11 Sistemas resolvem problemas

Tamanho: px
Começar a partir da página:

Download "11 Sistemas resolvem problemas"

Transcrição

1 A UA UL LA Sistemas resovem probemas Introdução Na aua anterior, mostramos como resover sistemas de duas equações de 1º grau com duas incógnitas. Agora vamos usar essa importante ferramenta da matemática na soução de probemas. Em gera, os probemas são apresentados em inguagem comum, ou seja, com paavras. A primeira parte da soução (que é a mais importante) consiste em traduzir o enunciado do probema da inguagem comum para a inguagem matemática. Nessa inguagem, usamos os números, as operações, as etras que representam números ou quantidades desconhecidas, e as nossas sentenças são chamadas de equações. Para dar um exempo, considere a seguinte situação: uma costureira de uma pequena confecção ganha R$ 7,00 por dia mais uma determinada quantia por cada camisa que faz. Certo dia, ea fez 3 camisas e ganhou R$ 19,00. Se quisermos saber quanto essa costureira ganha por cada camisa que faz devemos traduzir em inguagem matemática a situação apresentada. Vamos então representar por x a quantia que ea recebe por cada camisa. Ea faz 3 camisas e ganha R$ 7,00 por dia, independentemente do número de camisas que faz. Se nesse dia ea ganhou R$ 19,00, a equação que traduz o probema é: 7 + 3x = 19 Como já sabemos resover equações e sistemas, daremos mais importância, nesta aua, à tradução do enunciado dos probemas para inguagem matemática. Nossa aua Agora vamos apresentar aguns probemas e suas souções. Entretanto, procure resover cada um antes de ver a soução. Para ajudar, incuímos agumas orientações entre o enunciado e a soução. EXEMPLO 1 Em uma festa havia 40 pessoas. Quando 7 homens saíram, o número de muheres passou a ser o dobro do número de homens. Quantas muheres estavam na festa? Pense um pouco e eia as orientações a seguir.

2 Orientações - A quantidade de homens e muheres serão as nossas incógnitas. Então: o número de homens = x A U L A o número de muheres = y Traduza em inguagem matemática a frase: havia 40 pessoas na festa. Se 7 homens saíram, quantos ficaram na festa? Traduza em inguagem matemática a frase: o número de muheres é o dobro do número de homens que ficaram na festa. Soução - Seguindo as nossas orientações, temos como primeira equação x + y = 40. Depois, se tínhamos x homens e 7 saíram, então ficaram na festa x - 7 homens. E, se o número de muheres é o dobro do número de homens, podemos escrever y = 2 (x - 7). O probema dado é traduzido em inguagem matemática peo sistema: x + y = 40 y = 2 (x - 7) Agora, vamos resovê-o. Como a incógnita y está isoada na segunda equação, podemos usar o método da substituição. Temos, então: x + y = 40 x + 2 (x - 7) = 40 x + 2x - 14 = 40 3x = x = 54 3x 3 = 54 3 x = 18 Substituindo esse vaor na primeira equação, temos: 18 + y = 40 y = y = 22 Na festa havia então 22 muheres. EXEMPLO 2 { Uma omeete feita com 2 ovos e 30 gramas de queijo contém 280 caorias. Uma omeete feita com 3 ovos e 10 gramas de queijo contém também 280 caorias. Quantas caorias possui um ovo? Pense um pouco e eia as orientações a seguir.

3 A U L A Orientações - A caoria é uma unidade de energia. Todos os aimentos nos fornecem energia em maior ou menor quantidade. Neste probema, vamos chamar de x a quantidade de caorias contida em um ovo. Para diversos aimentos, a quantidade de caorias é dada por grama. Isso ocorre porque um queijo pode ter diversos tamanhos, assim como uma abóbora pode também ter os mais variados pesos. Então, no nosso probema, vamos chamar de y a quantidade de caorias contidas em cada grama de queijo. Se cada grama de queijo possui y caorias, quantas caorias estão contidas em 30 gramas de queijo? Quantas caorias possuem dois ovos? Escreva em inguagem matemática a frase: dois ovos mais 30 gramas de queijo possuem 280 caorias. Escreva em inguagem matemática a outra informação contida no enunciado. Soução - Vamos novamente seguir as orientações para resover o probema. Se as nossas incógnitas estão bem definidas, não teremos dificudade em traduzir o enunciado do probema em inguagem matemática. Temos que: número de caorias contidas em um ovo = x número de caorias contidas em um grama de queijo = y Portanto, se dois ovos e 30 gramas de queijo possuem 280 caorias temos a equação: 2x + 30y = 280 Da mesma forma, se três ovos e 10 gramas de queijos possuem 280 caorias podemos escrever: 3x + 10 y = 280 O sistema que dará a soução do nosso probema é 2x + 30 y = 280 3x + 10 y = 280 Repare que o probema pergunta qua é o número de caorias contidas em um ovo. Portanto, se a resposta do probema é o vaor de x, podemos usar o método da adição e eiminar a incógnita y. Observe que, mutipicando a segunda equação por 3, tornamos iguais os coeficientes de y. Se, em seguida, mudamos todos os sinais da primeira equação, estamos prontos para eiminar a incógnita y. { 2x + 30y = 280 (-1) - 2x - 30y = x + 10y = 280 (3) o 9x + 30y = x - 2x =

4 7x = 560 7x 7 = x = 80 A U L A Concuímos, então, que cada ovo contém 80 caorias. Para saber mais O corpo humano é uma máquina que necessita de combustíve para funcionar bem. Quando comemos, a energia contida nos aimentos é transferida para nosso corpo. Muita energia é também gasta em todas as nossas atividades diárias, e o idea é conseguir um equiíbrio entre o que comemos e o que gastamos. Há pessoas que comem demais. Comendo mais que o necessário, as pessoas acumuam energia em forma de gordura - o que não é bom para a saúde. Para as atividades normais, o homem necessita de cerca de caorias por dia, ou um pouco mais, dependendo de sua atividade. Para que você tenha uma idéia da quantidade de caorias contidas nas coisas que comemos, saiba que um pão francês de 100 gramas contém 270 caorias; um prato de arroz, feijão, bife e batatas fritas contém 900 caorias e uma feijoada competa, mais duas cervejas e sobremesa de goiabada e queijo, contém o incríve número de caorias. Procure, portanto, incuir sempre egumes e verduras nas refeições. Ees têm vitaminas, são bons para o processo digestivo e possuem poucas caorias. EXEMPLO 3 Para ir de sua casa na cidade até seu sítio, João percorre 105 km com seu automóve. A primeira parte do percurso é feita em estrada asfatada, com veocidade de 60 km por hora. A segunda parte é feita em estrada de terra, com veocidade de 30 km por hora. Se João eva duas horas para ir de sua casa até o sítio, quantos quiômetros possui a estrada de terra? Pense um pouco e eia as orientações a seguir. Orientações - A veocidade de um automóve é o número de quiômetros que ee percorre em uma hora. De uma forma gera, a distância percorrida é igua ao produto da veocidade peo tempo de percurso. distância = veocidade tempo Estabeeça as incógnitas: x = distância percorrida na estrada asfatada y = distância percorrida na estrada de terra O esquema abaixo ajuda a compreender o probema. 105 km x km y km casa asfato terra 2 horas sítio

