Assessoria Matemática Amora II
|
|
|
- Luiz Felipe Chaves Benevides
- 7 Há anos
- Visualizações:
Transcrição
1 Plano de trabalho para a aula do dia: 15/05/2014 Alunos: André Luiz, Marluce e Nathália Assessoria Matemática Amora II Resumo da atividade a ser desenvolvida Nesta aula, iremos explicar como efetuamos a divisão de números inteiros por meio de alguns exercícios. Após isso iniciaremos o estudo de potenciação com números inteiros de forma expositiva. Vamos dar início ao estudo desse conteúdo relembrando a potenciação com números naturais, sua definição, propriedades e modo de leitura. Trabalharemos também as operações com potências envolvendo números inteiros. Após as explicações, os alunos farão exercícios. Objetivo geral da atividade Ensinar divisão e potenciação com números inteiros aos alunos, mostrar a importância desses conteúdos para todos os outros estudos matemáticos que serão trabalhados mais adiante. Conceitos de matemática presentes na atividade Divisão e Potenciação com números inteiros. Público alvo Pré adolescentes do Amora II A Justificativa /Relevância Como os alunos já sabem fazer uso de divisão e de potenciação nos números naturais, vamos trabalhar agora em um universo maior (Inteiros) para que possam resolver situações problema que envolvam esses assuntos. Descrição das atividades Vamos dar início à aula com a explicação de divisão com números inteiros: Para realizar a divisão de números Inteiros, dividimos os valores absolutos e colocamos o sinal (positivo ou negativo) seguindo as mesmas regras usadas na multiplicação de números Inteiros. Jogo de Sinais (apenas para multiplicação e divisão): Sinais iguais: sempre positivo Sinais diferentes: sempre negativo Exemplo: 1) 645 / 15 = 43 (dividimos como nos naturais, e no resultado acrescentamos o sinal equivalente); 1
2 2) 1656 / 18 = ) 393 / 3 = 131 4) +952 / +14 = +68 Exercício: Efetue as divisões: 1) 216 / 8 = 27 2) 162 / 9 = +18 3) 762/ 6 = 127 4) / +9 = +210 Depois da correção de alguns dos exercícios acima, daremos início ao estudo de potências, passando a seguinte pergunta no quadro para relembrar o que eles já sabem sobre potenciação: Como escrevemos 2 x 2 x 2 x 2 x 2 de forma simplificada? 2 x 2 x 2 x 2 x 2 = 2 5 A potenciação é uma operação matemática que permite escrever de forma reduzida a multiplicação de vários fatores iguais. Então 2 x 2 x 2 x 2 x 2 =2 5 Chamamos de: Base o fator que se repete na multiplicação. Expoente a quantidade de fatores iguais. Potência o resultado da potenciação. Então usando o exemplo anterior: 2 5 = 32, onde 2 é a base, 5 é o expoente e 32 é a potência. Como ler uma potência: 5 2 = cinco elevado ao quadrado ou cinco elevado na dois. 2 3 = dois elevado ao cubo ou dois elevado na três. 4 4 = quatro elevado à quarta potência ou quatro elevado na quatro = dez elevado à décima potência ou dez elevado na dez. Para relembrar das regras, vamos fazer perguntas aos alunos e, conforme eles forem respondendo, organizaremos os dados no quadro. Relembrando as Regras básicas: x 0 x 1 = 1, qualquer base diferente de zero com expoente zero é igual a 1; = x, qualquer base diferente de zero com expoente 1 é igual a ela mesma; 2
3 0 x = 0, base zero com qualquer expoente é igual a zero. Então: 3 0 = = = = = = 0 Faremos então a distinção do que eles já conhecem com o que vão aprender novo: As bases das potências podem ser um número inteiro positivo (que já conhecem) ou negativo. Para isso vamos fazer uso da regra de sinais da multiplicação. * Potência com Inteiro Positivo: (relembrando) As potências com base positiva resultarão sempre um número positivo. Ex.: (2)³ = 8 ou (+5)² = +25 Olhando só para os sinais (+).(+) = (+) * Potência com Inteiro Negativo: As potências com base negativa, dependem do expoente. Quando o expoente for um número par: Ex.: ( 3)² = ( 3).( 3) = +9 Olhando só para os sinais ( ).( ) = (+) Então quando o expoente for par (não somente o 2) o resultado será sempre positivo. Quando o expoente for um número ímpar: Ex.: ( 4)³ = ( 4).( 4).( 4) = 64 Olhando só para os sinais ( ).( ).( ) = (+).( ) = ( ) Então quando o expoente for ímpar (não somente o 3) o resultado será sempre negativo. Obs.: Quando a base for negativa mas fora do parenteses: Ex.: 9² = (9).(9) = 81 Olhando só para os sinais ( ).(+).(+) = ( ) Então quando a base for negativa e não estiver entre parênteses (não importa o expoente) o resultado sempre será negativo. Como ler potências com base negativa? O modo de leitura se dará da mesma forma, apenas acrescentaremos um menos na frente. ( 5) 2 = menos cinco elevado ao quadrado ou menos cinco elevado na dois. ( 2) 3 = menos dois elevado ao cubo ou menos dois elevado na três. ( 4) 4 = menos quatro elevado à quarta potência ou menos quatro elevado na quatro. ( 10) 10 = menos dez elevado à décima potência ou menos dez elevado na dez. 3
