BC1309 Termodinâmica Aplicada
|
|
|
- Ágata Fagundes de Santarém
- 7 Há anos
- Visualizações:
Transcrição
1 Universidade Federal do ABC BC09 ermodinâmica Aplicada Profa. Dr. Jose Rubens Maiorino
2 Ciclo ermodinâmico a Gás Ciclo Padrão Ar - Brayton (urbina a Gás) BC09_ermodinâmica Aplicada
3 Conteudo Ciclo Brayton- Definição; Diagrama -s s para o Ciclo Brayton; Balanços de Massa e Energia para um Ciclo Brayton; Parâmetros Principais de Operação; Ciclo Brayton com Reaquecimento; Ciclo Brayton Regenerativo; Ciclo Brayton com Resfriamento Intermediário. rio. Ciclo Combinado Ciclo Padrão a ar para propulsão a jato Reatores Nucleares a Alta emperatura Refrigerados a Gas BC09_ermodinâmica Aplicada
4 urbinas a Gás BC09_ermodinâmica Aplicada
5 Motor a Jato BC09_ermodinâmica Aplicada
6 REAORES A GAS BC09_ermodinâmica Aplicada
7 Ciclo Brayton Ideal BC09_ermodinâmica Aplicada
8 Ciclo Brayton Ideal É o ciclo ideal das turbinas a gás (não há mudança de fase). Geralmente opera em um ciclo aberto, ou como um ciclo fechado. Consiste em quatro processos internamente reversíveis: v Compressão isoentrópica em um compressor; v Fornecimento de calor em uma câmara de combustão (P cte); v Expansão isoentrópica em uma turbina; v Rejeição de calor para o ambiente (P cte). BC09_ermodinâmica Aplicada
9 Ciclo Brayton Ideal Q h Câmara de Combustão W Compressor urbina ar fresco Ciclo aberto BC09_ermodinâmica Aplicada
10 Ciclo Brayton Ideal Q h Câmara de Combustão W Compressor urbina Ciclo fechado rocador de Calor Q L BC09_ermodinâmica Aplicada
11 urbina a Gás que operam segundo o ciclo Brayton(a -Aberto, b- Fechado) BC09_ermodinâmica Aplicada
12 Ciclo Brayton Ideal Ar fresco em condições ambiente entra no compressor (estado ), onde a pressão e a temperatura são elevadas (compressão isoentrópica). O ar entra na câmara de combustão (estado ), na qual o combustível é queimado àpressão constante. Em seguida, o ar a alta pressão e temperatura entra na turbina (estado ), onde se expande até a pressão atmosférica, produzindo potência. O ar e calor são rejeitados para o ambiente (estado ) à pressão constante. BC09_ermodinâmica Aplicada
13 Diagrama -s BC09_ermodinâmica Aplicada
14 Ciclo Brayton Ideal Diagrama -s W Q h W Q L s BC09_ermodinâmica Aplicada
15 Balanço o de Massa e de Energia BC09_ermodinâmica Aplicada
16 Ciclo Brayton Ideal Equação de conservação da massa: n i m n m e s i dm dt vc Equação de conservação da energia (ª lei da ermodinâmica): n n V V Q e s vc W vc + m e h e + + gze ms h s gzs i + + i v Hipóteses adotadas: qregime permanente; qvariação nula de energia cinética e potencial; qcomportamento de gás g s ideal; qroca de calor à pressão constante. de dt vc BC09_ermodinâmica Aplicada
17 Ciclo Brayton Ideal Equação de conservação da massa: m e m s 0 Equação de conservação da energia (ª lei da ermodinâmica): Q vc W vc + m eh e m shs 0 ( q q ) + (w w ) h e s e s s h e BC09_ermodinâmica Aplicada
18 Ciclo Brayton Ideal Compressor Compressor W C + m h W C + mc p m m 0 m h 0 ( ) 0 BC09_ermodinâmica Aplicada
19 Ciclo Brayton Ideal Câmara de Combustão Câmara de Combustão Q Q H H + m + mc m m h p m h ( ) BC09_ermodinâmica Aplicada
20 Ciclo Brayton Ideal urbina W W m m + m h + m c 0 p m h 0 ( ) 0 urbina BC09_ermodinâmica Aplicada
21 Ciclo Brayton ldeal Balanços de Massa e Energia Para cada equipamento temos: Compressor: ( ) 0 mc W 0 h m m h W p C C + + m m m 0 m m urbina ( ) 0 m c W 0 h m m h W p + + m m m 0 m m Câmara de Combustão ( ) 0 mc Q 0 m h h m Q p H H + + m m m 0 m m BC09_ermodinâmica Aplicada
22 Ciclo Brayton Ideal Assim, épossível definir a eficiência termica de um ciclo Brayton ideal: η termico W Q H Q Q L H c c p p ( ( ) ) BC09_ermodinâmica Aplicada
23 Ciclo Brayton Ideal Ciclo Ciclo Brayton Brayton Ideal Ideal BC09_ermodinâmica Aplicada H h h m Q ( ) ( ) p p H L c c h h h h Q Q η L h h m Q ( ) ( ) η Considerando que por unidade de massa: A eficiência térmica do ciclo Brayton pode ser definida por:
