Matemática e suas Tecnologias
|
|
|
- Aurora Bastos de Caminha
- 7 Há anos
- Visualizações:
Transcrição
1 Matemática e suas Tecnologias ENEM 9 Resoluções Matemática 9A 1. b f ( = log( f( 1 = log( 1 = f( = log( f( 16 = log( 16 = log( = log( A sequência [(, f 1 f(, f( 16,...] é uma progressão aritmética de razão log(.. c f ( = log ( f( = log ( = a a ( = a a = a+ a a a = a+ = = a = Portanto, após dias, o número de indivíduos será igual a centenas, ou seja,.. d log8= log = log. e f ( = log f( 1 = log 1= f( = log = 1 f( = log= log = f( 8 = log8= log = f( 16 = log16 = log = f( = log = log = f( 1+ f( + f( + f( 8 + f( 16 + f( = = 1. c log1 = log1 = 6. b f ( = g ( = log log ( f g( = = 7. c a INCORRETO. fa ( = 1 b INCORRETO. fa ( = log a a = c CORRETO. fa ( 1 = log a a 1 = 1 d INCORRETO. e INCORRETO. fa ( = log a a = 8. a a= 1 f( = log1 Condição de eistência de Da interseção de (I e (II, temos: log 1 : < < 1 > ( I ] 1,[ f ( < log1 < log1 < log11 < 1 (II 9. a A linha em destaque é semelhante ao gráfico da função definida por y= log( em um determinado intervalo. 1. e y(m h/ h/ a 1 (a, h/ y = log( n a + n y= log( h = log( a+ n h a n = log( + h h = log( = log( a a log( a+ n = log( a log( a+ n + log( a = log( a + an = 1 = a + an + = = n a n a a ± n 1 + n n Como a >, então a = + + h= log( a+ n n+ n + h = log + n n+ n + + n h = log n+ n + h = log (a + n, h/ (m. h Matemática e suas Tecnologias 1
2 Matemática 9B 1. e Eistem pacientes internados por problemas respiratórios causados pelas queimadas. Desses, eatamente 1 são crianças. Logo, a probabilidade de que o paciente seja uma criança dado que foi internado por problemas respiratórios causados pelas queimadas é igual a 1/ =,7, o que sugere a necessidade de que, em áreas atingidas pelos efeitos das queimadas, o atendimento hospitalar no setor de pediatria seja reforçado.. a Da probabilidade da união de eventos, pode-se escrever: p(p ou Q = p(p + p(q p(p e Q % = 6% + 16% p(p e Q p(p e Q = 1%. e Eistem regiões possíveis para Rafael se mudar do Centro. Dessas, eatamente possuem temperatura inferiores a 1 C. Logo, a probabilidade é igual a /.. e Sendo M o seo masculino e F o seo feminino do filho, eistem 8 possibilidades em relação à sequência dos três filhos: MMM, MMF, MFM, MFF, FFF, FFM, FMF, FMM Em dessas, são filhos do seo masculino e 1 do seo feminino. Logo, a probabilidade de que eatamente filhos sejam do seo masculino é igual a: p = =, 7 = 7, % 8 Como a probabilidade é inferior a %, o casal precisará procurar uma clínica para fazer um tratamento.. d Considerando, para o cálculo, a probabilidade de Paula não pegar engarrafamento em qualquer dos dois trajetos escolhidos, tem-se as seguintes probabilidades em cada trajeto: p(e1e = (1,8 (1, = (, (, =,1 p(e1e = (1,8 (1, = (, (,7 =,1 p(ee = (1,7 (1, = (, (,6 =,18 p(ee6 = (1,7 (1,6 = (, (, =,1 O caminho EE não constitui um possível trajeto para se ir de A até B. A escolha do melhor caminho deve levar em conta a menor probabilidade de pegar engarrafamento no trajeto escolhido. Tal probabilidade é calculada pela diferença entre 1 (1% e a probabilidade calculada anteriormente. Assim, em cada trajeto, as probabilidades de engarrafamento em pelo menos um dos trajetos são: 1 p(e1e = 1,1 =,9 1 p(e1e = 1,1 =,86 1 p(ee = 1,18 =,8 1 p(ee6 = 1,1 =,88 O trajeto EE possui a menor probabilidade de pegar engarrafamento. 6. b As áreas de alcance das emissoras constituem setores circulares de mesmo raio cujos ângulos são suplementares, ou seja, somam 18. Logo, a justaposição das áreas de alcance das emissoras corresponde a um semicírculo de raio 1 km. Portanto, a probabilidade que um morador tem de, circulando livremente pelo município, encontrar-se na área de alcance de pelo menos uma das emissoras é dada por: π. 1 p = π. 1 1, = = = =, = % d Se o espaço amostral é constituído por 6 elementos (pares, tem-se: Tadeu (Soma : (1, 1 p = 1 6 Pedro (Soma 6: (1, ; (, ; (, ; (, ; (, 1 p = 6 Ricardo (Soma 1: (6, 6 p = 1 6 A soma das probabilidades de Tadeu e Ricardo é menor que a probabilidade de Pedro. Logo, Tadeu e Ricardo tinham razão, pois os dois juntos tinham menos chances de ganhar a guarda da taça do que Pedro. 8. d A quantidade de domicílios pesquisados é igual a: = 1 A quantidade de domicílios com pelo menos 1 Mbps é igual a: = Logo, a probabilidade é igual a /1 =,. 9. c O número total de pessoas atendidas é igual a: = pessoas Destas, eatamente apresentaram doenças crônicas. Logo, a probabilidade de a pessoa ser portadora de doenças crônicas é igual a: p = = 11, = 11% 1. d As informações podem ser organizadas em diagramas: Rock MPB Samba Desta forma, em um universo de 1 pessoas, se for selecionado ao acaso um estudante no grupo pesquisado, a probabilidade de ele preferir somente MPB é igual a: 11 p = = 11, = 11% 1 Etensivo Terceirão