4 Após a explicação de potenciação com números negativos, daremos alguns exercícios para relembrar a potenciação com os números inteiros positivos (naturais) e outros de potenciação com números inteiros negativos. Os exercícios serão passados no quadro para eles copiarem. Durante os exercícios, estaremos circulando na sala para esclarecer possíveis dúvidas. Corrigiremos no quadro alguns dos exercícios que envolvam números inteiros negativos ou também aqueles que os alunos tiveram mais dificuldades. Após a correção de alguns exercícios vamos às operações com as potências: Adição de potência de mesma base: Ex.: 2³ + 2² = = 12 Na adição de potência com a mesma base, devemos resolver uma potência por vez e depois somá las. (relembrando) Nos números inteiros negativos ocorrerá da mesma forma porém teremos que ter um cuidado maior com os sinais: Ex. ( 2)³ + ( 2)² = ( 8) + (+4)= ( 8)+4= 4 (devo oito, tenho quatro) Subtração de potência de mesma base: Será da mesma forma que a adição. Ex.: 5³ 5² = = 100 Ex.: ( 5)³ ( 5)² = ( 125) (25) = = 150 (devo 125 e devo 25) Produto de potência de mesma base: Na operação de multiplicação entre potências de mesma base, é conservada a base comum e somam se os expoentes. Exemplo: * 2 4 x 2 = = 2 5 Com os Inteiros negativos ocorrerá da mesma forma: Exemplos: *( 3) 5 x ( 3) 2 = ( 3) 5+2 = ( 3) 7 *( 4) 6 x ( 4) 3 = ( 4) 6+3 = ( 4) 9 Divisão de potência de mesma base Na operação de divisão de potências de mesma base, é conservada a base comum e subtraem se os expoentes. Exemplo: *2 4 2 = = 2 3 Com os Inteiros negativos ocorrerá da mesma forma: 4
5 * ( 3) 5 ( 3) 2 = ( 3) 5 2 = ( 3) 2 * ( 4) 6 ( 4) 3 = ( 4) 6 3 = ( 4) 3 Potência de Potência Podemos elevar uma potência a outra potência. Para se efetuar este cálculo conserva se a base comum e multiplicam se os respectivos expoentes. Exemplos: * (2 3 ) 4 = 2 12, pois = 2 3 x 2 3 x 2 3 x 2 3 * (3 2 ) 3 = 3 6, pois = 3 2 x 3 2 x 3 2 Nos inteiros negativos ocorrerá da mesma forma: * ( 6³)² = ( 6) 6 * ( 4 2 ) 5 = ( 4) 10 Após as propriedades, passaremos no quadro negro exercícios sobre o conteúdo. Estaremos atendendo as dúvidas individuais. Caso haja tempo corrigiremos, ou ficará de tema. Procedimentos e materiais Quadro negro; Giz; Exercícios que serão passados no quadro: 1) Em ( 7)² = 49, responda: a) Qual é a base? b) Qual é o expoente? c) Qual é a potência? 2) Escreva na forma de potenciação: a) 4x4x4= b) 5x5= c) 9x9x9x9x9= d) 7x7x7x7= e) 2x2x2x2x2x2x2x2= 3) Calcule as potências envolvendo Naturais: a) 3² =9 b) 8² =64 c) 2³= 8 d) 3³ = 27 e) 6³ = 216 f) 2 4 = 16 g) 3 4 = 81 h) 1³ = 1 i) 0² = 0 j) 1 4 = 1 k) 10² =100 l) 10³ =1000 m) 15² =225 n) 30² = 900 o) 40² =1600 p) 300² = q) 67⁰ = 1 r) = 1258 s) 1001⁰ = 1 t) ( )⁰ = 1 4) Calcule as seguintes potências: a) ( 3) 4 = b) ( 2) 5 = c) ( 1) 4 = d) ( 2) 4 = e) ( 5)² = 5
6 f) ( 17)¹ = g) ( 5)³ = h) ( 3)³ = r) ( 1)³ = s) ( 27)⁰ = 5) Resolva com atenção: a) 2³ = b) ( 2)³ = d) 2³ = c) 2 4 = d) ( 2) 4 = c) 2 4 = e) 3² = f) ( 3)² = e) 3² = Etapa Final da Aula Exercícios envolvendo propriedades 1) Resolva: a) 2³ = b) 3² = c) 5² + 3³ = d) = e) ( 2)³ + ( 2) 2 = c) 4 2 2³ = d) 3² 2³ = e) 5² 4 2 = f) 5² 6² = g) ( 4) 2 ( 2)³ = 4) Deixe indicado na forma de potenciação: a) (+5)⁷. (+5)² = (+5)⁹ b) (+6)². (+6)³ = (+6)⁵ c) ( 3)⁵. ( 3)² = ( 3)⁷ d) ( 4)². ( 4) = ( 4)³ e) (+7). (+7)⁴ = (+7)⁵ f) ( 8). ( 8). ( 8) = ( 8)³ g) ( 5)³. ( 5). ( 5)² = ( 5)⁶ h) (+3). (+3). (+3)⁷ = (+3)⁹ i) ( 6)². ( 6). ( 6)² = ( 6)⁵ j) (+9)³. (+9). (+9)⁴ = (+9)⁸ k) ( 3)⁷ : ( 3)² = ( 3)⁵ l) (+4)¹⁰ : (+4)³ = ( +4)⁷ m) ( 5)⁶ : ( 5)² = ( 5)⁴ n) (+3)⁹ : (+3) = (+3)⁸ o) ( 2)⁸ : ( 2)⁵ = ( 2)³ p) ( 3)⁷ : ( 3) = ( 3)⁶ q) ( 9)⁴ : ( 9) = ( 9)³ r) ( 4)² : ( 4)² = ( 4)⁰ = 1 6
CONJUNTO DOS NÚMEROS INTEIROS. No conjunto dos números naturais operações do tipo
CONJUNTO DOS NÚMEROS INTEIROS No conjunto dos números naturais operações do tipo 9-5 = 4 é possível 5 5 = 0 é possível 5 7 =? não é possível e para tornar isso possível foi criado o conjunto dos números
ADIÇÃO E SUBTRAÇÃO DE FRAÇÕES 1A
ADIÇÃO E SUBTRAÇÃO DE FRAÇÕES A Exemplos: 9 7 9 9 7 7 9 0 0 0 0 0 0 Denominadores iguais: Na adição e subtração de duas ou mais frações que têm denominadores iguais, conservamos o denominador comum e somamos
POTENCIAÇÃO. Por convenção temos que: 1) Todo o número elevado ao expoente 1 é igual à própria base, exemplo: a) 8¹ = 8 b) 5¹ = 5
POTENCIAÇÃO 6º ANO - Prof. Patricia Caldana Consideremos uma multiplicação em que todos os fatores são iguais Exemplo: 5 x 5 x 5, indicada por 5³, ou seja, 5³ = 5 x 5 x 5 = 125 onde: 5 é a base (fator
Matemática. Operações Básicas. Professor Dudan.