5 A U L A Escreva uma equação com as distâncias. Procure escrever uma equação com o seguinte significado: o tempo em que João andou na estrada asfatada mais o tempo em que ee andou na de terra é igua a duas horas. Soução - Mais uma vez, vamos resover o probema seguindo as orientações. Se João andou x km na estrada asfatada e y km na estrada de terra, então a nossa primeira equação é x + y = 105. Observe novamente a reação: (distância) = (veocidade) (tempo) Na primeira parte do percurso, a distância foi x, a veocidade foi 60 e o tempo gasto será chamado de t 1. Temos, então: x = 60 t 1 x 60 = t 1 ou Na segunda parte do percurso a distância foi y, a veocidade foi 30 e o tempo gasto será chamado de t 2. Temos, então: y = 30 t 2 y 30 = t 2 ou Como a soma dos dois tempos é igua a 2 horas, conseguimos a segunda equação: x 60 + y 30 = 2 Vamos mehorar o aspecto dessa equação antes de formarmos o sistema. Mutipicando todos os termos por 60, temos: 1 x y 30 = x + 2y = 120 Temos, agora, o sistema formado peas duas equações: { x + 0y = 105 x + 2y = 120

6 O vaor de y nesse sistema é cacuado imediatamente peo método da adição: - x - y = x + 2y = y - y = y = 15 Concuímos, então, que a estrada de terra tem 15 km. A U L A Nesta aua você viu a força da ágebra na soução de probemas. Entretanto, para adquirir segurança é preciso praticar. Para cada um dos exercícios, procure matematizar as situações descritas usando o método agébrico. Escoha suas incógnitas e arme as equações. Depois, resova os sistemas e verifique se os vaores encontrados estão corretos. Exercício 1 Determine dois números, sabendo que sua soma é 43 e que sua diferença é 7. Exercício 2 Um marceneiro recebeu 74 tábuas de compensado. Agumas com 6 mm de espessura e outras com 8 mm de espessura. Quando foram empihadas, atingiram a atura de 50 cm. Quantas tábuas de 8mm ee recebeu? Exercício 3 Em um estacionamento havia carros e motocicetas num tota de 43 veícuos e 150 rodas. Cacue o número de carros e de motocicetas estacionados. Exercício 4 Uma empresa desejava contratar técnicos e, para isso, apicou uma prova com 50 perguntas a todos os candidatos. Cada candidato ganhou 4 pontos para cada resposta certa e perdeu um ponto para cada resposta errada. Se Marceo fez 130 pontos, quantas perguntas ee acertou? Exercício 5 Certo dia, uma doceira comprou 3 kg de açúcar e 4 kg de farinha e, no tota, pagou R$ 3,20. Outro dia, ea comprou 4 kg de açúcar e 6 kg de farinha, pagando R$ 4,50 peo tota da compra. Se os preços foram os mesmos, quanto estava custando o quio do açúcar e o quio da farinha? Exercício 6 Pedro e Pauo têm juntos R$ 81,00. Se Pedro der 10% do seu dinheiro a Pauo, ees ficarão com quantias iguais. Quanto cada um dees tem? Exercício 7 A distância entre duas cidades A e B é de 66 km. Certo dia, às 8 horas da manhã, um cicista saiu da cidade A, viajando a 10 km por hora em direção à cidade B. No mesmo dia e no mesmo horário um cicista saiu da cidade B, viajando a 12 km por hora em direção à cidade A. Pergunta-se: a) A que distância da cidade A deu-se o encontro dos dois cicistas? b) A que horas deu-se o encontro?

Calculando engrenagens cilíndricas

Calculando engrenagens cilíndricas Cacuando engrenagens ciíndricas A UU L AL A Em uma empresa, o setor de manutenção mecânica desenvove um importante pape na continuidade do fuxo da produção. Após o diagnóstico do defeito, reaizam-se a

Leia mais

Triângulos especiais

Triângulos especiais A UA UL LA Triânguos especiais Introdução Nesta aua, estudaremos o caso de dois triânguos muito especiais - o equiátero e o retânguo - seus ados, seus ânguos e suas razões trigonométricas. Antes, vamos

Leia mais

Quanto mais alto o coqueiro, maior é o tombo

Quanto mais alto o coqueiro, maior é o tombo Quanto mais ato o coqueiro, maior é o tombo A UU L AL A Quanto mais ato o coqueiro, maior é o tombo, pra baixo todo santo ajuda, pra cima é um Deus nos acuda... Essas são frases conhecidas, ditos popuares

Leia mais

Calculando a rpm e o gpm a partir da

Calculando a rpm e o gpm a partir da Acesse: http://fuvestibuar.com.br/ Cacuando a rpm e o gpm a partir da veocidade de corte A UU L AL A Para que uma ferramenta corte um materia, é necessário que um se movimente em reação ao outro a uma

Leia mais

Sistema de Numeração e Aritmética Básica

Sistema de Numeração e Aritmética Básica 1 Sistema de Numeração e Aritmética Básica O Sistema de Numeração Decimal possui duas características importantes: ele possui base 10 e é um sistema posicional. Na base 10, dispomos de 10 algarismos para

Leia mais

Fundamentos da Matemática

Fundamentos da Matemática Fundamentos da Matemática Aula 10 Os direitos desta obra foram cedidos à Universidade Nove de Julho Este material é parte integrante da disciplina oferecida pela UNINOVE. O acesso às atividades, conteúdos

