Apontamentos de Matemática 6.º ano
|
|
|
- Gabriel Henrique Fortunato Correia
- 9 Há anos
- Visualizações:
Transcrição
1 Apontamentos de Matemática.º ano Introdução noção de potência Exemplo Uma bactéria divide-se dando origem a duas novas bactérias. Suponha que havia inicialmente duas bactérias e que ocorreram sucessivamente divisões em todas as bactérias. Quantas são as bactérias resultantes? Cada vez que há uma divisão, cada bactéria dá origem a duas, isto é, o número de bactérias duplica. Então em divisões teremos, Resposta: Ao fim de divisões há bactérias. Exemplo Num quarteirão há casas, cada casa tem quatro quartos, e em cada quarto há quatro mesas. Quantas mesas há nas casas? Resposta: Ao todo há mesas. Estes dois exemplos mostram situações em que há uma multiplicação sucessiva de vários fatores iguais. e Nesta situação podemos abreviar a escrita representando os produtos da seguinte forma:. Num jogo, um jogador começou com pontos e triplicou a sua pontuação quatro vezes. Com quantos pontos ficou?. Um quadrado tem cm de lado. Escreva a sua área em forma de potência.. Um cubo tem cm de aresta. Escreva o seu volume usando uma potência.. Quais das seguintes expressões se pode representar como uma potência? (A) (B) (C) (D) (E) (F), o é o número que se repete e o número de vezes que se repete., o é o número que se repete e o número de vezes que se repete.
2 Apontamentos de Matemática.º ano A e chamamos potências. Os números envolvidos numa potência são a base e o expoente: Por exemplo, na potência, é a base: o fator que se repete; é o expoente: o número de vezes que a base se repete. Para calcularmos o valor de uma potência multiplicamos a base por ela própria representando-a o número de vezes igual ao expoente. Embora seja pouco usado o nome da operação que permite calcular o valor da potência chama-se potenciação.. Em cada uma das potências seguintes, indique qual é a base e qual é o expoente.. Transforme os seguintes produtos em potências Exemplos., e são potências. Os seus valores calculam-se da forma seguinte: 9 (Não confundir com a multiplicação: ) 9 Escreva como uma potência:. Escreva as seguintes potências como um produto. Nota: é a base, o fator que se repete; é o expoente, o número de vezes que a base se repete.
3 Apontamentos de Matemática.º ano Calcule o valor das seguintes potências: e) e). Calcule o valor das seguintes potências. e) A resolução destes exercícios leva-nos a encontrar algumas propriedades das potências, que a seguir se indicam. Não são apresentadas as demostrações destas propriedades, mas elas são de fácil compreensão. Propriedades das potências Se o expoente for a unidade o valor da potência é igual à base Exemplos: =, =, 9 = 9 Se a base for a unidade, o valor da potência é igual à unidade. g) i) j) k) l) m) Exemplos: =, =, = Se a base é zero, o valor da potência é zero. Exemplos: =, =, 9 = Nota: Zero elevado a zero não tem significado (não se pode calcular)
4 Apontamentos de Matemática.º ano Leitura de Potências A base lê-se como o número que ela representa Se o expoente é: - dois, diz-se ao quadrado; - três, diz-se ao cubo; - quatro, à quarta; - cinco, à quinta; e assim sucessivamente Exemplos - Cinco ao quadrado, - Dois à quarta - Quatro ao cubo, - Três à sétima 9. Escreva a leitura das seguintes potências. e) g) i) Escreva a leitura das seguintes potências: e) 9 g) Dois ao cubo Três ao quadrado Seis à sétima Oito à quarta e) Dez à quinta Seis à nona g) Três ao cubo Esta é a forma mais usada de ler potências, mas também se podem ler como a seguir se indica. oito elevado a quatro, ou oito elevado à quarta potência. - dez elevado a cinco, ou dez elevado à quinta potência. j). Escreva em linguagem matemática. Seis ao cubo Cinco ao quadrado O quadrado de três Dez à quarta e) Três elevado a oito Dez quartos g) Três oitavos
5 Apontamentos de Matemática.º ano Soluções dos exercícios propostos.. ou Resposta: Ficou com ponto. cm. cm. (A), (C) e (F). Base: ; Expoente: Base: ; Expoente: Base: ; Expoente: Base: ; Expoente:... 9 e) i) j) k) g) l) m) 9. Sete ao quadrado Dez ao cubo Cinco ao cubo Quatro ao quadrado e) Dois ao cubo Seis ao quadrado g) Dez ao quadrado Um à quarta i) Setenta e cinco elevado a um j) Zero elevado a vinte e cinco. e) g) Nota: e g) Devemos ter atenção para não confundir a leitura de potências com a leitura de frações.