Matemática Operações Básicas Professor Dudan www.acasadoconcurseiro.com.br Matemática OPERAÇÕES MATEMÁTICAS Observe que cada operação tem nomes especiais: Adição: + 4 = 7, em que os números e 4 são as
OPERAÇÕES COM NÚMEROS INTEIROS
ADIÇÃO DE NÚMEROS INTEIROS COM SINAIS IGUAIS OPERAÇÕES COM NÚMEROS INTEIROS 1º Caso: (+3 ) + (+4) = + 7 +3 + 4 = + 7 ADIÇÃO DE NÚMEROS INTEIROS Quando duas parcelas são positivas, o resultado da adição
Colégio Adventista de Porto Feliz
Colégio Adventista de Porto Feliz Nome: Nº: Turma:7ºano Nota Alcançada: Disciplina: Matemática Professor(a): Rosemara 1º Bimestre Data: /03/2016 Conteúdo: POTENCIAÇÃO E RADICIAÇÃO DE NÚMEROS INTEIROS Valor
PROFICIÊNCIA EM MATEMÁTICA Conjuntos Numéricos, Potenciação e Radiciação
PROFICIÊNCIA EM MATEMÁTICA Conjuntos Numéricos, Potenciação e Radiciação Professor Alexandre M. M. P. Ferreira Sumário Definição dos conjuntos numéricos... 3 Operações com números relativos: adição, subtração,
Monster. Concursos. Matemática 1 ENCONTRO
Monster Concursos Matemática 1 ENCONTRO CONJUNTOS NUMÉRICOS Conjuntos numéricos podem ser representados de diversas formas. A forma mais simples é dar um nome ao conjunto e expor todos os seus elementos,
Apontamentos de Matemática 6.º ano
Apontamentos de Matemática.º ano Introdução noção de potência Exemplo Uma bactéria divide-se dando origem a duas novas bactérias. Suponha que havia inicialmente duas bactérias e que ocorreram sucessivamente
25 = 5 para calcular a raiz quadrada de 25, devemos encontrar um número que
RADICIAÇÃO Provavelmente até o 8 ano, você aluno só viu o conteúdo de radiciação envolvendo A RAIZ QUADRA Para relembrar: = para calcular a raiz quadrada de, devemos encontrar um número que elevado a seja,
Matemática OPERAÇÕES BÁSICAS. Professor Dudan
Matemática OPERAÇÕES BÁSICAS Professor Dudan Operações Matemáticas Observe que cada operação tem nomes especiais: Adição: 3 + 4 = 7, em que os números 3 e 4 são as parcelas e o número 7 é a soma ou total.
Adição de números decimais
NÚMEROS DECIMAIS O número decimal tem sempre uma virgula que divide o número decimal em duas partes: Parte inteira (antes da virgula) e parte decimal (depois da virgula). Ex: 3,5 parte inteira 3 e parte
Apontamentos de Matemática 6.º ano
Noção de potência Quando temos uma multiplicação sucessiva em que o mesmo número se repete, podemos transformar essa expressão numa potência. Veja os exemplos., o é o número que se repete e o número de
Função Logarítmica. Formação Continuada em Matemática. Matemática -2º ano do Ensino Médio Plano de trabalho - 1º Bimestre/2014
Formação Continuada em Matemática Fundação CECIERJ/Consórcio CEDERJ Função Logarítmica Matemática -2º ano do Ensino Médio Plano de trabalho - 1º Bimestre/2014 Tarefa 1 Cursista: Adriana Ramos da Cunha
MATEMÁTICA. Polinômios. Professor : Dêner Rocha. Monster Concursos 1
MATEMÁTICA Polinômios Professor : Dêner Rocha Monster Concursos 1 Monômio, o que isso Professor Dêner? Monômios Denominamos monômio ou termo algébrico quaisquer expressões algébricas representadas por
Exemplos: -5+7=2; 12-5=7; -4-3=-7; -9+5=-4; -8+9=1; -4-2=-6; -6+10=4
0 - OPERAÇÕES NUMÉRICAS ) Adição algébrica de números inteiros envolve dois casos: os números têm sinais iguais: soma-se os números e conserva-se o sinal; os números têm sinais diferentes: subtrai-se o
Matemática OPERAÇÕES BÁSICAS. Professor Dudan
Matemática OPERAÇÕES BÁSICAS Professor Dudan Operações Matemáticas Observe que cada operação tem nomes especiais: Adição: 3 + 4 = 7, em que os números 3 e 4 são as parcelas e o número 7 é a soma ou total.