3 ENEM 9 Matemática 9C 1. e A circunferência de equação raio 9 =. + y = 9 tem centro no ponto (, e A parábola de equação y= 1 tem a concavidade voltada para baio. = 1 y= ( 1 1= = y= 1= 1 = 1 y= 1 1= Os pontos ( 1,, (, 1 e ( 1, pertencem à parábola. Com isso, juntamente com os dois quadrados e o ponto (,, conclui-se que a figura desenhada pelo professor foi a da alternativa e.. d A circunferência de equação + y = 1 tem centro no ponto (, e raio 1= 1. O comprimento da circunferência é π = 1 π (em cm. Como a formiga não passa por um mesmo ponto mais de uma vez, então S < π.. d A curva determinada pela trajetória do assento do balanço é parte de uma semicircunferência com centro no ponto (, e raio metros, em que y < e < <. + y = y = y=, com < <. b Sendo r o raio da circunferência da bola, temos: π r = 7 r= cm π Assim, a equação da circunferência é: ( + ( y = π + y = π. c A circunferência do prato tem centro no ponto (, e raio = 1. Como para cada giros completos da roldana, o prato completa uma volta, então o raio da roldana é 1 =. Assim, o centro da roldana é o ponto (, 1+ = (, 1. A equação da circunferência da roldana é: ( + ( y ( 1 = + ( y+ 1 = 9 + y + y + 1 = 9 + y + y + 1 = 6. d Coordenadas do ponto N: + = 6,, Coordenadas do ponto Q: 1, + =, Coordenadas do ponto P: 6 1, + = 6, O centro da semicircunferência é o ponto médio do segmento QP =,, O raio da semicircunferência é MN = = 1. Equação da semicircunferência: ( + y = 1 y = 1 ( y =+ 1 ( O sinal positivo da raiz quadrada corresponde à semicircunferência acima do segmento QP. y= + 1 ( 7. e + y + 8y 16 = a= a= b= 8 b= a + b r = 16 + ( r = 16 r = 6 r= 6 A distância do centro C(, da circunferência à reta de equação + y = é: d = + ( = 8 8 = + Como a distância d é menor que o raio r, a reta é secante à circunferência, ou seja, a rua atravessa a praça. 8. c Determinamos o ponto em que a reta de equação y= 1+ tangencia a circunferência de equação ( + ( y 6 =. y= 1+ ( + ( y 6 = ( + ( 1+ 6 = ( + ( = = + = 6+ 9= = y= 1+ = 1+ = 7 A distância d percorrida pela moça é a distância entre os pontos A( 1, e B( 7., Matemática e suas Tecnologias
4 d AB = ( + ( 7 1 d AB = 9+ 6 = = 9. d A região assinalada na figura é uma circunferência de raio r. πr = π r= Sendo R o raio da circunferência maior, temos: P R = + Assim, a equação da circunferência com centro em P é: ( + ( y = ( y 6y+ 9= y 8 6y+ 1 8 = 1. 1 m Sejam Op (,, Q( 8, e P(, 18 pontos da circunferência com centro no ponto ( pb., ( p + ( b 8 = ( p + ( b 18 p + b 16b+ 6 = p + b 6b+ b = 6 b = 1 ( p p + ( 1 = ( p + ( = p + p= 1 OC = 1 m Matemática 9D 1. d Como a metade do vinho foi bebido, restou na taça a outra metade. V = v V = v h v 8 8 = h = h = 6 v h Como 6 = 16 e 7 =, a altura do vinho restante está entre 6 cm e 7 cm. Portanto, a figura que melhor representa a quantidade de bebida que restou na taça é a da alternativa d.. d Na figura a seguir as medidas indicadas estão em metros. 6. b Volume da boia: Vboia = Vcone + Vsemiesfera 1 1 Vboia = πr + r πr Vboia = πr Aumentando-se r em %, obtemos uma nova boia cujo volume é: 1 1 Vnovaboia = πr R+ πr Vnovaboia = πr r R= 1, r= V novaboia = r 7 π = πr 8 Portanto, o volume da boia é multiplicado por a A planificação é de um tronco de pirâmide com base triangular = 6 1 1= = 1 A altura da torre é 1 metros.. e O volume de um tronco de cilindro é dado pelo produto da área da base pela altura média. Vtronco = Sbase hmédia Vtronco =π 8 Vtronco = 96πcm 6. e A planificação da superfície lateral do bebedouro é um retângulo de dimensões 1 cm e π cm (comprimento de uma semicircunferência de raio cm, enquanto as bases correspondem a semicírculos de raio cm. 7. e Observe na figura o sinalizador revestido até a metade da altura, desde sua base, com adesivo fluorescente. Etensivo Terceirão
5 ENEM 9 Portanto, a forma do adesivo deverá ser: 9. e Observe na figura a projeção ortogonal da circunferência sobre o plano do chão: B 8. b R 1 A r 6º No triângulo retângulo da figura, temos: 1 tg6 = 1 = = m Como R= r+ e r= m, temos: R= m+ m R= 6 m Área da tampa: Stampa = πr S tampa = π ( 6 Stampa = 18π m A projeção é um segmento de reta. 1. d Área da superfície da semiesfera: 1 Ssemiesfera = R π S semiesfera = π Ssemiesfera = π m Como com 1 galão de tinta pode-se pintar 1 metros quadrados da superfície, temos: π 1, 8, 1 1 Portanto, devem ser comprados no mínimo galões de tinta. Matemática 9E 1. e z1 = (cos 18 + i sen18 z = (cos 9 + i sen9. c z z 1 z = [cos( i cos( ] z z = (cos7 + i cos7 1 O afio de z z é o ponto G. 1 = (cos 1 + i sen1 z = (cos 1 + i sen1 z = [cos( isen( 1 1 ] z z = (cos18 + isen 18 z O afio de z z. b z w= z w é o ponto E. O módulo do produto de dois números compleos é igual ao produto dos módulos desses dois números compleos.. d a INCORRETO. 1 1 z = z = = 1 b INCORRETO. z = z = ( = c INCORRETO. arg( z = 1 arg( z = 1 = d CORRETO. 1 arg( z = arg( z = 1 = e INCORRETO. z = 9 z =. c z= 1 (cos 18 + i sen18 z = 1 [cos( 18 + i sen( 18 ] z = 1 (cos 9 + isen 9 z = 1 (cos + i sen Portanto, o afio de z é o ponto G. 6. d Uma equação algébrica do ọ grau admite eatamente raízes compleas. Matemática e suas Tecnologias