Apontamentos de Matemática 6.º ano
Noção de potência Quando temos uma multiplicação sucessiva em que o mesmo número se repete, podemos transformar essa expressão numa potência. Veja os exemplos., o é o número que se repete e o número de
POTENCIAÇÃO. Por convenção temos que: 1) Todo o número elevado ao expoente 1 é igual à própria base, exemplo: a) 8¹ = 8 b) 5¹ = 5
POTENCIAÇÃO 6º ANO - Prof. Patricia Caldana Consideremos uma multiplicação em que todos os fatores são iguais Exemplo: 5 x 5 x 5, indicada por 5³, ou seja, 5³ = 5 x 5 x 5 = 125 onde: 5 é a base (fator
Nº: Atividade Avaliativa P4
Centro Educacional La Salle Av. Dom Pedro I, 151 Bairro Dom Pedro Manaus/AM Fone: (92) 3655-1200 E-mail: [email protected] ALUNO (A): Nº: TURMA 16 VALOR: 5 pontos DISCIPLINA: Matemática TRIMESTRE:
GABARITO DO CADERNO DE RECUPERAÇÃO 1º SEMESTRE 6º ANO MATEMÁTICA
GABARITO DO CADERNO DE RECUPERAÇÃO 1º SEMESTRE 6º ANO MATEMÁTICA 01) Represente cada multiplicação por meio de uma potenciação. a) 2 5 b) 10 5 c) 5 12 d) 3 6 e) a 5 f) b 7 g) 45 4 h) 68 6 i) 89 3 j) 1
A POTENCIAÇÃO EM Q 0. Aladin e a lamparina mágica
A POTENCIAÇÃO EM Q 0 Carlos Magalhães Costa Aladin e a lamparina mágica Para o 6º Ano de Escolaridade POTÊNCIAS: CÁLCULO, LEITURA E ESCRITA Aladin tinha um amigo secreto, um génio. Quando precisava dele
Assessoria Matemática Amora II
Plano de trabalho para a aula do dia: 15/05/2014 Alunos: André Luiz, Marluce e Nathália Assessoria Matemática Amora II Resumo da atividade a ser desenvolvida Nesta aula, iremos explicar como efetuamos
Critérios de divisibilidade Para alguns números como o dois, o três, o cinco e outros, existem regras que permitem verificar a divisibilidade sem se
Critérios de divisibilidade Para alguns números como o dois, o três, o cinco e outros, existem regras que permitem verificar a divisibilidade sem se efetuar a divisão. Essas regras são chamadas de critérios
CONJUNTO DOS NÚMEROS INTEIROS. No conjunto dos números naturais operações do tipo
CONJUNTO DOS NÚMEROS INTEIROS No conjunto dos números naturais operações do tipo 9-5 = 4 é possível 5 5 = 0 é possível 5 7 =? não é possível e para tornar isso possível foi criado o conjunto dos números
Monster. Concursos. Matemática 1 ENCONTRO
Monster Concursos Matemática 1 ENCONTRO CONJUNTOS NUMÉRICOS Conjuntos numéricos podem ser representados de diversas formas. A forma mais simples é dar um nome ao conjunto e expor todos os seus elementos,
ROTEIRO DE RECUPERAÇÃO SEMESTRAL MATEMÁTICA 7º ANO. Nome: Nº - Série/Ano. Data: / / Professor(a): Eloy/Marcello/Renan
ROTEIRO DE RECUPERAÇÃO SEMESTRAL MATEMÁTICA 7º ANO Nome: Nº - Série/Ano Data: / / Professor(a): Eloy/Marcello/Renan Os conteúdos essenciais do semestre. Capítulo 1 Números inteiros Ideia de número positivo
NOME: DATA: / / Potências e Raízes 8º Ano. Potência
NOME: DATA: / / C3EF. PROF.: Potências e Raízes 8º Ano Potência A operação realizada na potenciação é uma multiplicação e é representada da seguinte forma: a n = a. a. a. a a =base n =expoente a. a. a.
MATEMÁTICA PROF. JOSÉ LUÍS FRAÇÕES
FRAÇÕES I- INTRODUÇÃO O símbolo a / b significa a : b, sendo a e b números naturais e b diferente de zero. Chamamos: a / b de fração; a de numerador; b de denominador. Se a é múltiplo de b, então a / b
Lista 1- Cálculo I Lic. - Resolução
Lista 1- Cálculo I Lic. - Resolução Exercício 6: Uma molécula de açúcar comum (sacarose) pesa 5,7 10 - g e uma de água, 3 10-3 g. Qual das duas é mais pesada? Quantas vezes uma é mais pesada que a outra?
MÓDULO 2 POTÊNCIA. Capítulos do módulo:
MÓDULO 2 POTÊNCIA Sabendo que as potências tem grande importância no mundo da lógica matemática, nosso curso terá por objetivo demonstrar onde podemos utilizar esses conceitos no nosso cotidiano e vida
1. Múltiplos e divisores
Escola Básica de Santa Marinha Matemática 2009/2010 7º Ano Síntese dos conteúdos Números e operações 1 Múltiplos e divisores Múltiplo de um número é todo o número que se obtém multiplicando o número dado
PROJETO KALI MATEMÁTICA B AULA 3 FRAÇÕES
PROJETO KALI - 20 MATEMÁTICA B AULA FRAÇÕES Uma ideia sobre as frações Frações são partes de um todo. Imagine que, em uma lanchonete, são vendidos pedaços de pizza. A pizza é cortada em seis pedaços, como
Definimos como conjunto uma coleção qualquer de elementos.
