Modelos Evolucionários e Tratamento de Incertezas
|
|
|
- André Mendonça Flores
- 7 Há anos
- Visualizações:
Transcrição
1 Ciência da Computação Modelos Evolucionários e Tratamento de Incertezas Aula 04 Módulos de População e Funções de Avaliação Max Pereira
2 Tamanho da População O desempenho do algoritmo genético é extremamente sensível ao tamanho da população; Caso este número seja pequeno demais, não haverá espaço para termos variedade genética: Pode ser que nosso algoritmo seja incapaz de achar boas soluções; Caso este número seja grande demais, o algoritmo demorará demais: Poderemos estar nos aproximando de uma busca exaustiva.
3 Populações de Tamanho Variável Estratégia 1: definição de uma expectativa de vida para cada indivíduo: Esta expectativa é proporcional à qualidade do indivíduo; O tamanho da população pode crescer caso a avaliação de todos os indivíduos seja muito boa; Neste caso, estes sobreviverão por muitas gerações, além de gerar filhos que também irão compor a população.
4 Populações de Tamanho Variável O número de filhos gerados a cada geração é dado por: ρ*p(t) Como a cada instante podemos gerar mais filhos do que o número de mortos da geração anterior, a população pode aumentar Ela pode diminuir se o oposto ocorrer! Não tem uma pressão seletiva forte sobre os indivídos: Eles morrem quando atingem a velhice
5 Populações de Tamanho Variável Estratégia 2: aumentar o tamanho da população se: está havendo convergência genética ainda não chegamos perto da performance desejada. Problema: determinar quando a convergência genética aconteceu. Não é uma tarefa simples!
6 Função de Avaliação Idealmente, a função de avaliação deveria ser suave e regular. Cromossomos que tenham uma avaliação boa estejam perto dos cromossomos que lhe sejam apenas um pouco superiores. Pode fazer com que o desempenho do AG degenere em dois casos: questão do superindivíduo a existência de uma pequena diferença entre as avaliações.
7 Superindivíduo Um ou mais indivíduos cuja avaliação é muito superior àquela dos outros membros da população. Este indivíduo ou este grupo será quase sempre escolhido pelo módulo de seleção Causa uma perda imediata da diversidade genética nas gerações imediatamente subsequentes.
8 Superindivíduo Exemplo Sejaapopulaçãodadapor: Indivíduo Avaliação Somatório das Avaliações 286
9 Superindivíduo Exemplo: Método da roleta: o primeiro indivíduo será selecionado cerca de 256/286 90% das vezes. Isto fará com que percamos as características benéficas de vários outros indivíduos
10 Pequena Diferença entre Avaliações Ocorre quando todos os indivíduos têm funções de avaliação que diferem muito pouco percentualmente. Nestes casos, uma pequena diferença entre funções de avaliação significa uma grande diferença na qualidade da solução; O algoritmo não consegue perceber isto, dando espaços praticamente iguais para todos os indivíduos na roleta.
11 Normalização Coloque os cromossomos em ordem decrescente de valor; Crie novas funções de avaliação para cada um dos indivíduos da seguinte maneira: o melhor de todos recebe um valor fixo (k); os outros recebam valores iguais ao do indivíduo imediatamente anterior na lista ordenada menos um valor de decremento constante (t). Matematicamente: aval 0 = k aval i =aval i-1 -t
12 Normalização Caso queiramos estabelecer a diferenciação de forma mais acentuada, podemos pensar em usar uma técnica de normalização não linear sobre a avaliação de todos os indivíduos da população; Este método consiste em aplicar aos valores da avaliação por uma função não linear. Por exemplo: podemos resolver o problema do superindivíduo usando uma função de normalização logarítmica.
13 Normalização Indivíduo Avaliação (f(x)) Nova Avaliação (log 10 (f(x))
14 Windowing Existem situações em que as diferenças absolutas entre os indivíduos são muito pequenas, apesar de haver indivíduos que possuem características bastante superiores a outros.
15 Windowing Exemplo Windowing diminuindo 19,0 de cada indivíduo
16 Escalonamento Sigma Busca tornar o AG menos suscetível à convergência genética prematura. O princípio do escalonamento sigma é modificar a função de avaliação de um indivíduo (f(i)) pela fórmula: E(i, t) 1, σ(t) = 0 = f(i) f(t) 1 +,σ(t) 0 2σ(t) f (i) f (t ) σ (t ) é a avaliação do indivíduo i é a avaliação média da população no instante t é o desvio padrão das avaliações no instante t
17 Problema do Percurso do Cavalo O Percurso do Cavalo (Knight's Tour) consiste de uma sequência de movimentos feitos pela peça de xadrez, o cavalo. Cada casa do tabuleiro deve ser visitada exatamente uma vez. Cada movimento da peça é descrito como um L.