6 7. e ( = = = ( raiz commultiplicidade Portanto, o conjunto solução tem apenas um elemento. 8. b = = 1 = iou= i O conjunto solução da equação é: {1, i, i} 9. a ( ( = = ( = = ou = = ou= ou + + 1= = 1( raiz dupla O conjunto solução da equação é: {,,, 1} Portanto, a equação tem quatro soluções distintas. 1. a Se o gráfico da função polinomial passa pelo ponto ( 1,, então P( 1 =. P ( = a + b + c + d P( 1 = a 1 + b 1 + c + 1 d= a+ b+ c+ d= A soma dos coeficientes do polinômio é igual a zero. 6 Etensivo Terceirão
TIPO DE PROVA: A. Questão 3. Questão 1. Questão 4. Questão 2. alternativa D. alternativa E. alternativa D. alternativa D
Questão TIPO DE PROVA: A O algarismo das dezenas do número! é: a) 5 b) 0 c) d) 7 e) A quantidade de zeros com que termina o número n! é igual ao número de fatores 5 presentes em sua fatoração. Na fatoração
ACADEMIA DA FORÇA AÉREA PROVA DE MATEMÁTICA 1998
PROVA DE MATEMÁTICA 998 Se a seqüência de inteiros positivos (,, y) é uma Progressão Geométrica e (+, y, ) uma Progressão Aritmética, então, o valor de + y é a) b) c) d) A soma das raízes da equação log
x Júnior lucrou R$ 4 900,00 e que o estoque por ele comprado tinha x metros, podemos afirmar que 50
0. O Sr. Júnior, atacadista do ramo de tecidos, resolveu vender seu estoque de um determinado tecido. O estoque tinha sido comprado ao preço de R$,00 o metro. Esse tecido foi revendido no varejo às lojas
TIPO DE PROVA: A. Questão 1. Questão 4. Questão 2. Questão 5. Questão 3. alternativa D. alternativa D. alternativa D. alternativa B.
Questão TIPO DE PROVA: A Um mapa está numa escala :0 000 000, o que significa que uma distância de uma unidade, no mapa, corresponde a uma distância real de 0 000 000 de unidades. Se no mapa a distância
Unicamp - 2 a Fase (17/01/2001)
Unicamp - a Fase (17/01/001) Matemática 01. Três planos de telefonia celular são apresentados na tabela abaio: Plano Custo fio mensal Custo adicional por minuto A R$ 3,00 R$ 0,0 B R$ 0,00 R$ 0,80 C 0 R$
TIPO DE PROVA: A. Questão 1. Questão 4. Questão 2. Questão 3. Questão 5. alternativa C. alternativa B. alternativa A.
Questão TIPO DE PROVA: A Sabe-se que o quadrado de um número natural k é maior do que o seu triplo e que o quíntuplo desse número k é maior do que o seu quadrado. Dessa forma, k k vale: a) 0 b) c) 6 d)
A solução do sistema de equações lineares. x 2y 2z = 1 x 2z = 3. 2y = 4. { z = 1. x = 5 y = 2. y = 2 z = 1
MATEMÁTICA e A solução do sistema de equações lineares y z = z = 3 é: y z = a) = 5, y = e z =. b) = 5, y = e z =. c) = 5, y = e z =. d) = 5, y = e z =. e) = 5, y = e z =. y z = z = 3 y z = y z = y = z
Prova de Matemática ( ) Questão 01 Gabarito A + = Portanto, a expressão é divisível por n 1. Questão 02 Gabarito C
Prova de Matemática Questão Gabarito A n! + n n( n )( n! ) ( n ) ( n ) n( n! ) + + Portanto, a epressão é divisível por n. Questão Gabarito C Consideremos uma situação inicial de paridade dólar-real, em
PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) 2ª FASE 18 DE JUNHO Grupo I
Associação de Professores de Matemática Contactos: Rua Dr João Couto, nº 7-A 1500- Lisboa Tel: +51 1 71 90 / 1 711 0 77 Fa: +51 1 71 4 4 http://wwwapmpt email: geral@apmpt PROPOSTA DE RESOLUÇÃO DA PROVA
Questão 2. Questão 1. Questão 3. Resposta. Resposta. Resposta
ATENÇÃO: Escreva a resolução COMPLETA de cada questão no espaço a ela reservado. Não basta escrever apenas o resultado final: é necessário mostrar os cálculos ou o raciocínio utilizado. Questão Emumasalaháumalâmpada,umatelevisão
{ } Questão 1. Considere as seguintes afirmações sobre o conjunto U = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9} Questão 2. Seja o conjunto = { : 0 e 2 2
NOTAÇÕES : conjunto dos números complexos. : conjunto dos números racionais. : conjunto dos números reais. : conjunto dos números inteiros. = 0,,,,.... { } { } * =,,,.... i : unidade imaginária; i =. z=x+iy,
Matemática B Extensivo V. 7
GRITO Matemática Etensivo V. 7 Eercícios ) D ) D ) I. Falso. O diâmetro é dado por. r. cm. II. Verdadeiro. o volume é dado por π. r² π. ² π cm² III. Verdadeiro. (, ) (, ) e assim, ( )² + ( )² r² fica ²
Prova Escrita de MATEMÁTICA A - 12o Ano a Fase
Prova Escrita de MATEMÁTICA A - o Ano 05 - a Fase Proposta de resolução GRUPO I. Escolhendo os lugares das etremidades para os dois rapazes, eistem hipóteses correspondentes a uma troca entre os rapazes.
Prova Vestibular ITA 2000
Prova Vestibular ITA Versão. ITA - (ITA ) Sejam f, g : R R definidas por f ( ) = e g cos 5 ( ) =. Podemos afirmar que: f é injetora e par e g é ímpar. g é sobrejetora e f é bijetora e g é par e f é ímpar
Matemática 41 c Resolução 42 b Resolução 43 e OBJETIVO 2001
Matemática c Numa barraca de feira, uma pessoa comprou maçãs, bananas, laranjas e peras. Pelo preço normal da barraca, o valor pago pelas maçãs, bananas, laranjas e peras corresponderia a 5%, 0%, 5% e
MATEMÁTICA COMENTÁRIO DA PROVA DE MATEMÁTICA
COMENTÁRIO DA PROVA DE MATEMÁTICA A prova manteve a característica dos anos anteriores quanto à boa qualidade, contextualização e originalidade nos enunciados. Boa abrangência: 01) Funções (relação entre
01. (UFRGS/2003) Se n é um número natural qualquer maior que 1, então n! + n 1 é divisível por. (A) n 1. (B) n. (C) n + 1. (D) n! - 1. (E) n!.