Percentual de acertos NOME Nᴼ 09/06/2017 Durante a semana 20/06/2017 TURMA: Data para tirar dúvidas em sala de aula
Data de recebimento pelo aluno Universidade Federal de Juiz de Fora/Colégio de Aplicação João XIII 6º ano/ Ensino Fundamental / Matemática/2017 Profa.: Cláudia Tavares Barbosa dos Santos Profa.: Camila
Aula Inaugural Curso Alcance 2017
Aula Inaugural Curso Alcance 2017 Revisão de Matemática Básica Professores: Me Carlos Eurico Galvão Rosa e Me. Márcia Mikuska Universidade Federal do Paraná Campus Jandaia do Sul [email protected] 06 de
Aula Teórica: Potenciação e Potência de dez
Aula Teórica: Potenciação e Potência de dez Objetivo Familiarizá-lo com a utilização de expoentes e potências de dez, que são de uso frequente nas práticas de laboratório e também nos trabalhos e atividades
Nº: Atividade Avaliativa P4
Centro Educacional La Salle Av. Dom Pedro I, 151 Bairro Dom Pedro Manaus/AM Fone: (92) 3655-1200 E-mail: [email protected] ALUNO (A): Nº: TURMA 16 VALOR: 5 pontos DISCIPLINA: Matemática TRIMESTRE:
AVALIAÇÃO BIMESTRAL 1º BIMESTRE
. GOVERNO DO DISTRITO FEDERAL SECRETARIA DE ESTADO DE EDUCAÇÃO CENTRO DE ENSINO FUNDAMENTAL DE SANTA MARIA ENSINO FUNDAMENTAL SÉRIES FINAIS AVALIAÇÃO BIMESTRAL º BIMESTRE NOME: TURMA: TURNO: DATA: PROFESSOR:
MÓDULO 2 POTÊNCIA. Capítulos do módulo:
MÓDULO 2 POTÊNCIA Sabendo que as potências tem grande importância no mundo da lógica matemática, nosso curso terá por objetivo demonstrar onde podemos utilizar esses conceitos no nosso cotidiano e vida
Definimos como conjunto uma coleção qualquer de elementos.
Conjuntos Numéricos Conjunto Definimos como conjunto uma coleção qualquer de elementos. Exemplos: Conjunto dos números naturais pares; Conjunto formado por meninas da 6ª série do ensino fundamental de
MÓDULO III OPERAÇÕES COM DECIMAIS. 3 (três décimos) 3 da. 2 da área. 4. Transformação de número decimal em fração
MÓDULO III OPERAÇÕES COM DECIMAIS. Frações decimais Denominam-se frações decimais aquelas, cujos denominadores são formados pelo número 0 ou suas potências, tais como: 00, 000, 0000, etc. Exemplos: a)
CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA Potenciação. Lucas Araújo - Engenharia de Produção
CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA 2014.1 Potenciação Lucas Araújo - Engenharia de Produção Potenciação No século 3 a.c na Grécia antiga, Arquimedes resolveu calcular quantos grãos de areia
D 7 C 4 U 5. MATEMÁTICA Revisão Geral Aula 1 - Parte 1. Professor Me. Álvaro Emílio Leite. Valor posicional dos números. milésimos décimos.
MATEMÁTICA Revisão Geral Aula 1 - Parte 1 Professor Me. Álvaro Emílio Leite O que é um algarismo? É um símbolo que utilizamos para formar e representar os números. Exemplo: Os algarismos que compõem o
Múltiplos e Divisores
OPERAÇÕES BÁSICAS Adição e Subtração Lembrando que quando antes dos parênteses vier um sinal de +, ele derruba os parênteses e mantem o sinal de quem está dentro. Caso venha um sinal de -, ele derruba
OPERAÇÕES COM NÚMEROS INTEIROS
ADIÇÃO DE NÚMEROS COM SINAIS IGUAIS OPERAÇÕES COM NÚMEROS 1º Caso: (+3 ) + (+4) + 7 +3 + 4 + 7 ADIÇÃO DE NÚMEROS Quando duas parcelas são positivas, o resultado da adição é sempre positivo e seu módulo
Critérios de divisibilidade Para alguns números como o dois, o três, o cinco e outros, existem regras que permitem verificar a divisibilidade sem se
Critérios de divisibilidade Para alguns números como o dois, o três, o cinco e outros, existem regras que permitem verificar a divisibilidade sem se efetuar a divisão. Essas regras são chamadas de critérios
MATEMÁTICA. Aula 4. Professor : Dêner Rocha. Monster Concursos 1
MATEMÁTICA Aula 4 Professor : Dêner Rocha Monster Concursos 1 Divisibilidade Critérios de divisibilidade São critérios que nos permite verificar se um precisarmos efetuar grandes divisões. número é divisível
Decomposição de um número composto. Todo número composto pode ser decomposto em fatores primos Ex: = 2 2 X 3 X 5 X 7
Decomposição de um número composto Todo número composto pode ser decomposto em fatores primos Ex: 420 2 210 2 105 3 35 5 7 7 1 420= 2 2 X 3 X 5 X 7 Determinação do número de divisores de um número natural
Aula 1: Conjunto dos Números Inteiros
Aula 1: Conjunto dos Números Inteiros 1 Introdução Observe que, no conjunto dos números naturais N = {0, 1, 2, 3, 4, 5,..., a operação de subtração nem sempre é possível. a) 5 3 = 2 (é possível: 2 N) b)
PROGRAMA INSTITUCIONAL DE BOLSA DE INICIAÇÃO À DOCÊNCIA PIBID SUBPROJETO DE LICENCIATURA EM MATEMÁTICA DO CERES CURSO DE MATEMÁTICA INTRODUÇÃO
