXTRA

GABARITO - LISTA EXTRA Resposta da questão 1: [B] No gráfico v t, a distância percorrida é obtida pela área" entre a linha do gráfico e o eixo dos tempos. Calculando cada uma delas: 0,5 0,5 1 DI 1 0,5 1,5 3,75 m. 11 1,5 1 DII

Leia mais

MOVIMENTO EM DUAS E TRÊS DIMENSÕES

MOVIMENTO EM DUAS E TRÊS DIMENSÕES CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: MECÂNICA E TERMODINÂMICA MOVIMENTO EM DUAS E TRÊS DIMENSÕES Prof. Bruno Farias Introdução Neste módulo

Leia mais

Campo Magnético - Lei de Lenz

Campo Magnético - Lei de Lenz Campo Magnético - Lei de Lenz Evandro Bastos dos Santos 22 de Maio de 2017 1 Introdução Na aula passada vimos como uma variação do fluxo de campo magnético é capaz de provocar uma fem induzida. Hoje continuamos

Leia mais

FEP Física para Engenharia II

FEP Física para Engenharia II FEP2196 - Física para Engenharia II Prova de Recuperação - 14/02/200 - Gabarito 1. Uma massa é abandonada com velocidade inicial igual a zero de modo que atinge o solo 10 segundos depois de solta. Desprezando

Leia mais

CES - Lafaiete. Lançamentos e MCU. Vx = V0 Vy = gt. tgα = Vy/Vx X = Vxt Y = gt2/2 Obs.: O tempo de queda NÃO depende do valor de V0.

CES - Lafaiete. Lançamentos e MCU. Vx = V0 Vy = gt. tgα = Vy/Vx X = Vxt Y = gt2/2 Obs.: O tempo de queda NÃO depende do valor de V0. CES - Lafaiete Lançamentos e MCU Fundamentos de Mecânica - Prof. Aloísio Elói Lançamento Horizontal Vx = V0 Vy = gt V = Vx + V y V 2 = Vx2 + Vy2 tgα = Vy/Vx X = Vxt Y = gt2/2 Obs.: O tempo de queda NÃO

Leia mais

Aplicando as condições iniciais: 0 0, h0. temos:

Aplicando as condições iniciais: 0 0, h0. temos: 1) O Brasil, em 014, sediou o Campeonato Mundial de Balonismo. Mais de 0 equipes de diferentes nacionalidades coloriram, com seus balões de ar quente, o céu de Rio Claro, no interior de São Paulo. Desse

Leia mais

FÍSICA PROFº JAISON MATTEI

FÍSICA PROFº JAISON MATTEI FÍSICA PROFº JAISON MATTEI 1. Na modalidade esportiva do salto à distância, o esportista, para fazer o melhor salto, deve atingir a velocidade máxima antes de saltar, aliando-a ao melhor ângulo de entrada

Leia mais

Trabalho e Energia. = g sen. 2 Para = 0, temos: a g 0. onde L é o comprimento do pêndulo, logo a afirmativa é CORRETA.

Trabalho e Energia. = g sen. 2 Para = 0, temos: a g 0. onde L é o comprimento do pêndulo, logo a afirmativa é CORRETA. Trabalho e Energia UFPB/98 1. Considere a oscilação de um pêndulo simples no ar e suponha desprezível a resistência do ar. É INCORRETO afirmar que, no ponto m ais baixo da trajetória, a) a energia potencial

Leia mais

Conversão de Energia I. Capitulo 4 Princípios da conversão eletromecânica da energia;

Conversão de Energia I. Capitulo 4 Princípios da conversão eletromecânica da energia; Conversão de Energia I Capitulo 4 Princípios da conversão eletromecânica da energia; 1. Introdução De uma forma bastante simplificada podemos tratar os motores com os conceitos de repulsão/atração entre

Leia mais

EXERCÍCIOS FÍSICA 3ª SÉRIE

EXERCÍCIOS FÍSICA 3ª SÉRIE 3ª SÉRIE PROF. HILTON EXERCÍCIOS COMPLEMENTARES ELETROMAGNETISMO INDUÇÃO ELETROMAGNÉTICA QUESTÕES OBJETIVAS Indução eletromagnética. Fluxo de indução magnética 1) (UFMG) A figura mostra um circuito composto

Leia mais

SOLUÇÃO PRATIQUE EM CASA

SOLUÇÃO PRATIQUE EM CASA SOLUÇÃO PC1. [D] Trata-se de uma questão a respeito do Efeito Doppler. Porém, é preciso notar que, segundo o enunciado, a nte e o observador é o próprio veículo. Desta rma, calculando a frequência observada