Leia mais

5 Equacionando os problemas

5 Equacionando os problemas A UA UL LA Equacionando os problemas Introdução Nossa aula começará com um quebra- cabeça de mesa de bar - para você tentar resolver agora. Observe esta figura feita com palitos de fósforo. Mova de lugar

Leia mais

Aula 8. Acesse: http://fuvestibular.com.br/

Aula 8. Acesse: http://fuvestibular.com.br/ Acesse: http://fuvestibular.com.br/ Aula 8 A multiplicação nada mais é que uma soma de parcelas iguais. E a divisão, sua inversa, "desfaz o que a multiplicação faz". Quer ver? Vamos pensar nas questões

Leia mais

No posto de gasolina

No posto de gasolina A UU L AL A No posto de gasoina Gaspar estava votando para casa, após passar um dia muito agradáve na praia, apesar da dor de ouvido. Ee parou num posto de gasoina para abastecer e verificar as condições

Leia mais

13 ÁLGEBRA Uma balança para introduzir os conceitos de Equação do 1ºgrau

13 ÁLGEBRA Uma balança para introduzir os conceitos de Equação do 1ºgrau MATEMATICA 13 ÁLGEBRA Uma balança para introduzir os conceitos de Equação do 1ºgrau ORIENTAÇÃO PARA O PROFESSOR OBJETIVO O objetivo desta atividade é trabalhar com as propriedades de igualdade, raízes

Leia mais

Leiaute ou arranjo físico

Leiaute ou arranjo físico Leiaute ou arranjo físico A UU L AL A Quaquer posto de trabaho, incusive o nosso, está igado aos demais postos de trabaho, num oca quaquer de uma empresa. Esse oca pode ser uma área grande ou pequena.

Leia mais

MATEMÁTICA BÁSICA. Operações

MATEMÁTICA BÁSICA. Operações MATEMÁTICA BÁSICA Regras dos Sinais a) Adição (+) Soma (+) + (+) = (+) (-) + (-) = (-) (+) + (-) = Sinal do Maior (-) + (+) = Sinal do Maior (+6) + (+3) = +6 +3 = 9 (-6) + (-3) = -6-3 = -9 (+6) + (-3)

Leia mais

Exame Nacional de 2005 1. a chamada

Exame Nacional de 2005 1. a chamada Exame Naciona de 200 1. a chamada 1. Na escoa da Rita, fez-se um estudo sobre o gosto dos aunos pea eitura. Um inquérito reaizado incuía a questão seguinte. «Quantos ivros este desde o início do ano ectivo?»

Leia mais

A terra limpa a água?

A terra limpa a água? A UUL AL A A terra impa a água? Souções Misturas Mistura: - homogênea - heterogênea Fenômeno natura Conceito de experiência O que você vai aprender Mistura Dissover Fitrar Seria bom já saber O jornaeiro

Leia mais

Universidade Federal do Rio de Janeiro - Instituto de Matemática Bacharelado de Ciências Matemáticas e da Terra Introdução ao Cálculo

Universidade Federal do Rio de Janeiro - Instituto de Matemática Bacharelado de Ciências Matemáticas e da Terra Introdução ao Cálculo Universidade Federal do Rio de Janeiro - Instituto de Matemática Bacharelado de Ciências Matemáticas e da Terra Introdução ao Cálculo 1 a Questão: Observando, em cada caso, os gráficos apresentados, responda

Leia mais

Roteiro da aula. MA091 Matemática básica. Aula 11 Equações e sistemas lineares. Francisco A. M. Gomes. Março de 2015

Roteiro da aula. MA091 Matemática básica. Aula 11 Equações e sistemas lineares. Francisco A. M. Gomes. Março de 2015 Roteiro da aula MA091 Matemática básica Aula 11 Equações e sistemas lineares 1 Francisco A. M. Gomes 2 UNICAMP - IMECC Março de 2015 3 Francisco A. M. Gomes (UNICAMP - IMECC) MA091 Matemática básica Março

Leia mais

Unidade 8 - Trigonometria no Triângulo Retângulo. Trigonometria História Triângulo retângulo Teorema de Pitágoras Teorema de Tales

Unidade 8 - Trigonometria no Triângulo Retângulo. Trigonometria História Triângulo retângulo Teorema de Pitágoras Teorema de Tales Unidade 8 - Trigonometria no Triânguo Retânguo Trigonometria História Triânguo retânguo Teorema de Pitágoras Teorema de Taes História O significado etimoógico da paavra trigonometria vem do grego e resuta

Leia mais

Grandezas proporcionais (II): regra de três composta

Grandezas proporcionais (II): regra de três composta Grandezas proporcionais (II): regra de três composta 1. Proporcionalidade composta Observe as figuras: A 4 2 B 5 A C 8 B 10 C Triângulo Base Altura Área 5 4 2 2 A = 5. 4 2 = 10 10 8 A = 10. 8 2 = 40 2

Leia mais

O que acontece quando se evapora água do mar?

O que acontece quando se evapora água do mar? A UA UL LA O que acontece quando se evapora água do mar? O que você vai aprender Soução saturada Soução insaturada Sovente Souto Concentração Evaporação Condensação Fenômeno Seria bom já saber Mudança

Leia mais

SISTEMAS LINEARES CONCEITOS

SISTEMAS LINEARES CONCEITOS SISTEMAS LINEARES CONCEITOS Observemos a equação. Podemos perceber que ela possui duas incógnitas que são representadas pelas letras x e y. Podemos também notar que se e, a igualdade se torna verdadeira,

Leia mais

Você sabe a regra de três?

Você sabe a regra de três? Universidade Estadual de Maringá - Departamento de Matemática Cálculo Diferencial e Integral: um KIT de Sobrevivência c Publicação Eletrônica do KIT http://www.dma.uem.br/kit Você sabe a regra de três?

Leia mais

DESENVOLVENDO HABILIDADES CIÊNCIAS DA NATUREZA I - EM

DESENVOLVENDO HABILIDADES CIÊNCIAS DA NATUREZA I - EM Olá Caro Aluno, Você já reparou que, no dia a dia quantificamos, comparamos e analisamos quase tudo o que está a nossa volta? Vamos ampliar nossos conhecimentos sobre algumas dessas situações. O objetivo

Leia mais

A equação do 2º grau

A equação do 2º grau A UA UL LA A equação do 2º grau Introdução Freqüentemente, ao equacionarmos um problema, obtemos uma equação na qual a incógnita aparece elevada ao quadrado. Estas são as chamadas equações do 2º grau.