PROGRAMA INSTITUCIONAL DE BOLSA DE INICIAÇÃO À DOCÊNCIA PIBID SUBPROJETO DE LICENCIATURA EM MATEMÁTICA DO CERES CURSO DE MATEMÁTICA APOSTILA 1 ARITMÉTICA PARTE I INTRODUÇÃO Durante muitos períodos da história
Roteiro de Recuperação do 3º Bimestre - Matemática
Roteiro de Recuperação do 3º Bimestre - Matemática Nome: Nº 6º Ano Data: / /2015 Professores Leandro e Renan Nota: (valor 1,0) 1. Apresentação: Prezado aluno, A estrutura da recuperação bimestral paralela
MÓDULO 1 RECORDANDO AS QUATRO OPERAÇÕES FUNDAMENTAIS
MATEMÁTICA MÓDULO 1 RECORDANDO AS QUATRO OPERAÇÕES FUNDAMENTAIS Todos os dias, você usa dos recursos da Matemática para resolver pequenos e grandes problemas que aparecem na sua vida. Nesse módulo você
RADICIAÇÃO, POTENCIAÇÃO, LOGARITMAÇÃO. Potência POTENCIAÇÃO, RADICIAÇÃO E LOGARITMAÇÂO NOS NÚMEROS REAIS. Potenciação 1
RADICIAÇÃO, POTENCIAÇÃO, LOGARITMAÇÃO Potência POTENCIAÇÃO, RADICIAÇÃO E LOGARITMAÇÂO NOS NÚMEROS REAIS Potenciação 1 Neste texto, ao classificarmos diferentes casos de potenciação, vamos sempre supor
Podemos concluir que o surgimento do número fracionário veio da necessidade de representar quantidades menores que inteiros, por exemplo, 1 bolo é um
FRAÇÕES Podemos concluir que o surgimento do número fracionário veio da necessidade de representar quantidades menores que inteiros, por exemplo, 1 bolo é um inteiro, mas se comermos um pedaço, qual seria
SISTEMA DE EQUAÇÕES DO 1º GRAU COM DUAS VARIÁVEIS. Como se trata de dois números, representamos por duas letras diferentes x e y.
SISTEMA DE EQUAÇÕES DO 1º GRAU COM DUAS VARIÁVEIS Equação do 1º grau com duas variáveis Ex: A soma de dois números é 10. Quais são esses números? Como se trata de dois números, representamos por duas letras
DECIMAIS. Definições e operações
DECIMAIS Definições e operações A representação dos números fracionária já era conhecida há quase 3.000 anos, enquanto a forma decimal surgiu no século XVI com o matemático francês François Viète. O uso
NOME: JOSÉ ALEXANDRE DOS REIS SOUTO SÉRIE : 1ª GRUPO: 8 TUTOR: ANALIA MARIA FERREIRA FREITAS
NOME: JOSÉ ALEXANDRE DOS REIS SOUTO SÉRIE : 1ª GRUPO: 8 TUTOR: ANALIA MARIA FERREIRA FREITAS 1 Sumário Introdução... pág.03 Atividade 1...pág.04 Atividade...pág.10 Atividade 3...pág.14 Referências Bibliograficas...pág.0
OPERAÇÕES BÁSICA NO CONJUNTO DOS COMPLEXOS
WILLIAM OLIVEIRA MENEZES JUNIOR OPERAÇÕES BÁSICA NO CONJUNTO DOS COMPLEXOS Trabalho apresentado ao curso de formação continuada da fundação CECIERJ Tutora: Maria Cláudia Padilha Tostes Grupo 02 Instituição:
Revisão: Potenciação e propriedades. Prof. Valderi Nunes.
Revisão: Potenciação e propriedades. Prof. Valderi Nunes. Potenciação Antes de falar sobre potenciação e suas propriedades, é necessário que primeiro saibamos o que vem a ser uma potência. Observe o exemplo
3. Números Racionais
. Números Racionais O conjunto dos números racionais, representado por Q, é o conjunto dos números formado por todos os quocientes de números inteiros (mas não pode dividir por zero). O uso do símbolo
Exemplos: a) b) c)
Expressões Numéricas são sentenças matemáticas que aparecem dois ou mais números relacionados por sinais de operações. Veremos primeiramente expressões numéricas envolvendo adição e subtração. Exemplos:
ADA 1º BIMESTRE CICLO I MATEMÁTICA 9º ANO DO ENSINO FUNDAMENTAL 2018
ADA 1º BIMESTRE CICLO I MATEMÁTICA 9º ANO DO ENSINO FUNDAMENTAL 018 ITEM 1 DA ADA Observe potência a seguir: ( ) O resultado dessa potenciação é igual a (A) 8 1. (B) 1 8. (C) 1 81 81 (D) 1 Dada uma potência
ROTEIRO DE RECUPERAÇÃO SEMESTRAL MATEMÁTICA 7º ANO. Nome: Nº - Série/Ano. Data: / / Professor(a): Eloy/Marcello/Renan
ROTEIRO DE RECUPERAÇÃO SEMESTRAL MATEMÁTICA 7º ANO Nome: Nº - Série/Ano Data: / / Professor(a): Eloy/Marcello/Renan Os conteúdos essenciais do semestre. Capítulo 1 Números inteiros Ideia de número positivo
1.,Escreva o número -0, em notação científica.
1.,Escreva o número -0,000000000000384 em notação científica. Para converter o número -0,000000000000384 é preciso deslocar a vírgula para depois do algarismo 3. Como existem 13 algarismos 0 antes do tal
Aula 03: Potenciação, Radiciação, Expressões Algébricas, Fatoração e Produtos Notáveis.
Aula 03: Potenciação, Radiciação, Expressões Algébricas, Fatoração e Produtos Notáveis. GST1073 Fundamentos de Matemática Fundamentos de Matemática Aula 3 - Potenciação, Radiciação, Expressões Algébricas,
Capítulo 1: Fração e Potenciação
1 Capítulo 1: Fração e Potenciação 1.1. Fração Fração é uma forma de expressar uma quantidade sobre o todo. De início, dividimos o todo em n partes iguais e, em seguida, reunimos um número m dessas partes.