24 Ciclo Brayton Ideal Ciclo Ciclo Brayton Brayton Ideal Ideal BC09_ermodinâmica Aplicada p p p p e que: k k p p e: k k p p Logo: Considerando que:
25 Ciclo Brayton Ideal Ciclo Ciclo Brayton Brayton Ideal Ideal BC09_ermodinâmica Aplicada η η ( ) k k C R η Onde: Razão de pressão no compressor C p p R q Eficiência térmica do ciclo Brayton pode ser definida por:
26 Como aumentar a eficiência do Ciclo Brayton? BC09_ermodinâmica Aplicada
27 Parâmetros de Operação BC09_ermodinâmica Aplicada
28 Aumento da Razão de Pressão Aumento da razão de pressão do compressor: s BC09_ermodinâmica Aplicada
29 Aumento da emperatura Aumento da temperatura da saída da câmara de combustão: s BC09_ermodinâmica Aplicada
30 Ciclo Brayton Regenerativo BC09_ermodinâmica Aplicada
31 Ciclo Brayton Regenerativo y Regenerador x Q h Eficiência do Regenerador ε h h x h h Câmara de Combustão W Compressor urbina BC09_ermodinâmica Aplicada
32 Ciclo Regenerativo BC09_ermodinâmica Aplicada
33 Eficiência do Ciclo Regenerativo BC09_ermodinâmica Aplicada k k p k k k k t c t H p H p t H c t r P P P P w w w q c q c w q w w / / / ] ) / ( [ ] ) / [(, / / mas, )] / ( [ ] ) / [( : Para umregenerador ideal ] [ ]; [, η η η
34 Ciclo Brayton com Reaquecimento BC09_ermodinâmica Aplicada
35 Ciclo Brayton com Reaquecimento x Q h Câmara de Combustão Q h Câmara de Combustão 5 Compressor urbina urbina 6 BC09_ermodinâmica Aplicada
36 Ciclo Brayton com Resfriamento Intermediário rio BC09_Jermodinâmica Aplicada
37 Ciclo Brayton com Resfriamento Resfriamento Intermediário rio Q h Câmara de Combustão 5 W Compressor Compressor urbina 6 BC09_ermodinâmica Aplicada
38 Ciclo Brayton Real BC09_ermodinâmica Aplicada
39 Ciclo Brayton Real Queda de pressão durante o fornecimento de calor Irreversibilidade gerada no compressor Irreversibilidade gerada na turbina Queda de pressão durante a rejeição de calor s BC09_ermodinâmica Aplicada
40 Ciclo Padrão a ar para propulsão a jato BC09_ermodinâmica Aplicada
41 Reatores Nucleares a Alta emperatura Refrigerados a Gas Os reatores HGR utilizam hélio como gás refrigerante, são moderados com grafite e o combustível éem forma de partículas de dióxido de urânio ou carbeto de urânio revestidas com três camadas sucessivas: a primeira de carbono pirolitico, a segunda de SiC e a terceira novamente de carbono pirolítico. Estes revestimentos garantem a contenção dos produtos de fissão e a estabilidade das partículas de combustível até000 C. Estas partículas de combustível, originariamentedesenvolvidasna Alemanha, são chamadas de RISO (RI ISOtropic). BC09_ermodinâmica Aplicada
42 ipos de Reatores de Alta emperatura Refrigerados a Gas BC09_ermodinâmica Aplicada
43 Eficiência dos HR BC09_ermodinâmica Aplicada
44 Ciclo Combinado Brayton-Rankine BC09_ermodinâmica Aplicada
45 Eficiência do Ciclo Combinado BC09_ermodinâmica Aplicada
46 Exercícios cios BC09_ermodinâmica Aplicada
47 Exercícios cios ) Ar entra no compressor de um ciclo Brayton ideal, a 00 kpa e 5 C. A pressão na seção de descarga do compressor éde Mpa e a temperatura máxima no ciclo é00ºc. Determine: a) a pressão e a temperatura em cada ponto do ciclo; b) o trabalho no compressor, na turbina e o rendimento do ciclo. Resp. a) Pressões: 00 kpa; 000 kpa; 000 kpa; 00 kpa; emperaturas: 88 K; 556, K; 7 K; 70,6 K; b) -69, kj/kg; 66,7 kj/kg; 8,% ) Considere uma turbina a gás em que o ar entra no compressor nas mesmas condições do exemplo anterior. Admita que as eficiências do compressor e da turbina são, respectivamente, iguais a 80% e 85%. Sabendo que a perda de carga no escoamento de ar entre o compressor e a turbina é de 5 kpa, determine o trabalho no compressor, na turbina e o rendimento do ciclo. Resp: - 9,6 kj/kg; 565,0 kj/kg; 7,58% ) Considere que um regenerador ideal foi incorporado ao ciclo descrito no exemplo. Determine o rendimento térmico do ciclo modificado. (Resp: 59,8%) BC09_ermodinâmica Aplicada