Leia mais

Matemática Financeira Módulo 2

Matemática Financeira Módulo 2 Fundamentos da Matemática O objetivo deste módulo consiste em apresentar breve revisão das regras e conceitos principais de matemática. Embora planilhas e calculadoras financeiras tenham facilitado grandemente

Leia mais

É preciso fabricar adubo?

É preciso fabricar adubo? A U L A A U L A Acesse: http://fuvestibuar.com.br/ É preciso fabricar adubo? O que você vai aprender Eementos essenciais para as pantas Fertiizantes NPK O que é um sa Queima da amônia Produção de ácido

Leia mais

REGRA DE TRÊS Este assunto é muito útil para resolver os seguintes tipos de problemas:

REGRA DE TRÊS Este assunto é muito útil para resolver os seguintes tipos de problemas: ÁLGEBRA Nivelamento CAPÍTULO VI REGRA DE TRÊS REGRA DE TRÊS Este assunto é muito útil para resolver os seguintes tipos de problemas: 1) Num acampamento, há 48 pessoas e alimento suficiente para um mês.

Leia mais

Qualquer mistura de gás de cozinha e ar explode?

Qualquer mistura de gás de cozinha e ar explode? A UA UL LA Acesse: http://fuvestibuar.com.br/ Quaquer mistura de gás de cozinha e ar expode? Oxigênio presente na atmosfera está próximo do imite máximo de segurança O que você vai aprender Por que combustíveis

Leia mais

Just-in-time. Podemos dizer que estamos usando a técnica. Conceito

Just-in-time. Podemos dizer que estamos usando a técnica. Conceito A UU L AL A Just-in-time Podemos dizer que estamos usando a técnica ou sistema just-in-time ou, abreviadamente, JIT, quando produzimos ago sem desperdício de matéria-prima; quando soicitamos e utiizamos

Leia mais

Sumário. Prefácio... xi. Prólogo A Física tira você do sério?... 1. Lei da Ação e Reação... 13

Sumário. Prefácio... xi. Prólogo A Física tira você do sério?... 1. Lei da Ação e Reação... 13 Sumário Prefácio................................................................. xi Prólogo A Física tira você do sério?........................................... 1 1 Lei da Ação e Reação..................................................

Leia mais

Lista de Exercícios de Recuperação do 1 Bimestre

Lista de Exercícios de Recuperação do 1 Bimestre Lista de Exercícios de Recuperação do 1 Bimestre Instruções gerais: Resolver os exercícios à caneta e em folha de papel almaço ou monobloco (folha de fichário). Copiar os enunciados das questões. Entregar

Leia mais

Os aplicativos e sua utilização

Os aplicativos e sua utilização Os apicativos e sua utiização Baixando, Instaando e usando o Avast A B C D Os Apicativos Tipos de Apicativos Baixando e Instaando Usando o apicativo Tipos de Apicativos/Programas Os apicativos são programas

Leia mais

Equação do 1º Grau. Maurício Bezerra Bandeira Junior

Equação do 1º Grau. Maurício Bezerra Bandeira Junior Maurício Bezerra Bandeira Junior Introdução às equações de primeiro grau Para resolver um problema matemático, quase sempre devemos transformar uma sentença apresentada com palavras em uma sentença que

Leia mais

A balança abaixo contém em seus pratos pesos de 1 kg e um pacote de peso desconhecido.

A balança abaixo contém em seus pratos pesos de 1 kg e um pacote de peso desconhecido. Atividade extra Exercício 1 A balança abaixo contém em seus pratos pesos de 1 kg e um pacote de peso desconhecido. Se a balança abaixo se encontra em equilíbrio é correto afirmar que: Fonte: http//portaldoprofessorhmg.mec.gov.br

Leia mais

DICAS PARA CÁLCULOS MAIS RÁPIDOS ARTIGO 07

DICAS PARA CÁLCULOS MAIS RÁPIDOS ARTIGO 07 DICAS PARA CÁLCULOS MAIS RÁPIDOS ARTIGO 07 Este é o 7º artigo da série de dicas para facilitar / agilizar os cálculos matemáticos envolvidos em questões de Raciocínio Lógico, Matemática, Matemática Financeira

Leia mais

FRAÇÕES TERMOS DE UMA FRAÇÃO NUMERADOR 2 TRAÇO DE FRAÇÃO DENOMINADOR. DENOMINADOR Indica em quantas partes o todo foi dividido.

FRAÇÕES TERMOS DE UMA FRAÇÃO NUMERADOR 2 TRAÇO DE FRAÇÃO DENOMINADOR. DENOMINADOR Indica em quantas partes o todo foi dividido. FRAÇÕES TERMOS DE UMA FRAÇÃO NUMERADOR TRAÇO DE FRAÇÃO DENOMINADOR DENOMINADOR Indica em quantas partes o todo foi dividido. NUMERADOR - Indica quantas partes foram consideradas. TRAÇO DE FRAÇÃO Indica

Leia mais

abaixo, onde a é o dividendo, d é o divisor, q é o quociente e r é o resto.

abaixo, onde a é o dividendo, d é o divisor, q é o quociente e r é o resto. Conjuntos numéricos 1) Naturais N = {0,1,2,3, } 2) Inteiros Z = { -3, -2, -1, 0, 1, 2, } Z + {1, 2, 3, } a) Divisão inteira Na divisão inteira de um número a por d, obtém se quociente q e resto r, segundo

Leia mais

Equações do primeiro grau

Equações do primeiro grau Módulo 1 Unidade 3 Equações do primeiro grau Para início de conversa... Você tem um telefone celular ou conhece alguém que tenha? Você sabia que o telefone celular é um dos meios de comunicação que mais

Leia mais

E A D - S I S T E M A S L I N E A R E S INTRODUÇÃO

E A D - S I S T E M A S L I N E A R E S INTRODUÇÃO E A D - S I S T E M A S L I N E A R E S INTRODUÇÃO Dizemos que uma equação é linear, ou de primeiro grau, em certa incógnita, se o maior expoente desta variável for igual a um. Ela será quadrática, ou

Leia mais

Revisão de combinatória

Revisão de combinatória A UA UL LA Revisão de combinatória Introdução Nesta aula, vamos misturar os vários conceitos aprendidos em análise combinatória. Desde o princípio multiplicativo até os vários tipos de permutações e combinações.