18 Movimento do Cavalo
19 Definição do problema Dado um tabuleiro nx n, determine uma sequência válida de movimentos do cavalo de modo que esta peça passe por todas as casas uma única vez, a partir de qualquer casa do tabuleiro.
20 Percurso do Cavalo Século IX, primeiras respostas.
21 Estudos matemáticos Leonhard Euler século XVIII Academia de Ciências de Berlim (1759) ofereceu um prêmio.
22 Quantos percursos possíveis? Em 1995 Martin Löbbing e Ingo Wegener anunciaram que o número de percursos possíveis era igual a: (20 Sun Workstations por 4 meses!!!!).
23 Quantos percursos possíveis? Em 1997, Brendan McKay usou outro método para calcular o número de percursos (dividindo o tabuleiro em duas partes) e obteve: Um computador procurando e encontrando percursos a uma velocidade de um milhão de percursos por minuto precisaria de 25 anos para calcular o número de percursos dado por McKay!!!!
24 Primeiro algoritmo Século XIX, H. C. Warnsdorff. Antes de fazer o movimento, avaliar as posições seguintes possíveis que ainda não foram visitadas e podem ser alcançadas por um único salto a partir da posição corrente. Essas casas são avaliadas de acordo com o número de vizinhos não visitados que cada uma possui.
25 Algoritmo
26 Percurso Fechado
27 Percurso do Cavalo e Grafos O Percurso do Cavalo e Ciclos Hamiltonianos Cada casa do tabuleiro torna-se um vértice e as arestas um par de vértices (casas) entre os quais há um movimento válido do cavalo. Para um tabulerio 8 x 8 o grafo possui 64 vértices e 168 arestas.
28
29 Representação
30 Representação (fechado)
Inteligência Artificial
Inteligência Artificial Aula 6 Algoritmos Genéticos M.e Guylerme Velasco Roteiro Introdução Otimização Algoritmos Genéticos Representação Seleção Operadores Geneticos Aplicação Caixeiro Viajante Introdução
Algoritmos Genéticos. Princípio de Seleção Natural. Sub-áreas da Computação Evolutiva. Idéias básicas da CE. Computação Evolutiva
Computação Evolutiva Algoritmos Genéticos A computação evolutiva (CE) é uma área da ciência da computação que abrange modelos computacionais inspirados na Teoria da Evolução das Espécies, essencialmente
Introdução aos Algoritmos Genéticos
Introdução aos Algoritmos Genéticos Prof. Matheus Giovanni Pires EXA 868 Inteligência Artificial Não-Simbólica B Universidade Estadual de Feira de Santana 2 Algoritmos Genéticos: Introdução Introduzidos
Métodos de Busca. Inteligência Artificial. Algoritmos Genéticos. Algoritmos Evolucionários. Prof. Ms. Luiz Alberto Contato:
Inteligência Artificial Prof. Ms. Luiz Alberto Contato: [email protected] Métodos de Busca Busca Cega ou Exaustiva: Não sabe qual o melhor nó da fronteira a ser expandido. Apenas distingue o estado objetivo
Inteligência Artificial
Inteligência Artificial Prof. Kléber de Oliveira Andrade [email protected] Algoritmos Genéticos Conteúdo Introdução O Algoritmo Genético Binário Noções de Otimização O Algoritmo Genético com Parâmetros
Exemplo de Aplicação de Algoritmos Genéticos. Prof. Juan Moisés Mauricio Villanueva cear.ufpb.br/juan
Exemplo de Aplicação de Algoritmos Genéticos Prof. Juan Moisés Mauricio Villanueva [email protected] cear.ufpb.br/juan Estrutura do Algoritmo Genético Algoritmo genético Inicio t = 0 inicializar P(t)