SISTEMAS TÉRMICOS DE POTÊNCIA
SISTEMAS TÉRMICOS DE POTÊNCIA PROF. RAMÓN SILVA Engenharia de Energia Dourados MS - 2013 SISTEMAS DE POTÊNCIA A VAPOR 2 SIST. POTÊNCIA A VAPOR Diferente do ciclo de potência a gás, no ciclo de potência
SISTEMAS TÉRMICOS DE POTÊNCIA
SISTEMAS TÉRMICOS DE POTÊNCIA SISTEMAS DE POTÊNCIA A VAPOR Prof. Dr. Ramón Silva - 2015 O objetivo dessa aula é relembrar os conceitos termodinâmicos do ciclo Rankine e introduzir aos equipamentos que
Capítulo 5: Análise através de volume de controle
Capítulo 5: Análise através de volume de controle Segunda lei da termodinâmica Conversão de energia EM-54 Fenômenos de Transporte Variação de entropia em um sistema Num sistema termodinâmico a equação
Eficiência em Processos. Vimos que para um ciclo, no caso um motor térmico, a eficiência é dada por: W resultante Q
Eficiência em Processos Vimos que para um ciclo, no caso um motor térmico, a eficiência é dada por: η térmica W resultante Q H Entretanto, para um processo a definição de eficiência envolve uma comparação
Ciclos de Potência a Gás
Ciclos de Potência a Gás Máquinas Térmicas e Motores Térmicos Dispositivos que operam segundo um dado ciclo de potência Ciclos de Potência: Ciclos termodinâmicos para conversão de calor em trabalho Ciclo
Escola Politécnica da Universidade de São Paulo. Termodinâmica. Ciclos motores a ar
Termodinâmica Ciclos motores a ar 1 v. 1.2 Ciclo padrão a ar Trata-se de um modelo simplificado para representar alguns sistemas de potência com processos complexos. Exemplos: Motores de combustão interna
Escola Politécnica da Universidade de São Paulo. Termodinâmica. Ciclos motores a vapor
Termodinâmica Ciclos motores a vapor 1 v. 1.1 Por que estudar ciclos? Pergunta: Quanto custa operar uma usina termelétrica de 1000 MW de potência elétrica, queimando combustível fóssil, operando segundo
1ª Lei da Termodinâmica lei da conservação de energia
1ª Lei da Termodinâmica lei da conservação de energia É de bastante interesse em análises termodinâmicas conhecer o balanço energético dos sistemas, principalmente durante trocas de estado A 1ª Lei da
Módulo I Ciclo Rankine Ideal
Módulo I Ciclo Rankine Ideal Sistema de Potência a Vapor As usinas de potência a vapor são responsáveis pela produção da maior parte da energia elétrica do mundo. Porém, para o estudo e desenvolvimento
Máquinas Térmicas Turbinas a Gas. Jurandir Itizo Yanagihara
Máquinas Térmicas Turbinas a Gas 1 Vantagens da Vantagens Turbinas a gás tendem a ser mais compactas, isto é, tem uma maior razão potência/peso (até 70% em relação a outros motores). Por isso, elas são
Escola Politécnica da Universidade de São Paulo. Termodinâmica. 11) Ciclos motores a ar Ciclo Brayton. v. 2.1
Termodinâmica 11) Ciclos motores a ar Ciclo Brayton 1 v. 2.1 Exemplos Turbinas a gás Fonte:http://www.alstom.com/products-services/product-catalogue/power-generation/gas-power/gas-turbines/gt24-gt26-gas-turbines/
CICLOS MOTORES A VAPOR. Notas de Aula. Prof. Dr. Silvio de Oliveira Júnior
CICLOS MOTORES A VAPOR Notas de Aula Prof. Dr. Silvio de Oliveira Júnior 2001 CICLO RANKINE ESQUEMA DE UMA CENTRAL TERMELÉTRICA A VAPOR REPRESENTAÇÃO ESQUEMÁTICA DA TERMELÉTRICA DIAGRAMAS DO CICLO IDEAL
Capítulo 4. Ciclos de Potência a Vapor
Capítulo 4 Ciclos de Potência a Vapor Objetivos Estudar os ciclos de potência em que o fluido de trabalo é alternadamente vaporizado e condensado. Fornecer uma introdução aos processos de co-geração. 4..
3. Um gás ideal passa por dois processos em um arranjo pistão-cilindro, conforme segue:
1. Um arranjo pistão-cilindro com mola contém 1,5 kg de água, inicialmente a 1 Mpa e título de 30%. Esse dispositivo é então resfriado até o estado de líquido saturado a 100 C. Calcule o trabalho total
Introdução. Exergia ou Disponibilidade máximo trabalho útil que pode ser obtido de um sistema em um determinado estado e em um ambiente especificado.