Leia mais

SOLUÇÃO COMECE DO BÁSICO

SOLUÇÃO COMECE DO BÁSICO SOLUÇÃO CB1. 01 + 04 + 16 + 64 = 85. [01] Verdadeira. O enrolamento primário do transformador, tendo menor número de espiras, terá a menor tensão e a maior corrente em relação ao secundário, pois a potência

Leia mais

Movimentos circulares e uniformes

Movimentos circulares e uniformes Movimento circular Movimentos circulares e uniformes Características do movimento circular e uniforme (MCU) Raio da trajetória (R): A trajetória de um ponto material em MCU é uma circunferência, cujo raio,

Leia mais

LISTA PARA A MENSAL 2 PRIMEIRO ANO PROFESSOR JOHN

LISTA PARA A MENSAL 2 PRIMEIRO ANO PROFESSOR JOHN LISTA PARA A MENSAL 2 PRIMEIRO ANO PROFESSOR JOHN 1. (Unicamp 2016) Anemômetros são instrumentos usados para medir a velocidade do vento. A sua construção mais conhecida é a proposta por Robinson em 1846,

Leia mais

1. Sobre uma mesa sem atrito, um objeto sofre a ação de duas forças F 1 9 N e F2

1. Sobre uma mesa sem atrito, um objeto sofre a ação de duas forças F 1 9 N e F2 1. Sobre uma mesa sem atrito, um objeto sofre a ação de duas forças F 1 9 N e F2 15 N, que estão dispostas de modo a formar entre si um ângulo de 120. A intensidade da força resultante, em newtons, será

Leia mais

VETOR POSIÇÃO 𝑟 = 𝑥𝑖 + 𝑦𝑗 + 𝑧𝑘

VETOR POSIÇÃO 𝑟 = 𝑥𝑖 + 𝑦𝑗 + 𝑧𝑘 VETOR POSIÇÃO r = xi + yj + zk VETOR DESLOCAMENTO Se uma partícula se move de uma posição r 1 para outra r 2 : r = r 2 r 1 r = x 2 x 1 i + y 2 y 1 j + z 2 z 1 k VETORES VELOCIDADE MÉDIA E VELOCIDADE INSTANTÂNEA

Leia mais

Movimento Circular AULA 7. Profª Andreia Andrade CINEMÁTICA VETORIAL

Movimento Circular AULA 7. Profª Andreia Andrade CINEMÁTICA VETORIAL CINEMÁTICA VETORIAL Movimento Circular Profª Andreia Andrade AULA 7 CINEMÁTICA VETORIAL GRANDEZAS ANGULARES As grandezas até agora utilizadas de deslocamento/espaço (s, h, x, y), de velocidade (v) e de

Leia mais

www.fisicaatual.com.br No moimento circular uniforme o corpo descree uma trajetória circular mantendo o alor da elocidade constante (a T = 0). Como a direção da elocidade muda, existe aceleração centrípeta

Leia mais

Série IV - Momento Angular (Resoluções Sucintas)

Série IV - Momento Angular (Resoluções Sucintas) Mecânica e Ondas, 0 Semestre 006-007, LEIC Série IV - Momento Angular (Resoluções Sucintas) 1. O momento angular duma partícula em relação à origem é dado por: L = r p a) Uma vez que no movimento uniforme

Leia mais

φ = B A cosθ, em que θ é o ângulo formado entre a normal ao plano da

φ = B A cosθ, em que θ é o ângulo formado entre a normal ao plano da 01 As afirmativas: I) Falsa, pois o ângulo formado entre a normal ao plano da espira é de 60, assim o fluxo eletromagnético é: φ = B A cosθ, em que θ é o ângulo formado entre a normal ao plano da espira

Leia mais

28 C 29 E. A bússola deve orientar-se obedecendo o campo magnético resultante no ponto P, ou seja, levando-se em conta a influência dos dois fios.

28 C 29 E. A bússola deve orientar-se obedecendo o campo magnético resultante no ponto P, ou seja, levando-se em conta a influência dos dois fios. FÍSICA 8 C O Eletromagnetismo estuda os fenômenos que surgem da interação entre campo elétrico e campo magnético. Hans Christian Oersted, em 80, realizou uma experiência fundamental para o desenvolvimento

Leia mais

Movimento Circular Uniforme

Movimento Circular Uniforme Movimento Circular Uniforme Movimento Circular Uniforme v 8 v 1 v 7 v 2 v 6 v 3 v 5 v 4 2 v 1 = v 2 = v 3 =... = v 8 mas v 1 v 2 v 3... v 8 Período e Frequência Período (T) : tempo para que ocorra uma

Leia mais

Observação: i.e. é abreviação da expressão em latim istum est, que significa isto é.