Algoritmo Genético. Inteligência Artificial. Professor: Rosalvo Ferreira de Oliveira Neto
Algoritmo Genético Inteligência Artificial Professor: Rosalvo Ferreira de Oliveira Neto Estrutura 1. Introdução 2. Conceitos Básicos 3. Aplicações 4. Algoritmo 5. Exemplo Introdução São técnicas de busca
3 Algoritmos Genéticos
Técnicas de Inteligência Computacional 33 3 Algoritmos Genéticos Este capítulo resume os principais conceitos sobre o algoritmo evolucionário empregado nesta dissertação. É apresentada uma breve explicação
Teoria dos grafos. Caminho euleriano e Hamiltoniano. Prof. Jesuliana N. Ulysses
1 7 Teoria dos grafos Caminho euleriano e Hamiltoniano Grafo Euleriano Grafo onde é possível achar um caminho fechado (ciclo), passando em cada aresta uma única vez Quais são os grafos de Euler? Teorema:
Noções de Simulação. Ciências Contábeis - FEA - Noturno. 2 o Semestre MAE0219 (IME-USP) Noções de Simulação 2 o Semestre / 23
Noções de Simulação Ciências Contábeis - FEA - Noturno 2 o Semestre 2013 MAE0219 (IME-USP) Noções de Simulação 2 o Semestre 2013 1 / 23 Objetivos da Aula Sumário 1 Objetivos da Aula 2 Motivação 3 Geração
Lista de Exercícios - Modelagem de representação cromossômica e função fitness
Lista de Exercícios - Modelagem de representação cromossômica e função fitness Para cada um dos problemas descritos abaixo: crie uma ou mais representações cromossômicas capazes de representar uma solução
GRAFOS Aula 04 Caminhos, Conexidade e Distância Max Pereira
Ciência da Computação GRAFOS Aula 04 Caminhos, Conexidade e Distância Max Pereira Um grafo é dito conexo se for possível visitar qualquer vértice, partindo de um outro qualquer, passando pelas suas arestas.
Algoritmos Genéticos. Luis Martí LIRA/DEE/PUC-Rio. Algoritmos Genéticos
Luis Martí LIRA/DEE/PUC-Rio Baseado nas transparências dos professores: Teresa B. Ludermir (UFPE) Ricardo Linden (CEPEL) Marco Aurélio Pacheco (PUC-Rio) Conteúdo! Introdução! O Algoritmo Genético Binário!
Computação Evolutiva. Aula 4 Usando AEs Prof. Tiago A. E. Ferreira
Computação Evolutiva Aula 4 Usando AEs Prof. Tiago A. E. Ferreira Roteiro Exemplos: Problema das 8 rainhas Comportamentos Típicos dos AE CE no contexto da Otimização Global Relembrando Na Aula Passada,
PERCURSOS. André Falcão, Carlos Augusto, Rafael Broédel e Lucas Dipré
PERCURSOS André Falcão, Carlos Augusto, Rafael Broédel e Lucas Dipré Serra 2011 Índice 1...O que é caminho e circuito 1.1...Caminho 1.2...Circuito 1.3...Classificação 2...Caminhos Eulerianos 2.1...Definição
GRAFOS. Prof. André Backes. Como representar um conjunto de objetos e as suas relações?
8/0/06 GRAFOS Prof. André Backes Definição Como representar um conjunto de objetos e as suas relações? Diversos tipos de aplicações necessitam disso Um grafo é um modelo matemático que representa as relações
Algoritmos Genéticos. Estéfane G. M. de Lacerda DCA/UFRN Outubro/2008
Estéfane G. M. de Lacerda DCA/UFRN Outubro/2008 Introdução São técnicas de busca e otimização. É a metáfora da teoria da evolução das espécies iniciada pelo Fisiologista e Naturalista inglês Charles Darwin.