0. (UFRGS/00) Se n é um número natural qualquer maior que, então n! + n é divisível por n. n. n +. n! -. n!. 0. (UFRGS/00) Se num determinado período o dólar sofrer uma alta de 00% em relação ao real,
Matemática. Ficha Extra - Temas do 2º Bim. 3 os anos Walter/Blaidi Nome: Nº: Turma:
Matemática Ficha Extra - Temas do º Bim. 3 os anos Walter/Blaidi 01 Nome: Nº: Turma: 1. (PUCRS) A região plana limitada por uma semicircunferência e seu diâmetro faz uma rotação completa em torno desse
Prova 3 Matemática. N ọ DE INSCRIÇÃO:
Prova QUESTÕES OBJETIIVAS N ọ DE ORDEM: NOME DO CANDIDATO: N ọ DE INSCRIÇÃO: IINSTRUÇÕES PARA A REALIIZAÇÃO DA PROVA. Confira os campos N ọ DE ORDEM, N ọ DE INSCRIÇÃO e NOME, conforme o que consta na etiqueta
Prova 3 Matemática. N ọ DE INSCRIÇÃO:
Prova QUESTÕES OBJETIIVAS N ọ DE ORDEM: NOME DO CANDIDATO: N ọ DE INSCRIÇÃO: IINSTRUÇÕES PARA A REALIIZAÇÃO DA PROVA. Confira os campos N ọ DE ORDEM, N ọ DE INSCRIÇÃO e NOME, conforme o que consta na etiqueta
Prova 3 Matemática. N ọ DE INSCRIÇÃO:
Prova QUESTÕES OBJETIIVAS N ọ DE ORDEM: NOME DO CANDIDATO: N ọ DE INSCRIÇÃO: IINSTRUÇÕES PARA A REALIIZAÇÃO DA PROVA. Confira os campos N ọ DE ORDEM, N ọ DE INSCRIÇÃO e NOME, conforme o que consta na etiqueta
Prova 3 Matemática. N ọ DE INSCRIÇÃO:
Prova QUESTÕES OBJETIIVAS N ọ DE ORDEM: NOME DO CANDIDATO: N ọ DE INSCRIÇÃO: IINSTRUÇÕES PARA A REALIIZAÇÃO DA PROVA. Confira os campos N ọ DE ORDEM, N ọ DE INSCRIÇÃO e NOME, conforme o que consta na etiqueta
P (A) n(a) AB tra. Observação: Os sistemas de coordenadas considerados são cartesianos retangulares.
NOTAÇÕES N = f; ; 3; : : :g i : unidade imaginária: i = R : conjunto dos números reais jzj : módulo do número z C C : conjunto dos números complexos Re z : parte real do número z C [a; b] = fx R; a x bg
PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) 1ª FASE 23 DE JUNHO 2017 GRUPO I
Associação de Professores de Matemática Contactos: Rua Dr. João Couto, n.º 7-A 500-36 Lisboa Tel.: +35 76 36 90 / 7 03 77 Fax: +35 76 64 4 http://www.apm.pt email: [email protected] PROPOSTA DE RESOLUÇÃO DA
Prova 3 Matemática. N ọ DE INSCRIÇÃO:
Prova QUESTÕES OBJETIIVAS N ọ DE ORDEM: NOME DO CANDIDATO: N ọ DE INSCRIÇÃO: IINSTRUÇÕES PARA A REALIIZAÇÃO DA PROVA Confira os campos N ọ DE ORDEM, N ọ DE INSCRIÇÃO e NOME, conforme o que consta na etiqueta
Prova 3 Matemática. N ọ DE INSCRIÇÃO:
Prova QUESTÕES OBJETIIVAS N ọ DE ORDEM: NOME DO CANDIDATO: N ọ DE INSCRIÇÃO: IINSTRUÇÕES PARA A REALIIZAÇÃO DA PROVA Confira os campos N ọ DE ORDEM, N ọ DE INSCRIÇÃO e NOME, conforme o que consta na etiqueta
MATEMÁTICA UFRGS 2010 RESOLVIDA PELO PROF. REGIS CORTES
MATEMÁTICA UFRGS 2010 RESOLVIDA PELO PROF. REGIS CORTES Nesta prova serão utilizados os seguintes símbolos e conceitos com os respectivos significados: l x l : módulo no número x i : unidade imaginária
MATEMÁTICA NESTA PROVA SERÃO UTILIZADOS OS SEGUINTES SÍMBOLOS E CONCEITOS COM OS RESPECTIVOS SIGNIFICADOS: Observe os dados do quadro a seguir.
MATEMÁTICA NESTA PROVA SERÃO UTILIZADOS OS SEGUINTES SÍMBOLOS E CONCEITOS COM OS RESPECTIVOS SIGNIFICADOS: sen x : seno de x cos x : cosseno de x x : módulo de x log x : logaritmo de x na base 10 6. Um
Questão 2. Questão 1. Questão 3. alternativa D. alternativa D. alternativa B
NOTAÇÕES C: conjunto dos números compleos. Q: conjunto dos números racionais. R: conjunto dos números reais. Z: conjunto dos números inteiros. N {0,,,,...}. N {,,,...}. 0: conjunto vazio. A \ B { A; B}.