Exergia Introdução 1ª Lei da Termodinâmica conservação da energia (energia não pode ser criada nem destruída). Serve como ferramenta para contabilizar a energia durante um processo 2ª Lei da Termodinâmica
Disciplina: Motores a Combustão Interna. Ciclos e Processos Ideais de Combustão
Disciplina: Motores a Combustão Interna Ciclos e Processos Ideais de Combustão Ciclos de Potência dos Motores a Pistão Aqui serão apresentados ciclos ideais de potência a ar para ciclos onde o trabalho
SISTEMAS DE POTÊNCIA A VAPOR (SPV)
SISTEMAS DE POTÊNCIA A VAPOR (SPV) Prof. Dr. Paulo H. D. Santos [email protected] AULA 1 06/06/2013 Apresentação do curso; Modelagem dos Sistemas de Potência a Vapor; Sistemas de Potência a Vapor -
Análise Energética para Sistemas Abertos (Volumes de Controles)
UTFPR Termodinâmica 1 Análise Energética para Sistemas Abertos (Volumes de Controles) Princípios de Termodinâmica para Engenharia Capítulo 4 Parte III Análise de Volumes de Controle em Regime Permanente
Escola Politécnica da Universidade de São Paulo. Aula 12 Ciclo Otto e Ciclo Diesel
Escola Politécnica da Universidade de São Paulo Aula 12 Ciclo Otto e Ciclo Diesel Ciclo de Potência dos Motores Alternativos Deslocamento de todos cilindros: V desl =N ciclo (V max V min )=N ciclo A ciclo
MÁQUINAS TÉRMICAS E PROCESSOS CONTÍNUOS AULA 9-11 SISTEMAS DE POTÊNCIA A GÁS
MÁQUINAS TÉRMICAS E PROCESSOS CONTÍNUOS AULA 9-11 SISTEMAS DE POTÊNCIA A GÁS PROF.: KAIO DUTRA Instalação de Potência com Turbinas a Gás As turbinas a gás tendem a ser mais leves e mais compactas que as
SISTEMAS TÉRMICOS DE POTÊNCIA
SISTEMAS TÉRMICOS DE POTÊNCIA PROF. RAMÓN SILVA Engenharia de Energia Dourados MS - 2013 TURBINAS A GÁS TURBINAS A GÁS Turbogeradores são sistemas de geração de energia onde o acionador primário é uma
MÁQUINAS TÉRMICAS E PROCESSOS CONTÍNUOS
MÁQUINAS TÉRMICAS E PROCESSOS CONTÍNUOS AULA 4-5 SISTEMAS DE POTÊNCIA A VAPOR PROF.: KAIO DUTRA Modelando Sistemas de Potência a Vapor A grande maioria das instalações elétricas de geração consiste em
DRAFT. Ciclos de Potência CONCURSO PETROBRAS. Questões Resolvidas ENGENHEIRO(A) DE EQUIPAMENTOS JÚNIOR - MECÂNICA
CONCURSO PETROBRAS ENGENHEIRO(A) DE EQUIPAMENTOS JÚNIOR - MECÂNICA ENGENHEIRO(A) JÚNIOR - ÁREA: MECÂNICA PROFISSIONAL JÚNIOR - ENG. MECÂNICA Ciclos de Potência Questões Resolvidas QUESTÕES RETIRADAS DE
Capítulo 5. Ciclos de Refrigeração
Capítulo 5 Ciclos de Refrigeração Objetivos Estudar o funcionamento dos ciclos frigoríficos por compressão de vapor idealizados e reais Apontar as distinções entre refrigeradores e bombas de calor 5.1.
MÁQUINAS TÉRMICAS
UNIVERSIDADE DE AVEIRO DEPARTAMENTO DE ENGENHARIA MECÂNICA EXERCÍCIOS DAS AULAS PRÁTICAS MÁQUINAS TÉRMICAS 2010-2011 DOCENTES RESPONSÁVEIS DEM Fernando Neto DEM João Oliveira DISCIPLINA Código 40544 Ano
Profa.. Dra. Ana Maria Pereira Neto
5/09/0 Universidade Federal do ABC BC309 Termodinâmica Aplicada Profa.. Dra. Ana Maria Pereira Neto [email protected] Bloco A, torre, sala 637 Calor, Trabalho e Primeira Lei da Termodinâmica 5/09/0
MÁQUINAS TÉRMICAS E PROCESSOS CONTÍNUOS
MÁQUINAS TÉRMICAS E PROCESSOS CONTÍNUOS AULA 13 TURBINAS A VAPOR PROF.: KAIO DUTRA Usinas Termoelétricas As turbinas a vapor são máquinas que utilizam a elevada energia cinética da massa de vapor expandido
UNIVERSIDADE FEDERAL DO PARANÁ SETOR DE TECNOLOGIA DEPARTAMENTO DE ENGENHARIA MECÂNICA TM-364 MÁQUINAS TÉRMICAS I. Máquinas Térmicas I
UNIVERSIDADE FEDERAL DO PARANÁ SETOR DE TECNOLOGIA DEPARTAMENTO DE ENGENHARIA MECÂNICA TM-364 MÁQUINAS TÉRMICAS I Máquinas Térmicas I "Existem três tipos de pessoas: as que sabem e as que não sabem contar...