Teoria dos Grafos Aula 6
Teoria dos Grafos Aula 6 Aula passada Busca em grafos Busca em largura (BFS Breadth First Search) Propriedades Aula de hoje BFS implementação Complexidade Busca em profundidade (DFS) Conectividade, componentes
Teoria dos Grafos Aula 2
Teoria dos Grafos Aula 2 Aula passada Logística, regras Objetivos Grafos, o que são? Formando pares Encontrando caminhos Aula de hoje Outro problema real Definições importantes Algumas propriedades Grafo
AULA 03 O FLUXO ELÉTRICO. Eletromagnetismo - Instituto de Pesquisas Científicas
ELETROMAGNETISMO AULA 03 O FLUXO ELÉTRICO Vamos supor que exista certa superfície inserida em uma campo elétrico. Essa superfície possui uma área total A. Definimos o fluxo elétrico dφ através de um elemento
Algoritmos 3/17/ Algoritmos como área de estudo e investigação
Algoritmos e Complexidade Ana Teresa Freitas INESC-ID/IST ID/IST 3/17/2005 1 O que é um algoritmo? Algoritmos: Sequência de instruções necessárias para a resolução de um problema bem formulado [passíveis
ÁRVORES E ÁRVORE BINÁRIA DE BUSCA
ÁRVORES E ÁRVORE BINÁRIA DE BUSCA Prof. André Backes Definição 2 Diversas aplicações necessitam que se represente um conjunto de objetos e as suas relações hierárquicas Uma árvore é uma abstração matemática
Prova Escrita de Matemática Aplicada às Ciências Sociais
EXAME NACIONAL DO ENSINO SECUNDÁRIO Decreto-Lei n.º 139/2012, de 5 de julho Prova Escrita de Matemática Aplicada às Ciências Sociais 10.º e 11.º Anos de Escolaridade Prova 835/Época Especial Critérios
Modelagem da Rede Neural. Modelagem da Rede Neural. Back Propagation. Modelagem da Rede Neural. Modelagem da Rede Neural. Seleção de Variáveis:
Back Propagation Fatores importantes para a modelagem da Rede Neural: Seleção de variáveis; veis; Limpeza dos dados; Representação das variáveis veis de entrada e saída; Normalização; Buscando melhor Generalização
Escola Secundária com 3º ciclo D. Dinis 10º Ano de Matemática A TEMA 2 Funções e Gráficos Generalidades. Funções polinomiais. Função módulo.
Escola Secundária com º ciclo D. Dinis 0º no de Matemática TEM Funções e Gráficos Generalidades. Funções polinomiais. Função módulo. Tarefa nº 5 FUNÇÕES LINERES E VRIÇÃO DE PRÂMETROS. Considere as seguintes
APROXIMAÇÃO DE FUNÇÕES MÉTODO DOS MÍNIMOS QUADRADOS
MÉTODO DOS MÍNIMOS QUADRADOS INTRODUÇÃO Frequentemente é possível estabelecer uma relação linear entre duas grandezas medidas experimentalmente. O método dos mínimos quadrados é uma maneira de se obter
Noções da Teoria dos Grafos. André Arbex Hallack
Noções da Teoria dos Grafos André Arbex Hallack Junho/2015 Índice 1 Introdução e definições básicas. Passeios eulerianos 1 1.1 Introdução histórica..................................... 1 1.2 Passeios
SOLUÇÕES HEURÍSTICAS PARA O JOGO DE DAMAS
Universidade Federal do Tocantins SOLUÇÕES HEURÍSTICAS PARA O JOGO DE DAMAS Diogo Rigo de Brito Guimarães Alexandre Tadeu Rossini da Silva Objetivo Implementar soluções heurísticas para o Jogo de Damas
Prova Escrita de Matemática Aplicada às Ciências Sociais
EXAME FINAL NACIONAL DO ENSINO SECUNDÁRIO Prova Escrita de Matemática Aplicada às Ciências Sociais 11.º Ano de Escolaridade Decreto-Lei n.º 139/2012, de 5 de julho Prova 835/1.ª Fase Critérios de Classificação
Ciclos hamiltonianos e o problema do caixeiro viajante
Ciclos hamiltonianos e o problema do caixeiro viajante Algoritmos em Grafos Marco A L Barbosa cba Este trabalho está licenciado com uma Licença Creative Commons - Atribuição-CompartilhaIgual 4.0 Internacional.
5 Modelo Kernel PCA Genético para Ajuste de Histórico
5 Modelo Kernel PCA Genético para Ajuste de Histórico Conforme descrito na seção 3.2.2.2.1, em um estudo anterior, Sarma, Durlofsky, et al. (2007) parametrizaram o campo de permeabilidade através do Kernel
Curso de Formação de Oficiais Conhecimentos Específicos ENGENHARIA DE COMPUTAÇÃO CADERNO DE QUESTÕES
Curso de Formação de Oficiais Conhecimentos Específicos ENGENHARIA DE COMPUTAÇÃO CADERNO DE QUESTÕES 2014 1 a QUESTÃO Valor: 1,00 a) (0,30) Defina gramáticas livre de contexto. b) (0,30) Crie uma gramática
Estruturas de Dados 2
Estruturas de Dados 2 Análise Empírica de Algoritmos IF64C Estruturas de Dados 2 Engenharia da Computação Prof. João Alberto Fabro - Slide 1/13 Análise da Eficiência de Algoritmos: Velocidade de Execução;
Métodos Numéricos. Turma CI-202-X. Josiney de Souza.