Leia mais

O ESPAÇO NULO DE A: RESOLVENDO AX = 0 3.2

O ESPAÇO NULO DE A: RESOLVENDO AX = 0 3.2 3.2 O Espaço Nulo de A: Resolvendo Ax = 0 11 O ESPAÇO NULO DE A: RESOLVENDO AX = 0 3.2 Esta seção trata do espaço de soluções para Ax = 0. A matriz A pode ser quadrada ou retangular. Uma solução imediata

Leia mais

Como se obtém gasolina de petróleo?

Como se obtém gasolina de petróleo? Acesse: http://fuvestibuar.com.br/ A UU L AL A Como se obtém gasoina de petróeo? Formação do petróeo Produtos derivados do petróeo Separação dos produtos do petróeo: destiação fracionada O que você vai

Leia mais

12 Por que o oxigênio do ar não acaba?

12 Por que o oxigênio do ar não acaba? A UA UL LA Por que o oxigênio do ar não acaba? O que você vai aprender Substância simpes Substância composta Cico do carbono na natureza Como as pantas transformam gás carbônico em oxigênio Decomposição

Leia mais

Calculando probabilidades

Calculando probabilidades A UA UL LA Calculando probabilidades Introdução evento E é: P(E) = Você já aprendeu que a probabilidade de um nº deresultadosfavoráveis nº total de resultados possíveis Nesta aula você aprenderá a calcular

Leia mais

Na figura abaixo, a balança está em equilíbrio e as três melancias têm o mesmo peso. Nessas condições, qual é o peso (em kg) de cada melancia?

Na figura abaixo, a balança está em equilíbrio e as três melancias têm o mesmo peso. Nessas condições, qual é o peso (em kg) de cada melancia? A UUL AL A 5 Introdução à ágebra Na figura abaixo, a baança está em equiíbrio e as três meancias têm o mesmo peso. Nessas condições, qua é o peso (em ) de cada meancia? Para pensar 3 Uma barra de rapadura

Leia mais

Colégio Adventista Portão EIEFM MATEMÁTICA Nivelamento 1º Ano APROFUNDAMENTO/REFORÇO. Aluno(a): Número: Turma: EXPRESSÕES NUMÉRICAS

Colégio Adventista Portão EIEFM MATEMÁTICA Nivelamento 1º Ano APROFUNDAMENTO/REFORÇO. Aluno(a): Número: Turma: EXPRESSÕES NUMÉRICAS Colégio Adventista Portão EIEFM MATEMÁTICA Nivelamento 1º Ano APROFUNDAMENTO/REFORÇO Professor: Hermes Jardim Disciplina: Matemática Lista 0 1º Bimestre/013 Aluno(: Número: Turma: EXPRESSÕES NUMÉRICAS

Leia mais

Módulo Frações, o Primeiro Contato. 6 o ano/e.f.

Módulo Frações, o Primeiro Contato. 6 o ano/e.f. Módulo Frações, o Primeiro Contato Frações e suas Operações. o ano/e.f. Frações, o Primeiro Contato Frações e suas Operações. Exercícios Introdutórios Exercício. Simplifique as frações abaixo até obter

Leia mais

Dá para separar o sal da água do mar?

Dá para separar o sal da água do mar? A UA UL LA Dá para separar o sa da água do mar? O que você vai aprender Métodos de separação de um sóido de um íquido: - Decantação - Peneiração - Fitração Dissoução Soução Souto Sovente Seria bom já saber

Leia mais

O conceito de probabilidade

O conceito de probabilidade A UA UL LA O conceito de probabilidade Introdução Nesta aula daremos início ao estudo da probabilidades. Quando usamos probabilidades? Ouvimos falar desse assunto em situações como: a probabilidade de

Leia mais

16 Comprimento e área do círculo

16 Comprimento e área do círculo A UA UL LA Comprimento e área do círculo Introdução Nesta aula vamos aprender um pouco mais sobre o círculo, que começou a ser estudado há aproximadamente 4000 anos. Os círculos fazem parte do seu dia-a-dia.

Leia mais

Matemática - UEL - 2010 - Compilada em 18 de Março de 2010. Prof. Ulysses Sodré Matemática Essencial: http://www.mat.uel.

Matemática - UEL - 2010 - Compilada em 18 de Março de 2010. Prof. Ulysses Sodré Matemática Essencial: http://www.mat.uel. Matemática Essencial Equações do Segundo grau Conteúdo Matemática - UEL - 2010 - Compilada em 18 de Março de 2010. Prof. Ulysses Sodré Matemática Essencial: http://www.mat.uel.br/matessencial/ 1 Introdução

Leia mais

Equacionando problemas - II

Equacionando problemas - II A UA UL LA Equacionando problemas - II Introdução Nossa aula Nas duas últimas aulas, resolvemos diversas equações do º grau pelo processo de completar o quadrado perfeito ou pela utilização da fórmula

Leia mais

Respostas de MAIO. A sequência é formada elevando-se ao quadrado os números 2,3,4... e somandolhes 2 em cada caso.

Respostas de MAIO. A sequência é formada elevando-se ao quadrado os números 2,3,4... e somandolhes 2 em cada caso. Respostas de MAIO Dia 1: O menor número de ovos é 91. Dia 2: O nível da água baixa. No barquinho, a moeda desloca a mesma massa de água que a do barquinho, portanto, um volume maior que o da moeda. Na

Leia mais

Descobrimos como fabricar soda cáustica!

Descobrimos como fabricar soda cáustica! Descobrimos como fabricar soda cáustica! O que você vai aprender Recicagem de pape Fabricação de pape Produção de hidróxido de sódio: eetróise Partícuas carregadas: íons Indicadores Seria bom já saber

Leia mais

Máximos e mínimos. Problemas de máximos e mínimos estão presentes. Nossa aula

Máximos e mínimos. Problemas de máximos e mínimos estão presentes. Nossa aula A UA UL LA Máimos e mínimos Introdução Problemas de máimos e mínimos estão presentes em quase todas as atividades do mundo moderno. Por eemplo, você pode imaginar como um carteiro distribui a correspondência?