Universidade do Vale do Rio dos Sinos PPGEM Programa de Pós-Graduação de Engenharia Mecânica
Universidade do Vale do Rio dos Sinos PPGEM Programa de Pós-Graduação de Engenharia Mecânica SIMULAÇÃO DE CICLO TÉRMICO COM DUAS CALDEIRAS EM PARALELO: COMBUSTÃO EM GRELHA E EM LEITO FLUIDIZADO Herson
Módulo I Motores de Combustão Interna e Ciclo Otto
Módulo I Motores de Combustão Interna e Ciclo Otto Motores de Combustão Interna. Apesar de serem ciclos de potência como os estudados em todas as disciplinas anteriores que envolvem os conceitos de Termodinâmica
Lista de Exercícios Solução em Sala
Lista de Exercícios Solução em Sala 1) Um conjunto pistão-cilindro área de seção transversal igual a 0,01 m². A massa do pistão é 101 kg e ele está apoiado nos batentes mostrado na figura. Se a pressão
Módulo I Motores de Combustão Interna e Ciclo Otto
Módulo I Motores de Combustão Interna e Ciclo Otto Motores de Combustão Interna. Apesar de serem ciclos de potência como os estudados em todas as disciplinas anteriores que envolvem os conceitos de Termodinâmica
Energética Industrial
Universidade do Minho Departamento de Engenharia Mecânica Energética Industrial Problemas propostos José Carlos Fernandes Teixeira 1) 1.5 kg de gelo à temperatura de 260 K, funde-se, à pressão de 1 bar,
PRINCÍPIOS BÁSICOS DA TERMODINÂMICA
PRINCÍPIOS BÁSICOS DA TERMODINÂMICA... 1 1.1 Variáveis e Transformações Termodinâmicas... 1 1.2 Primeiro Princípio da Termodinâmica... 1 1.3 Segundo Princípio da Termodinâmica... 2 1.4 Expressões das Variáveis
Aula 6 Dimensionamento de grandes equipamentos de usinas termoelétricas
BIJ-0207 Bases conceituais da energia Aula 6 Dimensionamento de grandes equipamentos de usinas termoelétricas Prof. João Moreira CECS - Centro de Engenharia, Modelagem e Ciências Sociais Aplicadas Universidade
SIMULAÇÃO DE UMA USINA COM CICLO SIMPLES A VAPOR (CICLO RANKINE)
SIMULAÇÃO DE UMA USINA COM CICLO SIMPLES A VAPOR (CICLO RANKINE) Glauber Rocha 1 Adilson Luiz da Silva 2 Fausto Neves Silva 3 RESUMO Para gerar vapor necessário aos processos de uma usina existe na caldeira
TM-182 REFRIGERAÇÃ ÇÃO O E CLIMATIZAÇÃ ÇÃO. Prof. Dr. Rudmar Serafim Matos
Universidade Federal do Paraná Setor de Tecnologia Departamento de Engenharia Mecânica TM-82 REFRIGERAÇÃ ÇÃO O E CLIMATIZAÇÃ ÇÃO Prof. Dr. Rudmar Serafim Matos 2.5 EXEMPLOS ILUSTRATIVOS Procedimentos para
Ciclo de potência a vapor
Universidade do Vale do Rio dos Sinos UNISINOS Programa de Pós-Graduação em Engenharia Mecânica Ciclo de potência a vapor 2 semestre/2016 1 Ciclo de Carnot Forma de conversão contínua de calor, proveniente
Módulo III Desigualdade de Clausis, Entropia, Geração de Entropia.
Módulo III Desigualdade de Clausis, Entropia, Geração de Entropia. Desigualdade de Clausius Aplicável para qualquer ciclo reversível ou irreversível. Ela foi desenvolvida pelo físico alemão R. J. E. Clausius
ANÁLISE DE SISTEMAS TÉRMICOS
ANÁLISE DE SISTEMAS TÉRMICOS Prof. Dr. Paulo H. D. Santos [email protected] AULA 2 12/09/2014 Modelagem dos ciclos de potência a gás, a vapor e combinados Parte I Sumário MODELAGEM DE SISTEMA A VAPOR
TERMODINÂMICA APLICADA
TERMODINÂMICA APLICADA Livro Texto adotado: Fundamentos da Termodinâmica Claus Borgnakke/ Richard E. Sonntag Editora Blucher. Samuel Sander de Carvalho [email protected] Juiz de Fora -MG
Nota: Campus JK. TMFA Termodinâmica Aplicada
TMFA Termodinâmica Aplicada 1) Considere a central de potência simples mostrada na figura a seguir. O fluido de trabalho utilizado no ciclo é água e conhece-se os seguintes dados operacionais: Localização
TERMODINÂMICA. Módulo 6 1ª Lei da Termodinâmica Módulo 7 2ª Lei da Termodinâmica
TERMODINÂMICA Módulo 6 1ª Lei da Termodinâmica Módulo 7 ª Lei da Termodinâmica 1) Trabalho de um gás () p F A Para F = cte: F p. A F d cos F = cte. p Ad V Variação de Volume d V Ad p = cte. p V Para p
Máquinas de Fluxo Prof. Dr. Emílio Carlos Nelli Silva Escola Politécnica da USP Departamento de Engenharia Mecatrônica e Sistemas Mecânicos
1 Máquinas de Fluxo Prof. Dr. Emílio Carlos Nelli Silva Escola Politécnica da USP Departamento de Engenharia Mecatrônica e Sistemas Mecânicos 2 Introdução Fontes primárias de energia: óleo, carvão, fissão
Profa.. Dra. Ana Maria Pereira Neto
Universidade Federal do ABC BC1309 Termodinâmica Aplicada Profa.. Dra. Ana Maria Pereira Neto [email protected] Segunda ei da Termodinâmica 1 Segunda ei da Termodinâmica Comparação com a 1ª ei da Termodinâmica;