Métodos Numéricos Turma CI-202-X Josiney de Souza [email protected] Agenda do Dia Aula 9 (30/09/15) Método de Ponto Fixo: Método de Newton- Raphson ou Método das Tangentes O que é Como é calculado Particularidades
3 Otimização Evolucionária de Problemas com Restrição
3 Otimização Evolucionária de Problemas com Restrição 3.1. Introdução Este capítulo resume os principais conceitos sobre os algoritmos evolucionários empregados nesta dissertação. Primeiramente, se fornece
Exercícios de programação
Exercícios de programação Estes exercícios serão propostos durante as aulas sobre o Mathematica. Caso você use outra linguagem para os exercícios e problemas do curso de estatística, resolva estes problemas,
Escola Básica e Secundária Mouzinho da Silveira. MACS 11.º Ano Problema do Caixeiro Viajante
Escola Básica e Secundária Mouzinho da Silveira MACS 11.º Ano Problema do Caixeiro Viajante Problema do Caixeiro Viajante Trata-se de um problema matemático que consiste, sendo dado um conjunto de cidades
OBSERVAÇÕES SOBRE A NOTA DE AULA 04 / RELAÇÕES E FUNÇÕES. Aluno: Matrícula: (1) Na folha 1/11, as figuras estão trocadas. Assim, o correto é:
ENGENHARIA CIVIL MATEMÁTICA BÁSICA / VALE VT TDE Lista - VT 04 13/03/2015 (Turma NOITE) - QUESTÕES OBJETIVAS CONJUNTOS TRABALHO DE PESQUISA - VALE VT ENTREGAR AO PROFESSOR em 25/03/2015 (4ª feira) Aluno:
7 Definição da Trajetória via Controle Ótimo
7 Definição da Trajetória via Controle Ótimo O objetivo desse trabalho é avaliar a metodologia de projeto e os controladores não só em percursos que representem o centro da pista, mas trajetórias ótimas
Otimização. Unidade 6: Algoritmo Genético. Jaime Arturo Ramírez. 7. Teoria do processo evolutivo num GA. 8. Aspectos avançados
Otimização Jaime Arturo Ramírez Conteúdo 1. Introdução 2. Analogia de mecanismos de seleção natural com sistemas artificiais 3. Algoritmo genético modelo 4. Um GA simples 5. Representação, genes e cromossomos
Aula 06 Representação de sistemas LIT: A soma de convolução
Aula 06 Representação de sistemas LIT: A soma de convolução Bibliografia OPPENHEIM, A.V.; WILLSKY, A. S. Sinais e Sistemas, 2a edição, Pearson, 2010. ISBN 9788576055044. Páginas 47-56. HAYKIN, S. S.; VAN
étodos uméricos SOLUÇÃO NUMÉRICA DE EQUAÇÕES DIFERENCIAIS ORDINÁRIOAS Prof. Erivelton Geraldo Nepomuceno
étodos uméricos SOLUÇÃO NUMÉRICA DE EQUAÇÕES DIFERENCIAIS ORDINÁRIOAS Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA UNIVERSIDADE DE JOÃO DEL-REI PRÓ-REITORIA DE PESQUISA
Unidade III ESTATÍSTICA. Prof. Fernando Rodrigues
Unidade III ESTATÍSTICA Prof. Fernando Rodrigues Medidas de dispersão Estudamos na unidade anterior as medidas de tendência central, que fornecem importantes informações sobre uma sequência numérica. Entretanto,
étodos uméricos ZEROS DE FUNÇÕES Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA
étodos uméricos ZEROS DE FUNÇÕES Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA UNIVERSIDADE DE JOÃO DEL-REI PRÓ-REITORIA DE PESQUISA CENTRO FEDERAL DE EDUCAÇÃO TECNOLÓGICA
7 Avaliação de Opções Reais Através do Método LSM
Avaliação de Opções Reais Através do Método LSM 88 7 Avaliação de Opções Reais Através do Método LSM Neste capítulo, iremos aplicar o método desenvolvido por Longstaff & Schwartz para a avaliação de opções
Busca Competitiva. Inteligência Artificial. Até aqui... Jogos vs. busca. Decisões ótimas em jogos 9/22/2010
Inteligência Artificial Busca Competitiva Aula 5 Profª Bianca Zadrozny http://www.ic.uff.br/~bianca/ia-pos Capítulo 6 Russell & Norvig Seção 6.1 a 6.5 2 Até aqui... Problemas sem interação com outro agente.