Soluções das Questões de Matemática do Processo Seletivo de Admissão à Escola Preparatória de Cadetes do Exército EsPCEx
Soluções das Questões de Matemática do Processo Seletivo de Admissão à Escola Preparatória de Cadetes do Eército EsPCE Questão 1 Sabendo-se que Concurso 009 3 5 199 log log log... log 10000 + + + + =,
TIPO DE PROVA: A. Questão 3. Questão 1. Questão 2. Questão 4. alternativa D. alternativa B. alternativa E
Questão TIPO DE PROVA: A Os números compreendidos entre 400 e 500, divisíveis ao mesmo tempo por 8 e 75, têm soma: a) 600 d) 700 b) 50 e) 800 c) 50 Questão Na figura, temos os esboços dos gráficos de f
PROVA 3 conhecimentos específicos
PROVA conhecimentos específicos MATEMÁTICA QUESTÕES OBJETIVAS QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA. UEM Comissão Central do Vestibular Unificado GABARITO
a média de gols da primeira rodada, M G a média de gols das duas primeiras rodadas e x o número de gols da segunda rodada, tem-se 15 + x 15 M G
MATEMÁTICA O número de gols marcados nos 6 jogos da primeira rodada de um campeonato de futebol foi 5,,,, 0 e. Na segunda rodada, serão realizados mais 5 jogos. Qual deve ser o número total de gols marcados
a) b) 5 3 sen 60 o = x. 2 2 = 5. 3 x = x = No triângulo da figura abaixo, o valor do x é igual a: a) 7 c) 2 31 e) 7 3 b) 31 d) 31 3
Matemática a. série do Ensino Médio Frentes e Eercícios propostos AULA FRENTE Num triângulo ABC em que AB = 5, B^ = º e C^ = 5º, a medida do lado AC é: a) 5 b) 5 c) 5 d) 5 e) 5 Sabendo-se que um dos lados
Prova Vestibular ITA 1995
Prova Vestibular ITA 1995 Versão 1.0 ITA - 1995 01) (ITA-95) Seja A = n ( 1) n!. π + sen ; n ℵ n! 6 a) (- 1) n n. b) n. c) (- 1) n n. d) (- 1) n+1 n. e) (- 1) n+1 n. Qual conjunto abaixo é tal que sua
REVISÃO UNICAMP Ensino Médio Geometria Prof. Sérgio Tambellini
REVISÃO UNICAMP Ensino Médio Geometria Prof. Sérgio Tambellini Aluno :... GEOMETRIA PLANA Questão 1 - (UNICAMP SP/015) A figura abaixo exibe um círculo de raio r que tangencia internamente um setor circular
MATEMÁTICA SARGENTO DA FAB
MATEMÁTICA BRUNA PAULA 1 COLETÂNEA DE QUESTÕES DE MATEMÁTICA DA EEAr (QUESTÕES RESOLVIDAS) QUESTÃO 1 (EEAr 2013) Se x é um arco do 1º quadrante, com sen x a e cosx b, então é RESPOSTA: d QUESTÃO 2 (EEAr
AFA 006 LÍNGUA INGLESA E MATEMÁTICA CFOAV/CFOINT/CFOINF CÓDIGO 6 i - Considere o número compleo z = e calcule z n. No conjunto formado pelos quatro menores valores naturais de n para os quais z n é um
Avaliação Diagnóstica de Matemática 3º ano do Ensino Médio
Avaliação Diagnóstica de Matemática 3º ano do Ensino Médio Nome: Aplicador: Escola: Elaboração/Montagem: Analista Pedagógico. Questão 1: Alguns testes de preferência por bebedouros de água foram realizados
PREPARATÓRIO PROFMAT/ AULA 8 Geometria
PREPARATÓRIO PROFMAT/ AULA 8 Geometria QUESTÕES DISCURSIVAS Questão 1. (PROFMAT-2012) As figuras a seguir mostram duas circunferências distintas, com centros C 1 e C 2 que se intersectam nos pontos A e
Simulado ITA. 3. O número complexo. (x + 4) (1 5x) 3x 2 x + 5
Simulado ITA 1. E m relação à teoria dos conjuntos, considere as seguintes afirmativas relacionadas aos conjuntos A, B e C: I. Se A B e B C então A C. II. Se A B e B C então A C. III. Se A B e B C então
Prova final de MATEMÁTICA - 3o ciclo a Fase
Prova final de MATEMÁTICA - 3o ciclo 2016-2 a Fase Proposta de resolução Caderno 1 1. Calculando a diferença entre 3 1 e cada uma das opções apresentadas, arredondada às centésimas, temos que: 3 1 2,2
Questão 01 EB EA = EC ED. 6 x = 3. x =
Questão 0 Seja E um ponto eterno a uma circunferência. Os segmentos EA e ED interceptam essa circunferência nos pontos B e A, e, C e D, respectivamente. A corda AF da circunferência intercepta o segmento
NOTAÇÕES. R : conjunto dos números reais C : conjunto dos números complexos
NOTAÇÕES R : conjunto dos números reais C : conjunto dos números complexos i : unidade imaginária: i = 1 z : módulo do número z C Re(z) : parte real do número z C Im(z) : parte imaginária do número z C
PROVA 3 conhecimentos específicos
PROVA conhecimentos específicos MATEMÁTICA QUESTÕES OBJETIVAS QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA. UEM Comissão Central do Vestibular Unificado GABARITO
Matemática Uma circunferência de raio 12, tendo AB e CD como diâmetros, está ilustrada na figura abaixo. Indique a área da região hachurada.
Matemática 2 01. Pedro tem 6 bolas de metal de mesmo peso p. Para calcular p, Pedro colocou 5 bolas em um dos pratos de uma balança e a que restou, juntamente com um cubo pesando 100g, no outro prato,
ACADEMIA DA FORÇA AÉREA PROVA DE MATEMÁTICA 2001
PROV E MTEMÁTI 00 0 - ssinale a alternativa que contém a afirmação correta., y, e y, ( + y) = + y b), y, e y *, se y é inteiro, então y é inteiro, y, e y,, y, e y, + y + é um número racional + y + é um
(A) (B) (C) (D) (E) (B) 5A e 10V (C) 5A e 25V (E) 6,25A e 15,625V. (D) 6,25A e 12,25V
1. Assinale, dentre as regiões a seguir, pintadas de cinza, aquela que é formada pelos pontos do quadrado cuja distância a qualquer um dos vértices não é maior do que o comprimento do lado do quadrado.
MATEMÁTICA A - 12o Ano N o s Complexos - Equações e problemas Propostas de resolução
MATEMÁTICA A - 1o Ano N o s Complexos - Equações e problemas Propostas de resolução Exercícios de exames e testes intermédios 1. Simplificando as expressões de z 1 e z, temos que: Como i 19 i + i i, vem
TIPO DE PROVA: A. Questão 1. Questão 4. Questão 2. Questão 5. Questão 3. alternativa C. alternativa E. alternativa B.