Centrais de cogeração em edifícios: o caso da Sonae Sierra
Centrais de cogeração em edifícios: o caso da Sonae Sierra Miguel Gil Mata 29 Maio 2009 FEUP Semana da Energia e Ambiente 1 Centrais de Cogeração em edifícios o caso da Sonae Sierra 1. O conceito de Cogeração
Aula 7 Refrigeração e bombeamento de calor
Universidade Federal do ABC P O S M E C Aula 7 Refrigeração e bombeamento de calor MEC202 Refrigeração Transferência de calor a partir de uma região de temperatura mais baixa para uma região com temperatura
Termodinâmica Seção 05-1ª Lei da Termodinâmica para Volume de Controle
Termodinâmica Seção 05-1ª Lei da Termodinâmica para Volume de Controle Prof. João Porto Objetivos: Enunciar e aplicar a 1ª primeira lei da termodinâmica para volume de controle. Resumo 01- Conservação
Escola Politécnica da Universidade de São Paulo. Termodinâmica. Ciclos de Refrigeração. v. 2.0
Termodinâmica Ciclos de Refrigeração 1 v. 2.0 Ciclo de refrigeração A transferência de calor de compartimentos de baixa temperatura para outros a temperaturas maiores é chamada de refrigeração; Equipamentos
Geração de Energia Elétrica
Geração de Energia Elétrica Geração Termoelétrica Ciclo Joinville, 09 de Maio de 2012 Escopo dos Tópicos Abordados Conceitos básicos de termodinâmica; Centrais Térmicas Ciclo : Descrição de Componentes;
Aula 4 A 2ª Lei da Termodinâmica
Universidade Federal do ABC P O S M E C Aula 4 A 2ª Lei da Termodinâmica MEC202 As Leis da Termodinâmica As leis da termodinâmica são postulados básicos aplicáveis a qualquer sistema que envolva a transferência
EM34F Termodinâmica A
EM34F Termodinâmica A Prof. Dr. André Damiani Rocha [email protected] Energia 2 Energia Transferência de Energia por Calor Sempre que existir diferença de temperatura haverá transferência de calor. Se
Cap. 4: Análise de Volume de Controle
Cap. 4: Análise de Volume de Controle AR Ar+Comb. www.mecanicavirtual.org/carburador2.htm Cap. 4: Análise de Volume de Controle Entrada, e Saída, s Conservação da Massa em um Sistema dm dt sist = 0 Conservação
Reservatório a alta temperatura T H. Ciclos reversíveis
9/Mar/016 Aula 6 Ciclos termodinâmicos reversíveis Diagrama P e eficiência do Ciclo de Carnot Ciclo de Otto (motores a gasolina): processos e eficiência Ciclo de Diesel: processos, eficiência e trabalho
Módulo V Balanço de Entropia para Sistemas Fechados. Balanço de Entropia para Volume de Controle.
Módulo V Balanço de Entropia para Sistemas Fechados. Balanço de Entropia para Volume de Controle. Balanço de Entropia para Sistemas Fechados O balanço de entropia é uma expressão da segunda lei conveniente
Exercícios e exemplos de sala de aula Parte 1
PME2398 Termodinâmica e suas Aplicações 1 o semestre / 2013 Prof. Bruno Carmo Exercícios e exemplos de sala de aula Parte 1 Propriedade das substâncias puras: 1- Um tanque rígido com volume de 1m 3 contém
Problema 1 Problema 2
1 Problema 1 7ª Edição Exercício: 2.42 / 8ª Edição Exercício: 1.44 A área da seção transversal da válvula do cilindro mostrado na figura abaixo é igual a 11cm 2. Determine a força necessária para abrir
UNIVERSIDADE FEDERAL DO PARANÁ SETOR DE TECNOLOGIA DEPARTAMENTO DE ENGENHARIA MECÂNICA TURBINAS A VAPOR
UNIVERSIDADE FEDERAL DO PARANÁ SETOR DE TECNOLOGIA DEPARTAMENTO DE ENGENHARIA MECÂNICA TURBINAS A VAPOR Prof. FERNANDO BÓÇON, Dr.Eng. Curitiba, setembro de 2015 IV - TURBINAS A VAPOR 1. GENERALIDADES 1.1
Essa relação se aplica a todo tipo de sistema em qualquer processo
Módulo III Primeira Lei da Termodinâmica e em Ciclos de Potência e Refrigeração. Propriedades de Substâncias Puras: Relações P-V-T e Diagramas P-V, P-T e T-V, Título, Propriedades Termodinâmicas, Tabelas
Escola Politécnica de Pernambuco Departamento de Engenharia Elétrica PROGRAMA. Pré-Requisito: ELET0053 MATERIAIS ELÉTRICOS ELET0031 ELETROMAGNETISMO 2
PROGRAMA Disciplina: MÁQUINAS PRIMÁRIAS Código: ELET0052 Carga Horária Semestral: 60 HORAS Obrigatória: sim Eletiva: Número de Créditos: TEÓRICOS: 04; PRÁTICOS: 00; TOTAL: 04 Pré-Requisito: ELET0053 MATERIAIS
LISTA DE EXERCÍCIOS Trabalho, Calor e Primeira Lei da Termodinâmica para Sistemas
- 1 - LISTA DE EXERCÍCIOS Trabalho, Calor e Primeira Lei da Termodinâmica para Sistemas 1. Um aquecedor de ambientes a vapor, localizado em um quarto, é alimentado com vapor saturado de água a 115 kpa.