Observação: i.e. é abreviação da expressão em latim istum est, que significa isto é. Um disco de raio R rola, sem deslizar, com velocidade angular ω constante ao longo de um plano horizontal, sendo que o centro da roda descreve uma trajetória retilínea. Suponha que, a partir de um instante

Leia mais

SOLUÇÃO COMECE DO BÁSICO

SOLUÇÃO COMECE DO BÁSICO SOLUÇÃO COMECE DO BÁSICO SOLUÇÃO CB1. [C] Dados: m = 00 kg; g = 10 m/s ; sen θ = 0,6 e cos θ = 0,8. Como o movimento é retilíneo e uniforme, pelo Princípio da Inércia (1ª lei de Newton), a resultante das

Leia mais

FÍSICA - 1 o ANO MÓDULO 21 MOVIMENTO CIRCULAR UNIFORME

FÍSICA - 1 o ANO MÓDULO 21 MOVIMENTO CIRCULAR UNIFORME FÍSICA - 1 o ANO MÓDULO 21 MOVIMENTO CIRCULAR UNIFORME 1 rad R L=R θ R L θ = L R (θ em rad) t s θ R o r Fixação 1) Um CD gira sobre o dispositivo de leitura óptica. Sobre dois pontos desse disco, um na

Leia mais

Questão 1. Questão 2. Resposta

Questão 1. Questão 2. Resposta Questão 1 Um mecânico afirma ao seu assistente que é possível erguer e manter um carro no alto e em equilíbrio estático, usando-se um contrapeso mais leve do que o carro. A figura mostra, fora de escala,

Leia mais

(a) a aceleração angular média nesse intervalo de tempo. (b) o número de voltas dadas

(a) a aceleração angular média nesse intervalo de tempo. (b) o número de voltas dadas Capítulo 1 Movimento Circular 1. A velocidade angular de um ponto que executa um movimento circular varia de 20 rad/s para 40 rad/s em 5 segundos. Determine: (a) a aceleração angular média nesse intervalo

Leia mais

Profº MSc. Oscar A. M.

Profº MSc. Oscar A. M. Lista de REVISÃO Cap 3 Cinemática Vetorial 3ª Série EM 03/08/2015 Profº MSc. Oscar A. M. 1. (Unicamp 2012) Em 2011 o Atlantis realizou a última missão dos ônibus espaciais, levando quatro astronautas à

Leia mais

21/Fev/2018 Aula 2. 19/Fev/2018 Aula 1

21/Fev/2018 Aula 2. 19/Fev/2018 Aula 1 19/Fev/018 Aula 1 1.1 Conceitos gerais 1.1.1 Introdução 1.1. Unidades 1.1.3 Dimensões 1.1.4 Estimativas 1.1.5 Resolução de problemas - método 1.1.6 Escalares e vetores 1. Descrição do movimento 1..1 Distância

Leia mais

I m k m r (3,5) 3000.(3) kg.m. Como d d d 3,697sen d

I m k m r (3,5) 3000.(3) kg.m. Como d d d 3,697sen d Capítulo 17 - Exercícios 17.65) Os passageiros, a gôndola e a estrutura de balanço ilustrados abaixo têm uma massa total de 50 Mg (ton.), com centro de massa em e raio de giração kb 3,5 m. Adicionalmente,

Leia mais

Cinemática em 2D e 3D

Cinemática em 2D e 3D Cinemática em 2D e 3D o vetores posição, velocidade e aceleração o movimento com aceleração constante, movimento de projéteis o Cinemática rotacional, movimento circular uniforme Movimento 2D e 3D Localizar

Leia mais

1 Movimento Circular Lista de Movimento circular Cinemática do Ponto Material 7

1 Movimento Circular Lista de Movimento circular Cinemática do Ponto Material 7 Sumário 1 Movimento Circular 3 1.1 Lista de Movimento circular................................... 3 2 Cinemática do Ponto Material 7 3 Equilíbrio de Corpos no Espaço 9 3.1 Equilíbrio de Partícula.....................................