Questão TIPO DE PROVA: A Se um número natural n é múltiplo de 9ede, então, certamente, n é: a) múltiplo de 7 b) múltiplo de 0 c) divisível por d) divisível por 90 e) múltiplo de Se n é múltiplo de 9 e
MATEMÁTICA A - 12o Ano N o s Complexos - Conjuntos e condições Propostas de resolução
MATEMÁTICA A - o Ano N o s Complexos - Conjuntos e condições Propostas de resolução Exercícios de exames e testes intermédios. Escrevendo i na f.t. temos i i = ρ cis α, onde: ρ = i i = + ) = tg α = = ;
MATEMÁTICA MÓDULO 16 CONE E CILINDRO. Professor Haroldo Filho
MATEMÁTICA Professor Haroldo Filho MÓDULO 16 CONE E CILINDRO 1. CILINDRO CIRCULAR Considere dois planos paralelos, α e β, seja R um círculo no plano α, seja s uma reta secante aos dois planos que não intersecta
INSTITUTO FEDERAL DE BRASILIA 3ª Lista GABARITO DATA: 14/09/2016
INSTITUTO FEDERAL DE BRASILIA ª Lista MATEMÁTICA GEOMETRIA ANALÍTICA GABARITO DATA: 14/09/016 1) No plano cartesiano, 0xy, a circunferência C tem centro no ponto P (, 1), e a reta t é tangente a C no ponto
a) 6% b) 7% c) 70% d) 600% e) 700%
- MATEMÁTICA 01) Supondo-se que o número de vagas em um concurso vestibular aumentou 5% e que o número de candidatos aumentou 35%, o número de candidatos por vaga para esse curso aumentou: a) 8% b) 9%
p a p. mdc(j,k): máximo divisor comum dos números inteiros j e k. n(x) : número de elementos de um conjunto finito X. (a,b) = {x : a < x < b}.
MATEMÁTICA NOTAÇÕES = {0,,,,...} : conjunto dos números inteiros : conjunto dos números racionais : conjunto dos números reais : conjunto dos números complexos i: unidade imaginária; i = Izl: módulo do
Teste Intermédio 2012
Teste Intermédio 01 1. Uma escola básica tem duas turmas de 9. ano: a turma e a turma. Os alunos da turma distribuem-se, por idades, de acordo com o seguinte diagrama circular. Idades dos alunos da turma
MATEMÁTICA UFRGS 2008
NESTA PROVA SERÃO UTILIZADOS OS SEGUINTES SíMBOLOS E CONCEITOS COM OS RESPECTIVOS SIGNIFICADOS: log x : Ioga ritmo de x na base 10 Re(z) : eixo real do plano complexo Im(z) : eixo imaginário do plano complexo
UFRGS MATEMÁTICA
UFRGS 00 - MATEMÁTICA ) Alguns especialistas recomendam que, para um acesso confortável aos bebedouros por parte de crianças e usuários de cadeiras de rodas, a borda desses equipamentos esteja a uma altura
Simulado AFA. 2. Sejam x e y números reais tais que: Então, o número complexo z = x + yi. é tal que z 3 e z valem, respectivamente: (D) i e 1.
Simulado AFA 1. Uma amostra de estrangeiros, em que 18% são proficientes em inglês, realizou um exame para classificar a sua proficiência nesta língua. Dos estrangeiros que são proficientes em inglês,
Se tgx =, então cosx =. 3 3 O valor máximo de y = senx cos 60 + sen 60 cosx é 2.
4 4 A distância do ponto P (- 2; 6) à reta de equação 3x + 4y 1 = 0 é. 19. 0 0 Se cos x > 0, então 0 < x < 90. Se tgx =, então cosx =. 2 2. 3 3 O valor máximo de y = senx cos 60 + sen 60 cosx é 2. 4 4
log k 1 f(256) log 256 f(256) log 2 f(256) 8 log 64 = 6 k 6 = 64 k = 2 MAT 10A AULA A sequência f(1),f(4),f(16),... fica: A razão é log4.
MAT 10A AULA 8 8.01 A sequência f(1),f(4),f(16),... fica: log1,log4,log16,... 0,log4,log4,... A razão é log4. ALTERNATIVA B 8.0 Pelo conceito de função inversa (inversão de domínio e imagem), se g(1) =
TIPO DE PROVA: A. Questão 1. Questão 2. Questão 3. Questão 4. alternativa A. alternativa B. alternativa D
TIPO DE PROVA: A Questão Se o dobro de um número inteiro é igual ao seu triplo menos 4, então a raiz quadrada desse número a) b) c) d) 4 e) 5 Sendo o número inteiro em questão, temos: 4 4 Logo a raiz quadrada
9(67,%8/$5 '$ 0$&.(1=,( 63 *UXSRV,, H,,, 3URYD 7LSR $ 3529$ '( 0$7(0È7,&$ 5(62/8d 2 ( &20(17È5, )$ 0$5,$ $1721,$ *289(,$
9(67,%8/$5 '$ 0$&.(1=,( 63 *UXSRV,, H,,, 3URY 7LSR $ 3529$ '( 0$7(0È7,&$ 5(62/8d 2 ( &20(17È5,26 325 352)$ 0$5,$ $1721,$ *289(,$ Questão nº 01 Os números compreendidos entre 400 e 1 500, divisíveis ao
(A) a 2 + b 2 c 2 = 0 (B) a 2 b 2 c 2 = 0 (C) a 2 + b 2 + c 2 = 0 (D) a 2 b 2 + c 2 = 0 (E) a 2 = b 2 = c 2 (A) 25. (B) 50. (C) 100. (D) 250. (E) 500.