Leia mais

Premium até 10 S.M. 180 60 30 20 10 a 20 S.M. 80 40 40 40 20 a 30 S.M. 60 30 60 70 mais de 30 S.M. 40 20 70 160

Premium até 10 S.M. 180 60 30 20 10 a 20 S.M. 80 40 40 40 20 a 30 S.M. 60 30 60 70 mais de 30 S.M. 40 20 70 160 1 MQI 2003 Estatística para Metrologia semestre 2008.01 LISTA DE EXERCÍCIOS # 1 PROBLEMA 1 Uma empresa de TV a cabo toma uma amostra de 1000 clientes, com o objetivo de verificar a relação entre a renda

Leia mais

Sistemas Lineares no CAp UFRJ: Resolvendo Equações Matriciais no Excel

Sistemas Lineares no CAp UFRJ: Resolvendo Equações Matriciais no Excel Sistemas Lineares no CAp UFRJ: Resolvendo Equações Matriciais no Excel O que o aluno poderá aprender com esta aula Escrever um sistema linear que corresponda a uma situação-problema. Interpretar um sistema

Leia mais

Leandro Lima Rasmussen

Leandro Lima Rasmussen Resoução da ista de eercícios de Resistência dos Materiais Eercício 1) Leandro Lima Rasmussen No intuito de soucionar o probema, deve ser feita a superposição de casos: Um, considerando a chapa BC como

Leia mais

QUESTÃO 1 ALTERNATIVA B

QUESTÃO 1 ALTERNATIVA B 1 QUESTÃO 1 Marcos tem 10 0,25 = 2,50 reais em moedas de 25 centavos. Logo ele tem 4,30 2,50 = 1,80 reais em moedas de 10 centavos, ou seja, ele tem 1,80 0,10 = 18 moedas de 10 centavos. Outra maneira

Leia mais

O Problema do Troco Principio da Casa dos Pombos. > Princípios de Contagem e Enumeração Computacional 0/48

O Problema do Troco Principio da Casa dos Pombos. > Princípios de Contagem e Enumeração Computacional 0/48 Conteúdo 1 Princípios de Contagem e Enumeração Computacional Permutações com Repetições Combinações com Repetições O Problema do Troco Principio da Casa dos Pombos > Princípios de Contagem e Enumeração

Leia mais

PIBID-MATEMÁTICA Jogo: Vai e vem das equações

PIBID-MATEMÁTICA Jogo: Vai e vem das equações PIBID-MATEMÁTICA Jogo: Vai e vem das equações Regras: Número de participantes: A sala toda irá participar, sendo dividida em 4 grupos que competirão entre si. Objetivo: solucionar situações-problemas envolvendo

Leia mais

MATERIAL DIDÁTICO A REALIDADE DOS SISTEMAS DE EQUAÇÕES

MATERIAL DIDÁTICO A REALIDADE DOS SISTEMAS DE EQUAÇÕES MATERIAL DIDÁTICO A REALIDADE DOS SISTEMAS DE EQUAÇÕES Prof. ANTONIO ROBERTO GONÇALVES Aprendizagem de Conceitos Se você precisa encontrar o volume de um silo de milho, a distância percorrida por um carro

Leia mais

COMPLEMENTO MATEMÁTICO

COMPLEMENTO MATEMÁTICO COMPLEMENTO MATEMÁTICO Caro aluno, A seguir serão trabalhados os conceitos de razão e proporção que são conteúdos matemáticos que devem auxiliar o entendimento e compreensão dos conteúdos de Química. Os

Leia mais

Prof. Ulysses Sodré - E-mail: [email protected] Matemática Essencial: http://www.mat.uel.br/matessencial/ 9 Porcentagem 10. 10 Juros Simples 12

Prof. Ulysses Sodré - E-mail: ulysses@uel.br Matemática Essencial: http://www.mat.uel.br/matessencial/ 9 Porcentagem 10. 10 Juros Simples 12 Matemática Essencial Proporções: Aplicações Matemática - UEL - 2010 - Compilada em 25 de Março de 2010. Prof. Ulysses Sodré - E-mail: [email protected] Matemática Essencial: http://www.mat.uel.br/matessencial/

Leia mais

CURSO ON-LINE PROFESSOR: VÍTOR MENEZES

CURSO ON-LINE PROFESSOR: VÍTOR MENEZES Caríssimos amigos concurseiros. Seguem breves comentários à prova de RLQ do ATA- MF. Não encontramos nenhuma questão passível de recurso. Mas, se vocês tiverem visualizado alguma coisa e quiserem debater

Leia mais

CURSO FREE PMES PREPARATÓRIO JC

CURSO FREE PMES PREPARATÓRIO JC CURSO FREE PMES PREPARATÓRIO JC Geometria CÍRCULO Área A = π. r 2 π = 3,14 Perímetro P = 2. π. r RETANGULO Área A = b. h Perímetro P = 2b + 2h QUADRADO Área A = l. loua = l 2 Perímetro TRIÂNGULO P = 4l

Leia mais

1 Por que tomar café da manhã?

1 Por que tomar café da manhã? A U A UL LA Por que tomar café da manhã? Exercícios Acordar, lavar o rosto, escovar os dentes, trocar de roupa e... tomar o café da manhã. É assim que muitas pessoas começam o dia, antes de ir trabalhar.

Leia mais

GRANDEZAS. A sua nota na prova depende do número de questões que você acerta?

GRANDEZAS. A sua nota na prova depende do número de questões que você acerta? . UNIVERSIDADE CASTELO BRANCO CURSO DE MATEMÁTICA DISCIPLINA: Matemática Financeira - Negócios PROFESSOR: Ramon Silva de Freitas DATA: / / ALUNO: GRANDEZAS Você já pensou que: A sua nota na prova depende

Leia mais

Sistemas Lineares. Para início de conversa... Matemática e suas Tecnologias Matemática 327

Sistemas Lineares. Para início de conversa... Matemática e suas Tecnologias Matemática 327 Módulo 3 Unidade 30 Sistemas Lineares Para início de conversa... Diversos problemas interessantes em matemática são resolvidos utilizando sistemas lineares. A seguir, encontraremos exemplos de alguns desses