ROTEIRO DE RECUPERAÇÃO DE MATEMÁTICA (1º SEMESTRE) 7º ANO. Nome: Nº - Série/Ano. Data: / / Professor(a): Marcello, Eloy e Décio.
ROTEIRO DE RECUPERAÇÃO DE MATEMÁTICA (1º SEMESTRE) 7º ANO Nome: Nº - Série/Ano Data: / / 2017. Professor(a): Marcello, Eloy e Décio. Os conteúdos essenciais do semestre. Capítulo 1 Números inteiros Ideia
CONJUNTO DOS NÚMEROS REAIS. Apostila do 8º ano Números Reais Apostila I Bimestre 8º anos
CONJUNTO DOS NÚMEROS REAIS NÚMEROS RACIONAIS Apostila do 8º ano Números Reais Apostila I Bimestre 8º anos Numero racional é todo o numero que pode ser escrito na forma a/b (com b diferente de zero) : a)
Curso Satélite de. Matemática. Sessão n.º 1. Universidade Portucalense
Curso Satélite de Matemática Sessão n.º 1 Universidade Portucalense Conceitos Algébricos Propriedades das operações de números reais Considerem-se três números reais quaisquer, a, b e c. 1. A adição de
Potências de 10 Ordem de Grandeza
Potências de 10 Ordem de Grandeza Extraído e adaptado do Livro de Física Contexto & Aplicações Vol 1, A. Máximo e B. Alvarenga, Ed. Scipione Por que usamos as potências de 10 Se nos disserem que o raio
Uma equação nada racional!
Reforço escolar M ate mática Uma equação nada racional! Dinâmica 5 9º Ano 1º Bimestre Professor DISCIPLINA SÉRIE CAMPO CONCEITO Matemática Ensino Fundamental 9ª Numérico Aritmético Radicais. DINÂMICA Equações
Roberto Geraldo Tavares Arnaut Gustavo de Figueiredo Tarcsay. Potenciação. Sanja Gjenero. Fonte:
Potenciação 31 Sanja Gjenero Roberto Geraldo Tavares Arnaut Gustavo de Figueiredo Tarcsay Fonte: www.sxc.hu e-tec Brasil Estatística Aplicada META Apresentar as operações de potenciação. OBJETIVOS PRÉ-REQUISITOS
Unidade I MATEMÁTICA. Prof. Celso Ribeiro Campos
Unidade I MATEMÁTICA Prof. Celso Ribeiro Campos Números reais Três noções básicas são consideradas primitivas, isto é, são aceitas sem a necessidade de definição. São elas: a) Conjunto. b) Elemento. c)
Matemática Básica. Capítulo Conjuntos
Capítulo 1 Matemática Básica Neste capítulo, faremos uma breve revisão de alguns tópicos de Matemática Básica necessários nas disciplinas de cálculo diferencial e integral. Os tópicos revisados neste capítulo
PLANO DE AULA IDENTIFICAÇÃO
PLANO DE AULA IDENTIFICAÇÃO Escola: IFC Campus Avançado Sombrio Município: Sombrio Disciplina: Matemática Série: 2 ano Nível: Ensino médio Professor: Giovani Marcelo Schmidt Tempo estimado: Cinco aulas
Resoluções das atividades
Resoluções das atividades Potenciação e radiciação Qual a distância entre a Terra e o Sol? Aproximadamente, 0 metros. Potenciação Tempo (min) Número de pessoas convidadas Total de livros 0 0 = 0 a 0 =
Números Racionais. Geometria. 2º Bimestre 2018 CONTEÚDO DO BIMESTRE CRITÉRIOS DE AVALIAÇÃO TÓPICOS DO CONTEÚDO CONTEÚDO DO BIMESTRE
Matemática Profª Paula Neves Geometria Números Racionais CONTEÚDO DO BIMESTRE Ponto, reta e plano Módulo e oposto de um nº racional Ângulos e seus elementos Representa ção na reta numérica Construção de
Expoentes fracionários
A UUL AL A Expoentes fracionários Nesta aula faremos uma revisão de potências com expoente inteiro, particularmente quando o expoente é um número negativo. Estudaremos o significado de potências com expoentes
ESCOLA TÉCNICA ESTADUAL FREDERICO GUILHERME SCHMIDT
PRODUTOS NOTÁVEIS Quadrado da soma de dois termos (a + b) 2 = a 2 + 2ab + b 2 quadrado do segundo termo primeiro termo 2 x (primeiro termo) x (segundo termo) quadrado do primeiro termo segundo termo Quadrado
POTÊNCIA DE BASE 10, REGRAS DE ARREDONDAMENTO E NOTAÇÃO CIENTÍFICA
PET FÍSICA POTÊNCIA DE BASE 10, REGRAS DE ARREDONDAMENTO E NOTAÇÃO CIENTÍFICA Aula 1 TATIANA MIRANDA DE SOUZA NAYTON CLAUDINEI VICENTINI ANA CAROLINA DOS SANTOS LUCENA LÉO RODRIGUES MACENA DOS SANTOS WANESSA
MATEMÁTICA PROF. JOSÉ LUÍS NÚMEROS DECIMAIS
NÚMEROS DECIMAIS Em todo numero decimal: CONVENÇÃO BÁSICA DO SISTEMA DECIMAL a parte inteira é separada da parte decimal por uma vírgula; um algarismo situado a direita de outro tem um valor significativo
Os números decimais. Centenas Dezenas Unidades, Décimos Centésimos Milésimos. 2 Centenas 4 dezenas 0 unidades, 7 décimos 5 centésimos 1 milésimo
Os números decimais Leitura e escrita de números decimais A fração 6/10 pode ser escrita na forma 0,6, em que 10 é a parte inteira e 6 é a parte decimal. Aqui observamos que este número decimal é menor