Leia mais

CINEMÁTICA E DINÂMICA

CINEMÁTICA E DINÂMICA PETROBRAS TECNICO(A) DE OPERAÇÃO JÚNIOR CINEMÁTICA E DINÂMICA QUESTÕES RESOLVIDAS PASSO A PASSO PRODUZIDO POR EXATAS CONCURSOS www.exatas.com.br v3 RESUMÃO GRANDEZAS E UNIDADES (S.I.) s: Espaço (distância)

Leia mais

Movimento Circular Uniforme. Prof. Marco Simões

Movimento Circular Uniforme. Prof. Marco Simões Movimento Circular Uniforme Prof. Marco Simões Radiano É a abertura angular correspondente a um arco igual ao raio da circunferência (gif animado; clique para iniciar) Radiano É a abertura angular correspondente

Leia mais

28/Fev/2018 Aula Aplicações das leis de Newton do movimento 4.1 Força de atrito 4.2 Força de arrastamento Exemplos.

28/Fev/2018 Aula Aplicações das leis de Newton do movimento 4.1 Força de atrito 4.2 Força de arrastamento Exemplos. 28/Fev/2018 Aula 4 4. Aplicações das leis de Newton do movimento 4.1 Força de atrito 4.2 Força de arrastamento Exemplos 5/Mar/2018 Aula 5 5.1 Movimento circular 5.1.1 Movimento circular uniforme 5.1.2

Leia mais

Resolução Leis de Newton EsPCEx 2018 Prof. Douglão

Resolução Leis de Newton EsPCEx 2018 Prof. Douglão Resolução Leis de Newton EsPCEx 018 Prof. Douglão Gabarito: Resposta da questão 1: [A] T Fe P m a T Fe P 0 Fe T P kq T mg d d kq T mg k d Q T mg Resposta da questão : A figura 1 apresenta o diagrama de

Leia mais

Gabarito- revisão 2016

Gabarito- revisão 2016 esposta da questão 1: a) No gráfico, nota-se que o movimento de Batista é uniformemente variado. Entendendo como aceleração o módulo da componente tangencial da aceleração ou a aceleração escalar, tem-se:

Leia mais

Observação: i.e. é abreviação da expressão em latim istum est, que significa isto é.

Observação: i.e. é abreviação da expressão em latim istum est, que significa isto é. Um disco de raio R rola, sem deslizar, com velocidade angular ω constante ao longo de um plano horizontal, sendo que o centro da roda descreve uma trajetória retilínea. Suponha que, a partir de um instante

Leia mais

INDUÇÃO ELETROMAGNÉTICA

INDUÇÃO ELETROMAGNÉTICA INDUÇÃO ELETROMAGNÉTICA 1. (ITA 2009) Uma haste metálica com 5,0 kg de massa e resistência de 2,0 Ω desliza sem atrito sobre duas barras paralelas separadas de 1,0 m, interligadas por um condutor de resistência

Leia mais

MOVIMENTO CIRCULAR e UNIFORME (MCU) Prof.Silveira Jr

MOVIMENTO CIRCULAR e UNIFORME (MCU) Prof.Silveira Jr MOVIMENTO CIRCULAR e UNIFORME (MCU) Prof.Silveira Jr 1. (Unicamp) Anemômetros são instrumentos usados para medir a velocidade do vento. A sua construção mais conhecida é a proposta por Robinson em 1846,

Leia mais

LISTA DE EXERCÍCIOS DE MOVIMENTO CIRCULAR UNIFORME E LANÇAMENTOS

LISTA DE EXERCÍCIOS DE MOVIMENTO CIRCULAR UNIFORME E LANÇAMENTOS LISTA DE EXERCÍCIOS DE MOVIMENTO CIRCULAR UNIFORME E LANÇAMENTOS 1. (Ufrgs 018) Dois objetos de massas m 1 e m ( = m 1) encontram-se na borda de uma mesa de altura h em relação ao solo, conforme representa

Leia mais

Indução Eletromagnética

Indução Eletromagnética Indução Eletromagnética Φ ΔΦ ξ IND p/ circuito fechado i IND Fluxo magnético Variação de fluxo magnético Força eletromotriz induzida Corrente elétrica induzida Fluxo do campo magnético Φ = B A cosθ A superfície

Leia mais

EXERCÍCIOS DE RECUPERAÇÃO PARALELA 4º BIMESTRE

EXERCÍCIOS DE RECUPERAÇÃO PARALELA 4º BIMESTRE EXERCÍCIOS DE RECUPERAÇÃO PARALELA 4º BIMESTRE NOME Nº SÉRIE : 3º EM DATA : / / BIMESTRE 4º PROFESSOR: Renato DISCIPLINA: Física 1 VISTO COORDENAÇÃO ORIENTAÇÕES: 1. O trabalho deverá ser feito em papel

Leia mais

A figura abaixo mostra a variação de direção do vetor velocidade em alguns pontos.