Métodos Numéricos. Turma CI-202-X. Josiney de Souza.
Métodos Numéricos Turma CI-202-X Josiney de Souza [email protected] Agenda do Dia Aula 20 (09/11/15) Interpolação: Introdução Características Interpolação Linear: Introdução Características Exercícios
Folha Prática - Representação de Números e Erros. 1. Representar os seguintes números decimais em binário com ponto fixo:
Computação Científica Folha Prática - Representação de Números e Erros 1. Representar os seguintes números decimais em binário com ponto fixo: a) 24 b) 197 c) 1001 d) 7,65 e) 8,963 f) 266,66 2. Obter os
Um modelo estocástico para o fluxo de caixa de um plano de previdência de um indivíduo 15
2 Simulação estocástica A simulação computacional consiste em empregar técnicas matemáticas em computadores com o propósito de gerar ensaios que tentam reproduzir de maneira análoga um processo ou operação
BCC204 - Teoria dos Grafos
BCC204 - Teoria dos Grafos Marco Antonio M. Carvalho (baseado nas notas de aula do prof. Haroldo Gambini Santos) Departamento de Computação Instituto de Ciências Exatas e Biológicas Universidade Federal
4º 20/10/2003. ÍNDICE
Universidade Federal de Juiz de Fora UFJF. Departamento de Ciência da Computação DCC. Curso de Ciência da Computação. Análise e Projeto de Algoritmos 4º período. Filippe Jabour. Atualizado em 20/10/2003.
1. Converta para a base binária, usando o método das divisões sucessivas, os seguintes números inteiros: a) 13 b) 35.
Computação Científica Folha Prática Computação Numérica 1. Converta para a base binária, usando o método das divisões sucessivas, os seguintes números inteiros: a) 13 b) 35 c) 192 d) 255 e) 347 f) 513
CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano.
CÁLCULO NUMÉRICO Profa. Dra. Yara de Souza Tadano [email protected] Aula 11 Sistemas de Equações não-lineares SISTEMAS NÃO-LINEARES Cálculo Numérico 3/39 SISTEMA NÃO LINEAR Vamos considerar o problema
Teoria dos Grafos Aula 2
Teoria dos Grafos Aula 2 Aula passada Logística Objetivos Grafos, o que são? Formando pares Aula de hoje Mais problemas reais Definições importantes Algumas propriedades Objetivos da Disciplina Grafos
Um par ordenado é indica por x e y dentro de parêntese e separado por vírgula.
PRODUTO CARTESIANO PAR ORDENADO Um par ordenado é indica por x e y dentro de parêntese e separado por vírgula. ( x, y ) pode ser indicado para representar uma determinada posição e que esta ordem de primeiro
Módulo 4 Ajuste de Curvas
Módulo 4 Ajuste de Curvas 4.1 Intr odução Em matemática e estatística aplicada existem muitas situações onde conhecemos uma tabela de pontos (x; y), com y obtido experimentalmente e deseja se obter uma
Resolução de Problemas. Universidade Católica de Pelotas Engenharia da Computação Disciplina: Inteligência Artificial
Resolução de Problemas Universidade Católica de Pelotas Engenharia da Computação Disciplina: Inteligência Artificial 2 Resolução de Problemas Introdução Componentes Solução Busca de soluções 3 Resolução
Introdução à Teoria dos Grafos. Isomorfismo
Isomorfismo Um isomorfismo entre dois grafos G e H é uma bijeção f : V (G) V (H) tal que dois vértices v e w são adjacentes em G, se e somente se, f (v) e f (w) são adjacentes em H. Os grafos G e H são
Medida do Tempo de Execução de um Programa. David Menotti Algoritmos e Estruturas de Dados II DInf UFPR
Medida do Tempo de Execução de um Programa David Menotti Algoritmos e Estruturas de Dados II DInf UFPR Classes de Comportamento Assintótico Se f é uma função de complexidade para um algoritmo F, então
VERSÃO DE TRABALHO. Prova Escrita de Matemática Aplicada às Ciências Sociais. 11.º Ano de Escolaridade. Prova 835/2.ª Fase. Critérios de Classificação
EXAME FINAL NACIONAL DO ENSINO SECUNDÁRIO Prova Escrita de Matemática Aplicada às Ciências Sociais 11.º Ano de Escolaridade Decreto-Lei n.º 139/2012, de 5 de julho Prova 835/2.ª Fase Critérios de Classificação
Complexidade de Algoritmos