(UFRGS/), semanas corresponde a (A) dias e ora dias, oras e 4 minutos (C) dias, oras e 4 minutos (D) dias e oras (E) dias MATEMÁTICA (A) a + b c = a b c = (C) a + b + c = (D) a b + c = (E) a = b = c 5
TIPO DE PROVA: A. Questão 1. Questão 4. Questão 2. Questão 3. alternativa E. alternativa B. alternativa B. alternativa D
Questão TIPO DE PROVA: A No ano de 00, no Brasil, foram emplacados aproimadamente.0.000 veículos nacionais e 5.000 veículos importados, sendo que % dos importados eram japoneses. Do total de veículos emplacados
Lista de exercícios de Geometria Espacial 2017 Prof. Diego. Assunto 1 Geometria Espacial de Posição
Assunto 1 Geometria Espacial de Posição (01). Considere um plano a e um ponto P qualquer no espaço. Se por P traçarmos a reta perpendicular a a, a intersecção dessa reta com a é um ponto chamado projeção
)81'$d 2 *(7Ò/,2 9$5*$6 9(67,%8/$5 5(62/8d 2 ( &20(17È5, )$ 0$5,$ $1721,$ *289(,$
)81'$d 2 *(7Ò/,2 9$*$6 9(67,%8/$ (62/8d 2 ( &20(17È,26 32 32)$ 0$,$ $1721,$ *289(,$ QUESTÃO 01. Os números inteiros x e y satisfazem a equação 2 x 3 2 x 1 y 3 3. y. Então x y é: a) 8 b) c) 9 d) 6 e) 7
= ; a = -1, b = 3. 1 x ; a = -1, b = 0. M > 0 é um número real fixo. Prove que quaisquer que sejam x, y em I temos f ( x) < x.
INSTITUTO DE MATEMÁTICA -UFBA DEPARTAMENTO DE MATEMÁTICA LIMITES E DERIVADAS MAT B a LISTA DE EXERCÍCIOS - 008. - Prof a Graça Luzia Dominguez Santos. Prove que entre duas raízes consecutivas de uma função
UFBA / UFRB a fase Matemática RESOLUÇÃO: PROFA. MARIA ANTÔNIA CONCEIÇÃO GOUVEIA
UFBA / UFRB 007 a fase Matemática PROFA. MARIA ANTÔNIA CONCEIÇÃO GOUVEIA QUESTÕES de 0 a 06 LEIA CUIDADOSAMENTE O ENUNCIADO DE CADA QUESTÃO, FORMULE SUAS RESPOSTAS COM OBJETIVIDADE E CORREÇÃO DE LINGUAGEM
Caderno 1: 35 minutos. Tolerância: 10 minutos. (é permitido o uso de calculadora)
Prova Final de Matemática 3.º Ciclo do Ensino Básico Decreto-Lei n.º 139/2012, de 5 de julho Prova 92/1.ª Fase Caderno 1: 7 Páginas Duração da Prova (Caderno 1 + Caderno 2): 90 minutos. Tolerância: 30
Numa circunferência está inscrito um triângulo equilátero cujo apótema mede 3cm. A medida do diâmetro dessa circunferência é:
EXERCÍCIO COMPLEMENTARES - MATEMÁTICA - 9º ANO - ENSINO FUNDAMENTAL - 3ª ETAPA ============================================================================================== 01- Assunto: Função Polinomial
Matemática. x : módulo do número x. 29. Com base nos dados do gráfico, que fração das mulheres viviam na zona rural do Brasil em 1996?
Matemática Nesta prova serão utilizados os seguintes símbolos com seus respectivos significados: x : módulo do número x i: unidade imaginária sen x: seno de x 9. Com base nos dados do gráfico, que fração
Prova Escrita de MATEMÁTICA A - 12o Ano a Fase
Prova Escrita de MATEMÁTICA A - o Ano 06 - a Fase Proposta de resolução GRUPO I. Como P (A B) P (A B) P (B) P (A B) P (A B) P (B) vem que: P (A B) 6 0 60 0 Como P (A B) P (A) + P (B) P (A B), temos que:
1 = 0,20, teremos um aumento percentual de 20% no gasto com
6ROXomR&RPHQWDGDURYDGH0DWHPiWLFD 0. Suponha que o gasto com a manutenção de um terreno, em forma de quadrado, seja diretamente proporcional à medida do seu lado. Se uma pessoa trocar um terreno quadrado
ELABORAÇÃO: PROFESSORES OCTAMAR MARQUES E ADRIANO CARIBÉ. RESOLUÇÃO: PROFESSORA MARIA ANTÔNIA C. GOUVEIA
PROVA DE MATEMÁTICA - TURMAS DO O ANO DO ENSINO MÉDIO COLÉGIO ANCHIETA-BA - JULHO DE ELABORAÇÃO: PROFESSORES OCTAMAR MARQUES E ADRIANO CARIBÉ PROFESSORA MARIA ANTÔNIA C GOUVEIA Um capital aplicado a juros
Escola Secundária com 3ºCEB de Lousada Ficha de Trabalho de Matemática do 9º ano 2011 Assunto: Preparação para o Exame Nacional
Escola Secundária com 3ºCEB de Lousada Ficha de Trabalho de Matemática do 9º ano 011 Assunto: Preparação para o Exame Nacional 1. Copia o triângulo [ ABC ] para o teu caderno. Desenha o triângulo [ A '
Solução Comentada Prova de Matemática
18. Se f é uma função real de variável real definida por f() = a + b + c, onde a, b e c são números reais negativos, então o gráfico que melhor representa a derivada de f é: A) y B) y C) y D) y E) y Questão
( ) Questão 41. Questão 43. Questão 42. alternativa E. alternativa E. alternativa D
Questão Os vértices de um triângulo ABC, no plano cartesiano, são: A (, 0), B (0, ) e C 0,. Então, o ângulo BAC mede: ( ) a) 60 o b) 5 o c) 0 o d) 8 o e) 5 o alternativa E alternativa E De acordo com a
3º trimestre SALA DE ESTUDOS Data: 11/17 Ensino Médio 3º ano A, B e C. Prof. Maurício Nome: nº
º trimestre SALA DE ESTUDOS Data: 11/17 Ensino Médio º ano A, B e C. Prof. Maurício Nome: nº CONTEÚDOS: EQUAÇÃO DA RETA E EQUAÇÃO DA CIRCUNFERÊNCIA. 1. (Eear 017) O triângulo ABC a) escaleno b) isósceles
Prova 3 Matemática. N ọ DE INSCRIÇÃO:
Prova QUESTÕES OBJETIIVAS N ọ DE ORDEM: NOME DO CANDIDATO: N ọ DE INSCRIÇÃO: IINSTRUÇÕES PARA A REALIIZAÇÃO DA PROVA. Confira os campos N ọ DE ORDEM, N ọ DE INSCRIÇÃO e NOME, conforme o que consta na etiqueta
Prova 3 Matemática. N ọ DE INSCRIÇÃO:
Prova QUESTÕES OBJETIIVAS N ọ DE ORDEM: NOME DO CANDIDATO: N ọ DE INSCRIÇÃO: IINSTRUÇÕES PARA A REALIIZAÇÃO DA PROVA. Confira os campos N ọ DE ORDEM, N ọ DE INSCRIÇÃO e NOME, conforme o que consta na etiqueta
A 1. Na figura abaixo, a reta r tem equação y = 2 2 x + 1 no plano cartesiano Oxy. Além disso, os pontos B 0. estão na reta r, sendo B 0
MATEMÁTICA FUVEST Na figura abaixo, a reta r tem equação y = x + no plano cartesiano Oxy. Além disso, os pontos B 0, B, B, B 3 estão na reta r, sendo B 0 = (0,). Os pontos A 0, A, A, A 3 estão no eixo
2 Uma caixa d'água cúbica, de volume máximo, deve ser colocada entre o telhado e a laje de uma casa, conforme mostra a figura ao lado.