A figura abaixo mostra a variação de direção do vetor velocidade em alguns pontos. EDUCANDO: Nº: TURMA: DATA: / / LIVRES PARA PENSAR EDUCADOR: Rosiméri dos Santos ESTUDOS DE RECUPERAÇÃO - MOVIMENTO CIRCULAR UNIFORME Introdução Dizemos que uma partícula está em movimento circular quando

Leia mais

Aula do cap. 10 Rotação

Aula do cap. 10 Rotação Aula do cap. 10 Rotação Conteúdo da 1ª Parte: Corpos rígidos em rotação; Variáveis angulares; Equações Cinemáticas para aceleração Angular constante; Relação entre Variáveis Lineares e Angulares; Referência:

Leia mais

Lista de exercícios para os alunos da 1a série. Física 1.

Lista de exercícios para os alunos da 1a série. Física 1. Dione Dom Lista de exercícios para os alunos da 1a série. Física 1. 1) A figura a seguir mostra a trajetória da bola lançada pelo goleiro Dida, no tiro de meta. Desprezando o efeito do ar, um estudante

Leia mais

Máquinas Elétricas. Máquinas CC Parte III

Máquinas Elétricas. Máquinas CC Parte III Máquinas Elétricas Máquinas CC Parte III Máquina CC Máquina CC Máquina CC Comutação Operação como gerador Máquina CC considerações fem induzida Conforme já mencionado, a tensão em um único condutor debaixo

Leia mais

Cap. 8 - Indução Eletromagnética

Cap. 8 - Indução Eletromagnética Universidade Federal do Rio de Janeiro Instituto de Física Física III 2014/2 Cap. 8 - Indução Eletromagnética Prof. Elvis Soares Nesse capítulo, estudaremos como um campo magnético variável pode induzir

Leia mais

V (m/s) t (s) Determine: a) a função horária da velocidade; b) a função horária da posição; c) a posição do móvel no instante 6 s.

V (m/s) t (s) Determine: a) a função horária da velocidade; b) a função horária da posição; c) a posição do móvel no instante 6 s. 1) O gráfico a seguir representa a velocidade em função do temo de um objeto em movimento retilíneo. Calcule a velocidade média entre os instantes t = 0 e t = 5h. a) 5,0 m/s b) 5,5 m/s c) 6,0 m/s d) 6,5

Leia mais

Deduza a Equação de Onda que representa uma onda progressiva unidimensional, numa corda de massa M e comprimento L.

Deduza a Equação de Onda que representa uma onda progressiva unidimensional, numa corda de massa M e comprimento L. Deduza a Equação de Onda que representa uma onda progressiva unidimensional, numa corda de massa M e comprimento L. Esquema do problema Consideremos uma corda longa, fixa nas extremidades, por onde se

Leia mais

FEP2195-Física Geral e Exp. para a Engenharia I - 1 a Prova - Gabarito 11/04/2013

FEP2195-Física Geral e Exp. para a Engenharia I - 1 a Prova - Gabarito 11/04/2013 FEP2195-Física Geral e Exp. para a Engenharia I - 1 a Prova - Gabarito 11/04/2013 1) Sabendo-se que a posição de uma partícula, em relação à origem O do plano xy, é determinada pelo vetor: ( ) 1 m r (t)

Leia mais

28/Set/ Movimento a uma dimensão Aceleração constante Queda livre 3.2 Movimento 2 e 3-D Vetor deslocamento 3.2.

28/Set/ Movimento a uma dimensão Aceleração constante Queda livre 3.2 Movimento 2 e 3-D Vetor deslocamento 3.2. 28/Set/2016 3.1 Movimento a uma dimensão 3.1.1 Aceleração constante 3.1.2 Queda livre 3.2 Movimento 2 e 3-D 3.2.1 Vetor deslocamento 3.2.2 Vetor velocidade 3.2.3 Vetor aceleração 3.3 Movimento relativo

Leia mais

Física. Física Módulo 1 Velocidade Relativa, Movimento de Projéteis, Movimento Circular

Física. Física Módulo 1 Velocidade Relativa, Movimento de Projéteis, Movimento Circular Física Módulo 1 Velocidade Relativa, Movimento de Projéteis, Movimento Circular Velocidade Relativa Um Gedankenexperiment Imagine-se agora em um avião, a 350 km/h. O destino (a direção) é por conta de

Leia mais

Física I Prova 1 29/03/2014

Física I Prova 1 29/03/2014 Posição na sala Física I Prova 1 9/03/014 NOME MATRÍCULA TURMA PROF. Lembrete: Todas as questões discursivas deverão ter respostas justificadas, desenvolvidas e demonstradas matematicamente. BOA PROVA

Leia mais

( ) Velocidade e Aceleração Vetorial. Gabarito: Página 1 A A B B. = Q= m v = 85 22= 1870 N s.