Complexidade de Algoritmos! Uma característica importante de qualquer algoritmo é seu tempo de execução! é possível determiná-lo através de métodos empíricos, considerando-se entradas diversas! é também
7 a Lista de Exercícios Assunto: Funções e passagem por referência com vetor e matriz (Tópico 7)
7 a Lista de Exercícios Assunto: Funções e passagem por referência com vetor e matriz (Tópico 7) Essa lista de exercícios tem como objetivo principal desenvolver algoritmos a partir dos conteúdos abordados
Cap. 2 Conceitos Básicos em Teoria dos Grafos
Teoria dos Grafos e Aplicações 8 Cap. 2 Conceitos Básicos em Teoria dos Grafos 2.1 Grafo É uma noção simples, abstrata e intuitiva, usada para representar a idéia de alguma espécie de relação entre os
étodos uméricos INTERPOLAÇÃO, EXTRAPOLAÇÃO, APROXIMAÇÃO E AJUSTE DE FUNÇÕES Prof. Erivelton Geraldo Nepomuceno
étodos uméricos INTERPOLAÇÃO, EXTRAPOLAÇÃO, APROXIMAÇÃO E AJUSTE DE FUNÇÕES Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA UNIVERSIDADE DE JOÃO DEL-REI PRÓ-REITORIA
Teoria dos Grafos. Motivação
Teoria dos Grafos Aula 1 Primeiras Ideias Prof a. Alessandra Martins Coelho março/2013 Motivação Muitas aplicações em computação necessitam considerar conjunto de conexões entre pares de objetos: Existe
E. S. JERÓNIMO EMILIANO DE ANDRADE DE ANGRA DO HEROISMO. Conteúdo Programáticos / Matemática e a Realidade. Curso de Nível III Técnico de Laboratório
E. S. JERÓNIMO EMILIANO DE ANDRADE DE ANGRA DO HEROISMO Curso de Nível III Técnico de Laboratório Técnico Administrativo PROFIJ Conteúdo Programáticos / Matemática e a Realidade 2º Ano Ano Lectivo de 2008/2009
Simulação Monte Carlo
Simulação Monte Carlo Nome do Prof. Fernando Saba Arbache Email do prof. [email protected] Definição Análise de risco faz parte da tomada de decisão Surgem constantemente incertezas, ambiguidades e
3.1 CRIAR A GEOMETRIA/MALHA;
72 3 METODOLOGIA A metodologia adotada no presente trabalho foi a de utilizar a ferramenta de dinâmica dos fluidos computacional (CFD) para simular dispositivos microfluídicos de diferentes geometrias
Computação Evolutiva Eduardo do Valle Simões Renato Tinós ICMC - USP
Computação Evolutiva Eduardo do Valle Simões Renato Tinós ICMC - USP 1 Principais Tópicos Introdução Evolução Natural Algoritmos Genéticos Aplicações Conclusão 2 Introdução http://www.formula-um.com/ Como
Hashing: conceitos. Hashing
Hashing: conceitos hashing é uma técnica conhecida como espalhamento, mapeamento ou randomização que tenta distribuir dados em posições aleatórias de uma tabela (array) associa cada objeto (de um determinado
GABARITO COMENTADO DE PROVAS DE FÍSICA CINEMÁTICA
GABARITO COMENTADO DE PROVAS DE FÍSICA CINEMÁTICA 1ª Prova 2007 Questão 1: FÁCIL O valor de H é calculado pela equação de Torricelli: Para isso, deve-se calcular a velocidade inicial e final: (sinal negativo,
Resolução comentada da questão 1 da P1 de 2015 da disciplina PME Mecânica dos Fluidos I
Resolução comentada da questão 1 da P1 de 2015 da disciplina PME3230 - Mecânica dos Fluidos I Caio Cancian Março 2016 Resumo A primeira questão da P1 de 2015 da disciplina PME3230 - Mecânica dos Fluidos
MINISTÉRIO DA DEFESA EXÉRCITO BRASILEIRO ESCOLA DE SARGENTOS DAS ARMAS (ESCOLA SARGENTO MAX WOLF FILHO)
MINISTÉRIO DA DEFESA EXÉRCITO BRASILEIRO ESCOLA DE SARGENTOS DAS ARMAS (ESCOLA SARGENTO MAX WOLF FILHO) EXAME INTELECTUAL AOS CURSOS DE FORMAÇÃO DE SARGENTOS 018-19 SOLUÇÃO DAS QUESTÕES DE MATEMÁTICA QUESTÃO:
Probabilidade e Estatística (Aula Prática - 23/05/16 e 24/05/16)
Probabilidade e Estatística (Aula Prática - 23/05/16 e 24/05/16) Resumo: Veremos nesta aula tabelas, cálculos de porcentagem e gráficos; amostras e tipo de amostragem; Medidas de tendência central e medidas
étodos uméricos INTEGRAÇÃO NUMÉRICA Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA
étodos uméricos INTEGRAÇÃO NUMÉRICA Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA UNIVERSIDADE DE JOÃO DEL-REI PRÓ-REITORIA DE PESQUISA CENTRO FEDERAL DE EDUCAÇÃO
Alguns probleminhas...