TERMODINÂMICA EXERCÍCIOS RESOLVIDOS E TABELAS DE VAPOR
TERMODINÂMICA EXERCÍCIOS RESOLVIDOS E TABELAS DE VAPOR Prof. Humberto A. Machado Departamento de Mecânica e Energia DME Faculdade de Tecnologia de Resende - FAT Universidade do Estado do Rio de Janeiro
Capítulo 3 - Ciclo Real de Refrigeração
Refrigeração Capítulo 3 Pág. 1 Capítulo 3 - Ciclo Real de Refrigeração O ciclo real de refrigeração difere do ciclo padrão devido, principalmente, à presença de irreversibilidades que ocorrem em vários
Introdução. Produção simultânea de potência mecânica ou elétrica e de calor útil a partir de uma única fonte de calor
Cogeração Parte 1 Introdução Cogeração Produção simultânea de potência mecânica ou elétrica e de calor útil a partir de uma única fonte de calor OBS: alguns consideram também ciclo combinado como cogeração
b A eficiência térmica de um ciclo é medida pela relação entre o trabalho do ciclo e o calor que nele é adicionado.
1) As usinas de potência (termoelétricas e nucleares) precisam retornar ao meio ambiente uma determinada quantidade de calor para o funcionamento do ciclo. O retorno de grande quantidade de água aquecida
FÍSICA PROFº JAISON MATTEI
FÍSICA PROFº JAISON MATTEI 1. Um sistema termodinâmico constituído de n mols de um gás perfeito monoatômico desenvolve uma transformação cíclica ABCDA representada no diagrama a seguir. De acordo com o
LISTA DE EXERCÍCIOS - FENÔMENO DE TRANSPORTES II. Revisão Conservação de Energia e Massa
LISTA DE EXERCÍCIOS - FENÔMENO DE TRANSPORTES II Revisão Conservação de Energia e Massa 1) Determinar a velocidade do jato de líquido no orifício do tanque de grande dimensões da figura abaixo. Considerar
Física II FEP º Semestre de Instituto de Física - Universidade de São Paulo. Professor: Valdir Guimarães
Física II FEP 112 2º Semestre de 2012 Instituto de Física - Universidade de São Paulo Professor: Valdir Guimarães E-mail: [email protected] Fone: 3091-7104 Aula 3 Irreversibilidade e Segunda Lei
Disciplina: Motores a Combustão Interna. Ciclo Ideal e Real
Disciplina: Motores a Combustão Interna Ciclo Ideal e Real Ciclos Ideais A termodinâmica envolvida nos processos químicos reais dos motores de combustão interna é bastante complexa. Sendo assim, é útil
Físico-Química I. Profa. Dra. Carla Dalmolin Luísa Rosenstock Völtz. Máquinas Térmicas. Segunda Lei da Termodinâmica. Ciclo de Carnot.
Físico-Química I Profa. Dra. Carla Dalmolin Luísa Rosenstock Völtz Máquinas Térmicas Segunda Lei da Termodinâmica Ciclo de Carnot Refrigeração Máquina Térmica Uma máquina térmica converte parte da energia
Geração de Energia Elétrica
Geração de Energia Elétrica Geração Termoelétrica a Joinville, 6 de Abril de 202 Escopo dos Tópicos Abordados Ciclos térmicos; Configurações emodelos de Turbinas a : Modelos dinâmicos de turbinas a vapor;
Programa Detalhado de Máquinas Térmicas e Hidráulicas
Programa Detalhado de Máquinas Térmicas e Hidráulicas 1. Generalidades 1.1. Dimensões e unidades de medida 1.1.1. Dimensões e homogeneidade dimensional 1.1.2. Sistemas de unidades 2. Máquinas Hidráulicas
TERMODINÂMICA APLICADA
TERMODINÂMICA APLICADA Capítulo 4: Primeira Lei da Termodinâmica Processos de controlo de volume Sumário No Capítulo 3 discutimos as interações da energia entre um sistema e os seus arredores e o princípio
SISTEMAS TÉRMICOS DE POTÊNCIA
SISTEMAS TÉRMICOS DE POTÊNCIA PROF. RAMÓN SILVA Engenharia de Energia Dourados MS - 2013 2 Pode-se definir a turbina a vapor (TV) como sendo uma máquina térmica de fluxo motora, que utiliza a energia do
TERMODINÂMICA APLICADA
TERMODINÂMICA APLICADA Livro Texto adotado: Fundamentos da Termodinâmica Claus Borgnakke/ Richard E. Sonntag Editora Blucher. Samuel Sander de Carvalho [email protected] Juiz de Fora -MG
TERMODINÂMICA 3 INTRODUÇÃO AO 2º PRINCÍPIO DA TERMODINÂMICA
3 INRODUÇÃO AO º PRINCÍPIO DA ERMODINÂMICA 3. O ciclo de Carnot (84). ERMODINÂMICA Investigou os princípios que governam a transformação de energia térmica, calor em energia mecânica, trabalho. Baseou
PME 2378 INTRODUÇÃO ÀS CIÊNCIAS TÉRMICAS