( ) Velocidade e Aceleração Vetorial. Gabarito:  Página 1 A A B B. = Q= m v = 85 22= 1870 N s. Gabarito: Velocidade e Aceleração Vetorial Resposta da questão 1: Todo movimento circular contém uma componente centrípeta voltada para o centro da circunferência de módulo não nulo. Resposta da questão

Leia mais

ESCOLA ESTADUAL JOÃO XXIII A Escola que a gente quer é a Escola que a gente faz!

ESCOLA ESTADUAL JOÃO XXIII A Escola que a gente quer é a Escola que a gente faz! ESCOLA ESTADUAL JOÃO XXIII A Escola que a gente quer é a Escola que a gente faz! NATUREZA DA ATIVIDADE: EXERCÍCIOS DE FIXAÇÃO DISCIPLINA: APROFUNDAMENTO DE ESTUDOS - ENEM ASSUNTO: MOVIMENTO CIRCULAR UNIFORME

Leia mais

Espaço x Espaço inicial x o

Espaço x Espaço inicial x o MOVIMENTO CIRCULAR Prof. Patricia Caldana O movimento circular é o movimento no qual o corpo descreve trajetória circular, podendo ser uma circunferência ou um arco de circunferência. Grandezas Angulares

Leia mais

Física Geral e Exp. para a Engenharia I - Prova Substitutiva - 05/07/2012

Física Geral e Exp. para a Engenharia I - Prova Substitutiva - 05/07/2012 4320195-Física Geral e Exp. para a Engenharia I - Prova Substitutiva - 05/0/2012 Nome: N o USP: Professor: Turma: A duração da prova é de 2 horas. Material: lápis, caneta, borracha, régua. O uso de calculadora

Leia mais

3 Relações. 4 Velocidade Escalar. 5 Velocidade Angular. 6 Período. 7 Frequência. 8 Função Horária. 9 Aceleração Centrípeta

3 Relações. 4 Velocidade Escalar. 5 Velocidade Angular. 6 Período. 7 Frequência. 8 Função Horária. 9 Aceleração Centrípeta 1 Movimento Circular Uniforme Introdução 2 Ângulos no Movimento Circular 3 Relações 4 Velocidade Escalar 5 Velocidade Angular 6 Período 7 Frequência 8 Função Horária 9 Aceleração Centrípeta 10 Polias e

Leia mais

[Pot] = = = M L 2 T 3

[Pot] = = = M L 2 T 3 1 e No Sistema Internacional, a unidade de potência é watt (W). Usando apenas unidades das grandezas fundamentais, o watt equivale a a) kg m/s b) kg m 2 /s c) kg m/s 2 d) kg m 2 /s 2 e) kg m 2 /s 3 A equação

Leia mais

Fís. Semana. Leonardo Gomes (Arthur Vieira)

Fís. Semana. Leonardo Gomes (Arthur Vieira) Semana 6 Leonardo Gomes (Arthur Vieira) Este conteúdo pertence ao Descomplica. Está vedada a cópia ou a reprodução não autorizada previamente e por escrito. Todos os direitos reservados. CRONOGRAMA 06/03

Leia mais

UFSC. Física (Amarela) Resposta: = 44

UFSC. Física (Amarela) Resposta: = 44 Resposta: 4 + 8 + 3 = 44 1. Incorreto. Considerando o transformador do "Circo da Física" ideal, temos que potência do enrolamento primário deve ser igual à potência do enrolamento secundário.. Incorreto.