Potenciação, potências de dez e notação científica
UNIMONTE, Engenharia Física Mecânica da Partícula, Prof. Simões Potenciação, potências de dez e notação científica Turma: Data: Nota: Nome: RA: Potenciação É uma operação matemática de multiplicar um número
Pré-Cálculo. Camila Perraro Sehn Eduardo de Sá Bueno Nóbrega. FURG - Universidade Federal de Rio Grande
Pré-Cálculo Camila Perraro Sehn Eduardo de Sá Bueno Nóbrega Projeto Pré-Cálculo Este projeto consiste na formulação de uma apostila contendo os principais assuntos trabalhados na disciplina de Matemática
Bem-vindos (as), estudantes! Vamos recordar... e conhecer um novo conjunto numérico... Prof. Mara
Bem-vindos (as), estudantes! Vamos recordar... e conhecer um novo conjunto numérico... Prof. Mara Recordando... Números Naturais Você já ouviu falar dos Números Naturais? Eles são utilizados a todo o momento
Ana Paula Cardoso. Plano de Trabalho 1: Números Reais e Radiciação
Ana Paula Cardoso MATRÍCULA: 09253030 [email protected] Plano de Trabalho 1: Números Reais e Radiciação FORMAÇÃO CONTINUADA PARA PROFESSORES DE MATEMÁTICA FUNDAÇAO CECIERJ/SEEDUC COLÉGIO: SEEDUC
Lista 1- Cálculo I Lic. - Resolução
Lista 1- Cálculo I Lic. - Resolução Exercício 6: Uma molécula de açúcar comum (sacarose) pesa 5,7 10 - g e uma de água, 3 10-3 g. Qual das duas é mais pesada? Quantas vezes uma é mais pesada que a outra?
Diego Aparecido Maronese Matemática. Íria Bonfim Gaviolli Matemática
Edital Pibid n 11 /01 CAPES PROGRAMA INSTITUCIONAL DE BOLSA DE INICIAÇÃO À DOCÊNCIA - PIBID Plano de Atividades (PIBID/UNESPAR) Tipo do produto: Plano de Aula 1 IDENTIFICAÇÃO SUBPROJETO MATEMÁTICA/FECEA:
MATEMÁTICA PROF. JOSÉ LUÍS FRAÇÕES
FRAÇÕES I- INTRODUÇÃO O símbolo a / b significa a : b, sendo a e b números naturais e b diferente de zero. Chamamos: a / b de fração; a de numerador; b de denominador. Se a é múltiplo de b, então a / b
Assunto: Equação do 2º grau
FUNDAÇÃO CECIERJ/ CONSÓRCIO CEDERJ Matemática 9º Ano 2º Bimestre/2013 Plano de Trabalho I Assunto: Equação do 2º grau Cursista: Derli Aleixo Carvalho Onofre Tutor: Emílio Rubem Batista Junior S u m á r
Disciplina: Nivelamento - Matemática. Aula: 08. Prof.: Wilson Francisco Julio. Duração: 20:11
Disciplina: Nivelamento - Matemática Aula: 08 Prof.: Wilson Francisco Julio Duração: 20:11 Olá! Seja bem-vindo a mais uma aula de Nivelamento em Matemática! Hoje, vamos falar de multiplicação e divisão
A evolução do caderno. matemática. 6 o ano ENSINO FUNDAMENTAL
A evolução do caderno matemática 6 o ano ENSINO FUNDAMENTAL a edição são paulo 0 Coleção Caderno do Futuro Matemática IBEP, 0 Diretor superintendente Jorge Yunes Gerente editorial Célia de Assis Editor
216 e) 10 1 = 10 f) (-0,4) 0 = 1 g) (-4,3) 1 = - 4,3
1 Prof. Ranildo Lopes U. E. PROFª HELENA CARVALHO Obrigado pela preferência de nossa ESCOLA! Pegue o material no http://uehelenacarvalho.wordpress.com ESTUDANDO A POTENCIAÇÃO E SUAS PROPRIEDADES POTENCIAÇÃO
SISTEMA ANGLO DE ENSINO G A B A R I T O
Prova Anglo P-02 Tipo D8-08/200 G A B A R I T O 0. C 07. D 3. C 9. A 02. B 08. A 4. A 20. C 03. D 09. C 5. B 2. B 04. B 0. C 6. C 22. B 05. A. A 7. A 00 06. D 2. B 8. D DESCRITORES, RESOLUÇÕES E COMENTÁRIOS
Cálculo Algébrico. a) 4m + m = e) x + x = b) 7x x = f) 9a 9a = c) 8a 4 6a 4 = g) 3ab 9ab = d) xy 10xy = h) 7cd 2 5cd 2 =
Cálculo Algébrico Efetue as operações com monômios abaixo: 1ª parte: Adição e Subtração 1. Efetue: a) 4m + m e) x + x b) 7x x f) 9a 9a c) 8a 4 6a 4 g) ab 9ab d) xy 10xy h) 7cd 5cd. Reduza dos termos semelhantes:
Formação Continuada em Matemática Fundação CECIERJ/ Consórcio CEDERJ Matemática 3º Ano / 3º Bimestre Plano de Trabalho Números Complexos
Formação Continuada em Matemática Fundação CECIERJ/ Consórcio CEDERJ Matemática 3º Ano / 3º Bimestre Plano de Trabalho Números Complexos Tarefa 3 Reelaboração do PT1 Cursista : Anderson Ribeiro da Silva
EQUAÇÕES BIQUADRADAS
EQUAÇÕES BIQUADRADAS Acredito que só pelo nome dar pra você ter uma idéia de como seja uma equação biquadrada, Se um time é campeão duas vezes, dizemos ele é bicampeão, se uma equação é do grau quando
PROJETO KALI MATEMÁTICA B AULA 3 FRAÇÕES