MATEMÁTICA Uma pessoa possui a quantia de R$7.560,00 para comprar um terreno, cujo preço é de R$5,00 por metro quadrado. Considerando que os custos para obter a documentação do imóvel oneram o comprador
MATEMÁTICA. Um pintor pintou 30% de um muro e outro pintou 60% do que sobrou. A porcentagem do muro que falta pintar
MATEMÁTICA d Um pintor pintou 0% de um muro e outro pintou 60% do que sobrou. A porcentagem do muro que falta pintar é: a) 0% b) % c) % d) 8% e) % ) 60% de 70% % ) 00% % 0% 8% d Se (x y) (x + y) 0, então
a k. x a k. : conjunto dos números complexos i: unidade imaginária; i 2 = 1 z : módulo do número z z: conjugado do número z M m n
ITA MATEMÁTICA NOTAÇÕES = {,,,...} : conjunto dos números reais [a, b] = {x ; a x b} [a, b[ = {x ; a x < b} ]a, b[ = {x ; a < x < b} A\B = {x; x A e x B} k a n = a + a +... + a k, k n = k a n x n = a 0
Exercícios de Aprofundamento Mat Geom Espacial
1. (Fuvest 015) No cubo ABCDEFGH, representado na figura abaixo, cada aresta tem medida 1. Seja M um ponto na semirreta de origem A que passa por E. Denote por θ o ângulo BMH e por x a medida do segmento
Prova Final de Matemática
PROVA FINAL DO 3.º CICLO do Ensino BÁSICO Decreto-Lei n.º 39/0, de 5 de julho Prova Final de Matemática 3.º Ciclo do Ensino Básico Prova 9/.ª Chamada 8 Páginas Duração da Prova: 90 minutos. Tolerância:
01. (UFRGS-98) Se P é o produto de todos os números primos menores que 1000, o dígito que ocupa a casa das unidades de P é
01. (UFRGS-98) Se P é o produto de todos os números primos menores que 1000, o dígito que ocupa a casa das unidades de P é (A) 0 (B) 1 (C) 2 (D) 5 (E) 9 02. (UFRGS-98) A soma de dois números reais A e
EXTENSIVO APOSTILA 11 EXERCÍCIOS DE SALA MATEMÁTICA A
EXTENSIVO APOSTILA EXERCÍCIOS DE SALA MATEMÁTICA A AULA 0 0) Sendo PC Preço de Custo PV Preço de Venda PP Preço de Venda Promocional temos: PV,50 PC PP 0,80 PV Substituindo: PP = 0,80,50 PC PP =,0 PC No
Caderno 1: 35 minutos. Tolerância: 10 minutos. (é permitido o uso de calculadora)
Prova Final de Matemática 3.º Ciclo do Ensino Básico Decreto-Lei n.º 139/2012, de 5 de julho Prova 92/2.ª Fase Caderno 1: 6 Páginas Duração da Prova (Caderno 1 + Caderno 2): 90 minutos. Tolerância: 30
COMENTÁRIO DA PROVA DE MATEMÁTICA
COMENTÁRIO DA PROVA DE MATEMÁTICA É com grande satisfação que, se comparada com os anos anteriores, constatamos que a prova de matemática está tecnicamente melhor. Enunciados impecáveis, nível das questões
TD GERAL DE MATEMÁTICA 2ª FASE UECE
Fundação Universidade Estadual do Ceará - FUNECE Curso Pré-Vestibular - UECEVest Fones: 3101.9658 / E-mail: [email protected] Av. Dr. Silas Munguba, 1700 Campus do Itaperi 60714-903 Fone: 3101-9658/Site:
... n = 10, então n não é múlti- a = 2, então. log c = 2,7, então a, b, c, nesta ordem, formam
1. (UFRGS/000) As rodas traseiras de um veículo têm 4,5 metros de circunferência cada uma. Enquanto as rodas dianteiras dão 15 voltas, as traseiras dão somente 1 voltas. A circunferência de cada roda dianteira
Exercícios de Revisão
Professor: Cassio Kiechaloski Mello Disciplina: Matemática Exercícios de Revisão Geometria Analítica Geometria Plana Geometria Espacial Números Complexos Polinômios Na prova de recuperação final, não será
MATEMÁTICA. Questão 01. Questão 02 PROVA 3 - CONHECIMENTOS ESPECÍFICOS RESPOSTA: 24 - NÍVEL MÉDIO 01) INCORRETA. RESPOSTA: 25 - NÍVEL MÉDIO
PROVA 3 - CONHECIMENTOS ESPECÍFICOS É uma forma de os professores do Colégio Platão contribuírem com seus alunos, orientando-os na resolução das questões do vestibular da UEM. Isso ajuda o vestibulando
TIPO DE PROVA: A. Questão 1. Questão 3. Questão 2. alternativa E. alternativa C. alternativa E
Questão TIPO DE PROVA: A Pedro e Luís tinham, em conjunto, a importância de R$690,00. Pedro gastou de seu 5 dinheiro e Luís gastou do que possuía, ficando ambos com quantias iguais. Pedro ti- nha a quantia