Leia mais

Características do MCU

Características do MCU ESCOLA ESTADUAL JOÃO XXIII A Escola que a gente quer é a Escola que a gente faz! Características do MCU APROFUNDAMENTO DE ESTUDOS - ENEM FÍSICA O MCU é periódico. Apresenta velocidade angular e velocidade

Leia mais

Prof. A.F.Guimarães Questões Cinemática 5 Movimento Circular

Prof. A.F.Guimarães Questões Cinemática 5 Movimento Circular Questão Prof FGuimarães Questões Cinemática 5 Movimento Circular (MCK) Os ponteiros dos relógios convencionais descrevem, em condições normais, movimentos circulares uniformes (MCU) relação entre a velocidade

Leia mais

MESTRADO INTEGRADO EM ENG. INFORMÁTICA E COMPUTAÇÃO 2011/2012. EIC0010 FÍSICA I 1o ANO 2 o SEMESTRE

MESTRADO INTEGRADO EM ENG. INFORMÁTICA E COMPUTAÇÃO 2011/2012. EIC0010 FÍSICA I 1o ANO 2 o SEMESTRE MESTRADO INTEGRADO EM ENG. INFORMÁTICA E COMPUTAÇÃO 2011/2012 EIC0010 FÍSICA I 1o ANO 2 o SEMESTRE Prova com consulta de formulário e uso de computador. Duração 2 horas. Nome do estudante: Pode consultar

Leia mais

Análise do movimento dos projéteis no vácuo

Análise do movimento dos projéteis no vácuo Capítulo 2 Análise do movimento dos projéteis no vácuo 2.1 Movimento unidimensional O estudo do movimento dos projéteis envolve seu deslocamento no espaço e a velocidade com que se deslocam em um intervalo

Leia mais

Halliday Fundamentos de Física Volume 1

Halliday Fundamentos de Física Volume 1 Halliday Fundamentos de Física Volume 1 www.grupogen.com.br http://gen-io.grupogen.com.br O GEN Grupo Editorial Nacional reúne as editoras Guanabara Koogan, Santos, Roca, AC Farmacêutica, LTC, Forense,

Leia mais

(c) B 0 4πR 2 (d) B 0 R 2 (e) B 0 2R 2 (f) B 0 4R 2

(c) B 0 4πR 2 (d) B 0 R 2 (e) B 0 2R 2 (f) B 0 4R 2 Universidade Federal do Rio de Janeiro Instituto de Física Segunda Prova (Diurno) Disciplina: Física III-A - 2018/2 Data: 12/11/2018 Seção 1: Múltipla Escolha (7 0,7 = 4,9 pontos) 1. No circuito mostrado

Leia mais

SOLUÇÃO PRATIQUE EM CASA

SOLUÇÃO PRATIQUE EM CASA SOLUÇÃO PRATIQUE EM CASA SOLUÇÃO PC1. [C] No eixo horizonal, o movimeno é uniforme com velocidade consane o empo, podemos calculá-la. Δs 60 m vh vh vh 15 m s Δ 4 s Com o auxílio da rionomeria e com a velocidade

Leia mais

3ª Ficha Global de Física 12º ano

3ª Ficha Global de Física 12º ano 3ª Ficha Global de Física 12º ano Todos os cálculos devem ser apresentados de modo claro e sucinto Note: 1º - as figuras não estão desenhadas a escala; Adopte quando necessário: g = 10 m.s 2 G = 6,67 10-11

Leia mais

Revisão EsPCEx 2018 Cinemática Prof. Douglão

Revisão EsPCEx 2018 Cinemática Prof. Douglão Revisão EsPCEx 018 Cinemática Prof. Douglão 1. Considere a situação em que um jogador de futebol esteja treinando e, para isso, chute uma bola contra uma parede vertical. Suponhase que a bola realize um

Leia mais

Física II Ondas, Fluidos e Termodinâmica USP Prof. Antônio Roque Aula

Física II Ondas, Fluidos e Termodinâmica USP Prof. Antônio Roque Aula Aula 3 010 Movimento Harmônico Simples: Exemplos O protótipo físico do movimento harmônico simples (MHS) visto nas aulas passadas um corpo de massa m preso a uma mola executando vibrações de pequenas amplitudes

Leia mais

Eletrotécnica geral. A tensão alternada é obtida através do 3 fenômeno do eletromagnetismo, que diz:

Eletrotécnica geral. A tensão alternada é obtida através do 3 fenômeno do eletromagnetismo, que diz: Análise de circuitos de corrente alternada Chama-se corrente ou tensão alternada aquela cuja intensidade e direção variam periodicamente, sendo o valor médio da intensidade durante um período igual a zero.