Leia mais

COLÉGIO ETIP NIVELAMENTO BÁSICO DE MATEMÁTICA ENSINO MÉDIO INTEGRADO À INFORMÁTICA PROFESSOR RUBENS SOARES

COLÉGIO ETIP NIVELAMENTO BÁSICO DE MATEMÁTICA ENSINO MÉDIO INTEGRADO À INFORMÁTICA PROFESSOR RUBENS SOARES COLÉGIO ETIP NIVELAMENTO BÁSICO DE MATEMÁTICA ENSINO MÉDIO INTEGRADO À INFORMÁTICA PROFESSOR RUBENS SOARES SANTO ANDRÉ 2012 MEDIDAS DE SUPERFÍCIES (ÁREA): No sistema métrico decimal, devemos lembrar que,

Leia mais

Tópico 02: Movimento Circular Uniforme; Aceleração Centrípeta

Tópico 02: Movimento Circular Uniforme; Aceleração Centrípeta Aula 03: Movimento em um Plano Tópico 02: Movimento Circular Uniforme; Aceleração Centrípeta Caro aluno, olá! Neste tópico, você vai aprender sobre um tipo particular de movimento plano, o movimento circular

Leia mais

02 de Fevereiro de 2010

02 de Fevereiro de 2010 Pontifícia Universidade Católica do Paraná Transferência Externa Medicina 1º Semestre 2010 02 de Fevereiro de 2010 1ª FASE CONHECIMENTOS GERAIS N.º DO CARTÃO NOME (LETRA DE FORMA) ASSINATURA INFORMAÇÕES

Leia mais

Matemática no Cardápio By Lauren

Matemática no Cardápio By Lauren Matemática tica no Cardápio By Lauren Usando Frações no Trabalho Eu sou um cozinheiro-chefe e uso frações todos os dias no trabalho. Meu trabalho está relacionado com medidas. Na maioria das vezes as coisas

Leia mais

EQUAÇÕES E INEQUAÇÕES DE 1º GRAU

EQUAÇÕES E INEQUAÇÕES DE 1º GRAU 1 EQUAÇÕES E INEQUAÇÕES DE 1º GRAU Equação do 1º grau Chamamos de equação do 1º grau em uma incógnita x, a qualquer expressão matemática que pode ser escrita sob a forma: em que a e b são números reais,

Leia mais

Canguru Matemático sem Fronteiras 2015

Canguru Matemático sem Fronteiras 2015 anguru Matemático sem Fronteiras 2015 http://www.mat.uc.pt/canguru/ ategoria: Benjamim Destinatários: alunos dos 7. o e 8. o anos de escolaridade ome: Turma: Duração: 1h 30min anguru Matemático. Todos

Leia mais

Arquitetura de Rede de Computadores

Arquitetura de Rede de Computadores TCP/IP Roteamento Arquitetura de Rede de Prof. Pedro Neto Aracaju Sergipe - 2011 Ementa da Disciplina 4. Roteamento i. Máscara de Rede ii. Sub-Redes iii. Números Binários e Máscara de Sub-Rede iv. O Roteador

Leia mais

Realizando o ensaio de ultra-som

Realizando o ensaio de ultra-som Realizando o ensaio de ultra-som A UU L AL A Na aula anterior, você ficou sabendo que o ultra-som é uma onda mecânica que se propaga de uma fonte emissora até uma fonte receptora, através de um meio físico.

Leia mais

Questão 1. Questão 3. Questão 2. Questão 4. alternativa C. ver comentário. alternativa D

Questão 1. Questão 3. Questão 2. Questão 4. alternativa C. ver comentário. alternativa D Questão Considere a seqüência abaixo, conhecida como seqüência de Fibonacci Ela é definida de tal forma que cada termo, a partir do terceiro, é obtido pela soma dos dois imediatamente teriores a i :,,,

Leia mais

Comentários e Exemplos sobre os Temas e seus Descritores da Matriz de Matemática de 4ª Série Fundamental

Comentários e Exemplos sobre os Temas e seus Descritores da Matriz de Matemática de 4ª Série Fundamental Comentários e Exemplos sobre os Temas e seus Descritores da Matriz de Matemática de 4ª Série Fundamental TEMA II GRANDEZAS E MEDIDAS A comparação de grandezas de mesma natureza que dá origem à idéia de

Leia mais

REVISÃO E AVALIAÇÃO DA MATEMÁTICA

REVISÃO E AVALIAÇÃO DA MATEMÁTICA 2 Aula 45 REVISÃO E AVALIAÇÃO DA 3 Vídeo Arredondamento de números. 4 Arredondamento de números Muitas situações cotidianas envolvendo valores destinados à contagem, podem ser facilitadas utilizando o

Leia mais

Prova da segunda fase - Nível 1

Prova da segunda fase - Nível 1 Caro Aluno, Parabéns pela sua participação na nona edição da Olimpíada de Matemática de São José do Rio Preto! Lembre-se de que uma Olimpíada é diferente de uma prova escolar. Muitas vezes, as questões

Leia mais

Como se pode proteger o ferro?

Como se pode proteger o ferro? Como se pode proteger o ferro? A UUL AL A Todos os componentes de uma bicieta recebem proteção contra ferrugem. A proteção do aço. Gavanização,cromação, zincagem e estanhagem A importância dos óxidos na

Leia mais

Matemática. Prova a de Aferição de. 1.º Ciclo do Ensino Básico. Prova de Aferição de Matemática 1.º Ciclo do Ensino Básico. A preencher pelo Aluno

Matemática. Prova a de Aferição de. 1.º Ciclo do Ensino Básico. Prova de Aferição de Matemática 1.º Ciclo do Ensino Básico. A preencher pelo Aluno Prova de Aferição de Matemática 1.º Ciclo do Ensino Básico A preencher pelo Aluno 2007 Nome: A preencher pela U.E. N.º convencional do aluno: N.º convencional da escola: N.º convencional do aluno: N.º

Leia mais

ATIVIDADES DE MATEMÁTICA 8ª A/B

ATIVIDADES DE MATEMÁTICA 8ª A/B ATIVIDADES DE MATEMÁTICA 8ª A/B 1. Se toda a espécie humana atual fosse formada por apenas 100 famílias, 7 dessas famílias estariam consumindo 80% de toda a energia gerada no planeta. a) Quanto por cento,

Leia mais

37ª OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 1 (6º e 7º anos do Ensino Fundamental) GABARITO

37ª OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 1 (6º e 7º anos do Ensino Fundamental) GABARITO GABARITO NÍVEL 1 37ª OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 1 (6º e 7º anos do Ensino Fundamental) GABARITO 1) C 6) A 11) D 16) C 2) D 7) C 12) C 17) D 3) E 8) B 13) E 18) A 4) E 9) B 14)

Leia mais

Ensaio de tração: cálculo da tensão

Ensaio de tração: cálculo da tensão Ensaio de tração: cálculo da tensão A UU L AL A Você com certeza já andou de elevador, já observou uma carga sendo elevada por um guindaste ou viu, na sua empresa, uma ponte rolante transportando grandes

Leia mais

Dadas a base e a altura de um triangulo, determinar sua área.