Introdução Vários problemas da computação, com aplicações em diversos problemas importantes, nasceram de jogos ou brincadeiras. Hoje veremos uma pequana amostra deste fato. Alguns probleminhas... Problema
Processamento de Malhas Poligonais
Processamento de Malhas Poligonais Tópicos Avançados em Computação Visual e Interfaces I Prof.: Marcos Lage www.ic.uff.br/~mlage [email protected] Conteúdo: Notas de Aula Curvas 06/09/2015 Processamento
APLICAÇÕES ADICIONAIS DA DERIVADA. Aula 05 Matemática I - Agronomia Prof. Danilene Donin Berticelli
APLICAÇÕES ADICIONAIS DA DERIVADA Aula 05 Matemática I - Agronomia Prof. Danilene Donin Berticelli FUNÇÕES CRESCENTES E DECRESCENTES PDB/Ano 9 8 7 6 5 4 3 2 1 0 1989 1990 1991 1992 1993 1994 1995 1996
UNIVERSIDADE FEDERAL DO CEARÁ CENTRO DE TECNOLOGIA PROGRAMA DE EDUCAÇÃO TUTORIAL APOSTILA DE CÁLCULO. Realização:
UNIVERSIDADE FEDERAL DO CEARÁ CENTRO DE TECNOLOGIA PROGRAMA DE EDUCAÇÃO TUTORIAL APOSTILA DE CÁLCULO Realização: Fortaleza, Fevereiro/2010 1. LIMITES 1.1. Definição Geral Se os valores de f(x) puderem
A escala de Língua Portuguesa para o 3º ano do Ensino Médio
A escala de Língua Portuguesa para o 3º ano do Ensino Médio LÍNGUA PORTUGUESA 3º ANO DO ENSINO MÉDIO (continua) 1 225-250 2 250-275 3 275-300 4 300-325 Nesse nível, o estudante pode ser capaz de identificar
Aula 00 Aula Demonstrativa
Aula 00 Aula Demonstrativa Apresentação... Relação das questões comentadas... 10 Gabarito... 1 www.pontodosconcursos.com.br 1 Apresentação Olá, pessoal! Tudo bem com vocês? Esta é a aula demonstrativa
INFORMAÇÃO-PROVA MATEMÁTICA APLICADA ÀS CIÊNCIAS SOCIAIS 2016
INFORMAÇÃO-PROVA MATEMÁTICA APLICADA ÀS CIÊNCIAS SOCIAIS 2016 Prova 835 11.º Ano de Escolaridade (Decreto-Lei n.º 139/2012, de 5 de julho) O presente documento divulga informação relativa à prova de exame
Backtracking. Túlio Toffolo Marco Antônio Carvalho BCC402 Aula 10 Algoritmos e Programação Avançada
Backtracking Túlio Toffolo www.toffolo.com.br Marco Antônio Carvalho [email protected] BCC402 Aula 10 Algoritmos e Programação Avançada Backtracking Backtracking é um refinamento do algoritmo de busca
Teoria dos Grafos Introdu c ao
Teoria dos Grafos Introdução Referências P. O. Boaventura Netto, Grafos: Teoria, Modelos e Algoritmos, São Paulo, E. Blucher 001; R. J. Trudeau, Introduction to Graph Theory, New York, Dover Publications,
Algoritmos de Aprendizado. Formas de Aprendizado. Aprendizado Batch x Incremental. Aprendizado Batch x Incremental
Algoritmos de Aprendizado Regra de Hebb Perceptron Delta Rule (Least Mean Square Back Propagation Formas de Aprendizado Existe dois métodos básicos de aplicação do algoritmo Back Propagation: Aprendizado