Leia mais

SOLUÇÃO: sendo T 0 a temperatura inicial, 2P 0 a pressão inicial e AH/2 o volume inicial do ar no tubo. Manipulando estas equações obtemos

SOLUÇÃO: sendo T 0 a temperatura inicial, 2P 0 a pressão inicial e AH/2 o volume inicial do ar no tubo. Manipulando estas equações obtemos OSG: 718-1 01. Uma pequena coluna de ar de altura h = 76 cm é tampada por uma coluna de mercúrio através de um tubo vertical de altura H =15 cm. A pressão atmosférica é de 10 5 Pa e a temperatura é de

Leia mais

1. Três cargas elétricas possuem a seguinte configuração: A carga q0

1. Três cargas elétricas possuem a seguinte configuração: A carga q0 TC ª FASE UECE 13.1 PROFESSOR VASCO VASCONCELOS 1. Três cargas elétricas possuem a seguinte configuração: A carga q é negativa e está fixa na origem. A carga q 1 é positiva, movimenta-se lentamente ao

Leia mais

Lançamento Horizontal e Oblíquo

Lançamento Horizontal e Oblíquo Lançamento Horizontal e Oblíquo Gabarito: Resposta da questão 1: [C] Dados: v = 3 m/s; θ = 3 ; sen 3 =,5 e cos 3 =,85 e t = 3 s. A componente horizontal da velocidade (v x ) mantém-se constante. O alcance

Leia mais

RESOLUÇÃO DA AVALIAÇÃO DE MATEMÁTICA E FÍSICA (QUESTÕES INTERDISCIPLINARES) 2 o ANO DO ENSINO MÉDIO DATA: 08/08/09

RESOLUÇÃO DA AVALIAÇÃO DE MATEMÁTICA E FÍSICA (QUESTÕES INTERDISCIPLINARES) 2 o ANO DO ENSINO MÉDIO DATA: 08/08/09 RESOLUÇÃO DA AVALIAÇÃO DE MATEMÁTICA E FÍSICA (QUESTÕES INTERDISCIPLINARES) 2 o ANO DO ENSINO MÉDIO DATA: 08/08/09 PROFESSORES: MALTEZ E EVERTON QUESTÕES DISCURSIVAS Em uma partida de basquete, um jogador

Leia mais

Fís. Fís. Monitor: Leonardo Veras

Fís. Fís. Monitor: Leonardo Veras Professor: Leonardo Gomes Monitor: Leonardo Veras Exercícios sobre Eletromagnetismo 04/06 set EXERCÍCIOS DE AULA 1. Um condutor, suportando uma corrente elétrica I, está localizado entre os pólos de um

Leia mais

GABARITO DA AFE02 FÍSICA 2ª SÉRIE 2016

GABARITO DA AFE02 FÍSICA 2ª SÉRIE 2016 GABARITO DA AFE0 FÍSICA ª SÉRIE 016 1) A figura abaixo representa um móvel m que descreve um movimento circular uniforme de raio R, no sentido horário, com velocidade de módulo V. Assinale a alternativa

Leia mais

Movimento Circular e Uniforme

Movimento Circular e Uniforme A principal característica desse tipo de movimento é que a partícula ou o corpo no qual estamos considerando tem o módulo da velocidade constante na sua trajetória circular. Exemplos: - Satélites na órbita

Leia mais

RESOLUÇÃO DO TC DO CLICK PROFESSOR

RESOLUÇÃO DO TC DO CLICK PROFESSOR Resposta da questão 1: Podemos garantir apenas que o feixe de radiação gama (sem carga) não é desviado pelo campo magnético, atingindo o ponto 3. Usando as regras práticas do eletromagnetismo para determinação

Leia mais

CONCURSO DOCENTE 2016 QUESTÕES DISCURSIVAS FÍSICA

CONCURSO DOCENTE 2016 QUESTÕES DISCURSIVAS FÍSICA CONCURSO DOCENTE 016 QUESTÕES DISCURSIVAS FÍSICA 1ª QUESTÃO Um gerador de força eletromotriz 1 V e resistência interna,0 Ω é ligado a uma resistência externa de valor R. A potência dissipada na resistência

Leia mais

2006 3ª. fase Prova para alunos do 3º. Ano LEIA ATENTAMENTE AS INSTRUÇÕES ABAIXO:

2006 3ª. fase Prova para alunos do 3º. Ano LEIA ATENTAMENTE AS INSTRUÇÕES ABAIXO: 2006 3ª. fase Prova para alunos do 3º. Ano LEIA ATENTAMENTE AS INSTRUÇÕES ABAIXO: 01) Esta prova destina-se exclusivamente a alunos da 3º. ano e contém 08 questões. 02) As questões devem ser resolvidas

Leia mais