PROJETO KALI - 20 MATEMÁTICA B AULA FRAÇÕES Uma ideia sobre as frações Frações são partes de um todo. Imagine que, em uma lanchonete, são vendidos pedaços de pizza. A pizza é cortada em seis pedaços, como
OPERAÇÕES COM NÚMEROS RACIONAIS
Sumário OPERAÇÕES COM NÚMEROS RACIONAIS... 2 Adição e Subtração com Números Racionais... 2 OPERAÇÕES COM NÚMEROS RACIONAIS NA FORMA DECIMAL... 4 Comparação de números racionais na forma decimal... 4 Adição
CURSO PRF 2017 MATEMÁTICA
AULA 001 1 MATEMÁTICA PROFESSOR AULA 001 MATEMÁTICA DAVIDSON VICTOR 2 AULA 01 - CONJUNTOS NUMÉRICOS CONJUNTO DOS NÚMEROS NATURAIS É o primeiro e o mais básico de todos os conjuntos numéricos. Pertencem
OS QUATRO QUATROS. Agora já resolvemos vários números e alguns com mais de uma solução, mas continua faltando
INTRODUÇÃO O PROBLEMA D, tem sua história, sua evolução e generalizações citadas na página REFERÊNCIA da MATEMÁTICA. Entre as referências destaca-se o livro "O Homem que Calculava", de Malba Tahan, pseudônimo
Revisão de Pré-Cálculo NÚMEROS REAIS E OPERAÇÕES
Revisão de Pré-Cálculo NÚMEROS REAIS E OPERAÇÕES Prof. Dr. José Ricardo de Rezende Zeni Departamento de Matemática, FEG, UNESP Lc. Ismael Soares Madureira Júnior Guaratinguetá, SP, Outubro, 2016 Direitos
Plano de Trabalho 1. Função Logarítmica
FORMAÇÃO CONTINUADA EM MATEMÁTICA Matemática 2º Ano 1º Bimestre/2012 Plano de Trabalho 1 Função Logarítmica Cursista: Izabel Leal Vieira Tutor: Cláudio Rocha de Jesus 1 SUMÁRIO INTRODUÇÃO........................................
Física Mecânica Roteiros de Experiências 69. Estudo Teórico Sobre Potências De Dez. Potenciação
Física Mecânica Roteiros de Experiências 69 UNIMONTE, Engenharia Laboratório de Física Mecânica Estudo Teórico Sobre Potências De Dez Turma: Data: : Nota: Nome: RA: Potenciação É uma operação matemática
POLINÔMIOS. Operadores aritméticos: Adição, subtração, multiplicação e potenciação.
POLINÔMIOS Prof. Patricia Caldana Um polinômio é uma expressão algébrica formada por monômios e operadores aritméticos. O monômio é estruturado por números (coeficientes) e variáveis (parte literal) em
Centro Educacional Sesc Cidadania. 1º trimestre - Disciplina: Matemática. Números Naturais
Centro Educacional Sesc Cidadania Ensino Fundamental Anos Finais Goiânia, janeiro/fevereiro de 2018 Professora: Mara Rúbia Matias 7º ano 1º trimestre - Disciplina: Matemática Atenção Você deve ter este
MÓDULO II OPERAÇÕES COM FRAÇÕES. 3 (lê-se: três quartos), 1, 6. c) d) Utilizamos frações para indicar partes iguais de um inteiro.
MÓDULO II OPERAÇÕES COM FRAÇÕES d) Utilizamos frações para indicar partes iguais de um inteiro. Exemplos: No círculo abaixo: EP.0) A figura a seguir é um sólido formado por cinco cubos. Cada cubo representa
Aula 00. Raciocínio Lógico-Matemático para TRF 3 a Região. Raciocínio Lógico-Matemático Professor: Guilherme Neves
Aula 00 Raciocínio Lógico-Matemático Professor: Guilherme Neves www.pontodosconcursos.com.br 1 Aula 00 Aula Demonstrativa Raciocínio Lógico-Matemático para TRF 3 a Região Apresentação... 3 Relação das
APOSTILA DE MATEMÁTICA BÁSICA Potenciação Radiciação Fatoração Logaritmos Equações Polinômios Trigonometria
APOSTILA DE MATEMÁTICA BÁSICA Potenciação Radiciação Fatoração Logaritmos Equações Polinômios Trigonometria O que é preciso saber (passo a passo) Seja: Potenciação O expoente nos diz quantas vezes à base
G A B A R I T O G A B A R I T O
Prova Anglo P-2 G A B A R I T O Tipo D-8-05/2011 01. B 07. A 13. C 19. B 02. D 08. C 14. A 20. C 03. A 09. B 15. D 21. C 04. D 10. D 16. B 22. D 05. C 11. A 17. D 00 06. B 12. C 18. B 00 841201711 PROVA
Escola Adventista Thiago White
Roteiro de Matemática 6º ano A e B - 1º Bimestre Data Início / / Data Término / / Nota: Tema: Números Primos, MMC e MDC Conceituar um número primo e verificar se um número dado é ou não primo. Obter o
MATEMÁTICA. Docente: Marina Mariano de Oliveira
MATEMÁTICA Docente: Marina Mariano de Oliveira MATEMÁTICA Docente: Marina Mariano de Oliveira Bacharelado em Meteorologia (incompleto) Instituto de Astronomia, Geofísica e Ciências Atmosféricas da Universidade
Operações Fundamentais com Números
Capítulo 1 Operações Fundamentais com Números 1.1 QUATRO OPERAÇÕES Assim como na aritmética, quatro operações são fundamentais em álgebra: adição, subtração, multiplicação e divisão. Quando dois números