PME 2378 INTRODUÇÃO ÀS CIÊNCIAS TÉRMICAS CALOR E TRABALHO ALBERTO HERNANDEZ NETO 1/60 Calor (Q) : energia em trânsito devido a diferença de temperatura não associada a transferência de massa 1 B C A 2
Aula 6 A 2a lei da termodinâmica Física II UNICAMP 2012
Aula 6 A 2a lei da termodinâmica Física II UNICAMP 2012 http://en.wikipedia.org/wiki/steam_car Caldeira de carro a vapor de 1924. Populares até a década de 1930, perderam prestígio com a popularização
2 Motor de Combustão Interna 2.1. Considerações Gerais
Motor de Combustão Interna.. Considerações Gerais Segundo Costa (00), O motor é a fonte de energia do automóvel. Converte a energia calorífica produzida pela combustão da gasolina em energia mecânica,
Máquinas térmicas, refrigeradores e 2 a lei da Termodinâmica
Máquinas térmicas, refrigeradores e 2 a lei da Termodinâmica Processos irreversíveis. Máquinas térmicas. Ciclo de Carnot 2 a lei da Termodinâmica: enunciado de Kelvin-Planck. Refrigeradores. 2 a lei da
QUÍMICA PROFº JAISON MATTEI
QUÍMICA PROFº JAISON MATTEI 1. Em uma máquina térmica ideal que opere em ciclos, todos os processos termodinâmicos, além de reversíveis, não apresentariam dissipação de energia causada por possíveis efeitos
3 Regime Permanente de Turbinas a Gás
3 Regime Permanente de Turbinas a Gás 3.1. Desempenho de Turbinas a Gás em Ponto de Projeto 3.1.1. Introdução O primeiro passo no projeto de uma turbina a gás é o cálculo termodinâmico do ponto de projeto,
Capítulo 2 Propriedades de uma Substância Pura
Capítulo 2 Propriedades de uma Substância Pura 2.1 - Definição Uma substância pura é aquela que tem composição química invariável e homogênea. Pode existir em mais de uma fase Composição química é igual
Resoluções dos exercícios propostos
da física P.58 a) Do gráfico: V 3 0 3 m 3 ; V 0 3 m 3 Dado: 300 K p p V V 3 0 300 3 3 0 00 K b) área do gráfico é numericamente igual ao 8 p ( 0 3 N/m ) N $ módulo do trabalho no processo: base altura
PROVA DE FÍSICA 2º ANO - 3ª MENSAL - 2º TRIMESTRE TIPO A
PROVA DE FÍSICA º ANO - ª MENSAL - º RIMESRE IPO A 0) Um gás sofre a transformação termodinâmica cíclica ABCA representada no gráfico p x V. No trecho AB, a transformação é isotérmica. Analise as afirmações
2ª Lei da Termodinâmica Máquinas Térmicas Refrigeradores
2ª Lei da Termodinâmica Máquinas Térmicas 2 a Lei da Termodinâmica 2 a Lei da Termodinâmica O que determina o sentido de certos fenômenos da natureza? Exemplo: Sistema organizado Sistema desorganizado
Questão 1. Assinale com um x na lacuna V se julgar que a afirmativa é verdadeira e na lacuna F se julgar que é falsa. [2,0]
Universidade Federal do Espírito Santo Centro de Ciências Exatas Departamento de Física FIS966 Física Prof. Anderson Coser Gaudio Prova 3/3 Nome: Assinatura: Matrícula UFES: Semestre: 3/ Curso: Física
PME 3344 Termodinâmica Aplicada
PME 3344 Termodinâmica Aplicada 6) Primeira Lei da Termodinâmica para volume de controle 1 v. 2.4 Introdução Os princípios básicos que nos são importantes estão escritos para um sistema. Assim, temos as
ACH1014 Fundamentos de Física. Usinas térmicas. Profa Dra Patricia Targon Campana
ACH1014 Fundamentos de Física Usinas térmicas Profa Dra Patricia Targon Campana [email protected] 2013 A Termodinâmica e o conceito de usina térmica Estudo das transformações e as relações existentes entre
Módulo VI - Processos Isentrópicos Eficiência Isentrópica em Turbinas, Bombas, Bocais e Compressores.
Módulo VI - Processos Isentrópicos Eficiência Isentrópica em Turbinas, Bombas, Bocais e Compressores. Processos Isentrópicos O termo isentrópico significa entropia constante. Eficiência de Dispositivos
27/Fev/2013 Aula 5 Segunda lei da termodinâmica Máquinas térmicas; eficiência. Formulação de Kelvin
7/Fev/03 ula 5 Segunda lei da termodinâmica Máquinas térmicas; eficiência. Formulação de Kelvin Máquinas frigoríficas (e bombas de calor): princípio de funcionamento e eficiência Formulação de lausius
TERMODINÂMICA. Aula 2 Introdução à Termodinâmica Sistema Fase Substância Equilíbrio
TERMODINÂMICA Aula 2 Introdução à Termodinâmica Sistema Fase Substância Equilíbrio INTRODUÇÃO Ampla área de aplicação: organismos microscópicos aparelhos domésticos até veículos sistemas de geração de