Dadas a base e a altura de um triangulo, determinar sua área. Disciplina Lógica de Programação Visual Ana Rita Dutra dos Santos Especialista em Novas Tecnologias aplicadas a Educação Mestranda em Informática aplicada a Educação [email protected] Conceitos Preliminares

Leia mais

Evolução dos seres vivos

Evolução dos seres vivos iustrações você conhece? Evoução dos seres vivos Quais dos animais que aparecem nestas A UU L AL A Atenção O homem nas iustrações serve de eemento de comparação com os outros animais. Imaginando-se um

Leia mais

Matéria: Matemática Assunto: Regra de Três simples Prof. Dudan

Matéria: Matemática Assunto: Regra de Três simples Prof. Dudan Matéria: Matemática Assunto: Regra de Três simples Prof. Dudan Matemática Grandezas diretamente proporcionais A definição de grandeza está associada a tudo aquilo que pode ser medido ou contado. Como

Leia mais

Matemática Financeira II

Matemática Financeira II Módulo 3 Unidade 28 Matemática Financeira II Para início de conversa... Notícias como essas são encontradas em jornais com bastante frequência atualmente. Essas situações de aumentos e outras como financiamentos

Leia mais

Simulado OBM Nível 2

Simulado OBM Nível 2 Simulado OBM Nível 2 Gabarito Comentado Questão 1. Quantos são os números inteiros x que satisfazem à inequação? a) 13 b) 26 c) 38 d) 39 e) 40 Entre 9 e 49 temos 39 números inteiros. Questão 2. Hoje é

Leia mais

360 0,36f + 0,64f = 556. 0,28f = 196. f = 700 g = 300

360 0,36f + 0,64f = 556. 0,28f = 196. f = 700 g = 300 01) Uma empresa possui 1000 carros, sendo uma parte com motor a gasolina e o restante com motor flex (que funciona com álcool e com gasolina). Numa determinada época, neste conjunto de 1000 carros, 36%

Leia mais

EQUAÇÃO DO 1º GRAU. 2 melancias + 2Kg = 14Kg 2 x + 2 = 14

EQUAÇÃO DO 1º GRAU. 2 melancias + 2Kg = 14Kg 2 x + 2 = 14 EQUAÇÃO DO 1º GRAU EQUAÇÃO: Para resolver um problema matemático, quase sempre devemos transformar uma sentença apresentada com palavras em uma sentença que esteja escrita em linguagem matemática. Esta

Leia mais

Resolvendo problemas com logaritmos

Resolvendo problemas com logaritmos A UA UL LA Resolvendo problemas com logaritmos Introdução Na aula anterior descobrimos as propriedades dos logaritmos e tivemos um primeiro contato com a tábua de logarítmos. Agora você deverá aplicar

Leia mais

Sistemas Lineares. 2. (Ufsj 2013) Considere o seguinte sistema de equações lineares, nas incógnitas x, y e z:

Sistemas Lineares. 2. (Ufsj 2013) Considere o seguinte sistema de equações lineares, nas incógnitas x, y e z: Sistemas Lineares 1. (Unesp 2013) Uma coleção de artrópodes é formada por 36 exemplares, todos eles íntegros e que somam, no total da coleção, 113 pares de patas articuladas. Na coleção não há exemplares

Leia mais

Operações com números racionais - adição, subtração, multiplicação e divisão.

Operações com números racionais - adição, subtração, multiplicação e divisão. Nome: nº: 7º ano: do Ensino Fundamental Professores: Edilaine, Luis Carlos e Matheus TER - Operações com números racionais - adição, subtração, multiplicação e divisão. EXPRESSÕES NUMÉRICAS Para resolver

Leia mais

Resolução. = a = 700 cm = 7m; = b = 400 cm = 4 m; perímetro = 2 (7 + 4) = 22; 14 x 22 = 308; área = 7 x 4 = 28; 20 x 28 = 560; 308 + 560 = 868

Resolução. = a = 700 cm = 7m; = b = 400 cm = 4 m; perímetro = 2 (7 + 4) = 22; 14 x 22 = 308; área = 7 x 4 = 28; 20 x 28 = 560; 308 + 560 = 868 1 A figura abaixo é uma representação plana de certo apartamento, feita na escala 1: 00, ou seja, 1 cm na representação plana corresponde a 00 cm na realidade. Vão ser colocados rodapé e carpete no salão.

Leia mais

RodoMat Matemático 2015. Versão 1

RodoMat Matemático 2015. Versão 1 RodoMat Matemático 2015 Versão 1 Nome: Ano: Turma: Instruções da Prova A prova tem início às 15H30 e tem a duração de uma hora. Não é permitido sair antes da hora. Não podes usar calculadora. Há apenas

Leia mais

1 O mundo da Física. A curiosidade do homem pode ser compreendida

1 O mundo da Física. A curiosidade do homem pode ser compreendida A U A UL LA O mundo da Física A curiosidade do homem pode ser compreendida de várias maneiras: aguns dizem que vem de uma necessidade de sobrevivência, outros dizem que é uma forma de prazer ou, ainda,

Leia mais

1. Matemática Básica: o razão, proporção, regra da sociedade; o conversão de moedas câmbio.

1. Matemática Básica: o razão, proporção, regra da sociedade; o conversão de moedas câmbio. 1. Matemática Básica: o razão, proporção, regra da sociedade; o conversão de moedas câmbio. Regra de três simples Regra de três simples é um processo prático para resolver problemas que envolvam quatro

Leia mais

Por que o quadrado de terminados em 5 e ta o fa cil? Ex.: 15²=225, 75²=5625,...

Por que o quadrado de terminados em 5 e ta o fa cil? Ex.: 15²=225, 75²=5625,... Por que o quadrado de terminados em 5 e ta o fa cil? Ex.: 15²=225, 75²=5625,... 0) O que veremos na aula de hoje? Um fato interessante Produtos notáveis Equação do 2º grau Como fazer a questão 5 da 3ª

Leia mais