Conjuntos Numéricos Conjunto Definimos como conjunto uma coleção qualquer de elementos. Exemplos: Conjunto dos números naturais pares; Conjunto formado por meninas da 6ª série do ensino fundamental de
Frações. Veja um exemplo: A fração 8 é igual a 8 :2. Neste caso, 8 é o numerador e 2 é o denominador. Efetuando a divisão de 8 por 2, obtemos 2
Frações O símolo a significa a:, sendo a e números naturais e diferente de zero Chamamos: a a de fração; de numerador: Frações de denominador: Se a é múltiplo de, então a é um número natural ( números
MATEMÁTICA. Revisão para o testes: dicas e bizus Prof.: Danillo Alves
MATEMÁTICA Revisão para o testes: dicas e bizus Prof.: Danillo Alves OPERAÇÕES MATEMÁTICAS ADIÇÃO SUBTRAÇÃO MULTIPLICAÇÃO DIVISÃO DOS NÚMEROS ADIÇÃO Adição é uma das operações básicas da álgebra. Na sua
3. Números Racionais
. Números Racionais O conjunto dos números racionais, representado por Q, é o conjunto dos números formado por todos os quocientes de números inteiros (mas não pode dividir por zero). O uso do símbolo
Aula Teórica: Potenciação e Potência de dez
Aula Teórica: Potenciação e Potência de dez Objetivo Familiarizá-lo com a utilização de expoentes e potências de dez, que são de uso frequente nas práticas de laboratório e também nos trabalhos e atividades
D 7 C 4 U 5. MATEMÁTICA Revisão Geral Aula 1 - Parte 1. Professor Me. Álvaro Emílio Leite. Valor posicional dos números. milésimos décimos.
MATEMÁTICA Revisão Geral Aula 1 - Parte 1 Professor Me. Álvaro Emílio Leite O que é um algarismo? É um símbolo que utilizamos para formar e representar os números. Exemplo: Os algarismos que compõem o
MÚLTIPLOS DE UM NÚMERO NATURAL
PROFESSOR: EQUIPE DE MATEMÁTICA BANCO DE QUESTÕES - MATEMÁTICA - 5º ANO - ENSINO FUNDAMENTAL ======================================================================== MÚLTIPLOS DE UM NÚMERO NATURAL Para
216 e) 10 1 = 10 f) (-0,4) 0 = 1 g) (-4,3) 1 = - 4,3
1 Prof. Ranildo Lopes U. E. PROFª HELENA CARVALHO Obrigado pela preferência de nossa ESCOLA! Pegue o material no http://uehelenacarvalho.wordpress.com ESTUDANDO A POTENCIAÇÃO E SUAS PROPRIEDADES POTENCIAÇÃO
OPERAÇÕES COM NÚMEROS INTEIROS
ADIÇÃO DE NÚMEROS INTEIROS COM SINAIS IGUAIS OPERAÇÕES COM NÚMEROS INTEIROS 1º Caso: (+3 ) + (+4) = + 7 +3 + 4 = + 7 ADIÇÃO DE NÚMEROS INTEIROS Quando duas parcelas são positivas, o resultado da adição
ROTEIRO DE RECUPERAÇÃO DE MATEMÁTICA (1º SEMESTRE) 7º ANO. Nome: Nº - Série/Ano. Data: / / Professor(a): Marcello, Eloy e Décio.
ROTEIRO DE RECUPERAÇÃO DE MATEMÁTICA (1º SEMESTRE) 7º ANO Nome: Nº - Série/Ano Data: / / 2017. Professor(a): Marcello, Eloy e Décio. Os conteúdos essenciais do semestre. Capítulo 1 Números inteiros Ideia
Disciplina: Nivelamento - Matemática. Aula: 08. Prof.: Wilson Francisco Julio. Duração: 20:11
Disciplina: Nivelamento - Matemática Aula: 08 Prof.: Wilson Francisco Julio Duração: 20:11 Olá! Seja bem-vindo a mais uma aula de Nivelamento em Matemática! Hoje, vamos falar de multiplicação e divisão
Revisão: Potenciação e propriedades. Prof. Valderi Nunes.
Revisão: Potenciação e propriedades. Prof. Valderi Nunes. Potenciação Antes de falar sobre potenciação e suas propriedades, é necessário que primeiro saibamos o que vem a ser uma potência. Observe o exemplo
Prepara a Prova Final Matemática 4.º ano
Nem todos os números representam quantidades inteiras e existem, por isso, diferentes formas de representar as partes da unidade. Os números decimais e fracionários representam essas partes da unidade.
Colégio Adventista de Porto Feliz
Colégio Adventista de Porto Feliz Nome: Nº: Turma:7ºano Nota Alcançada: Disciplina: Matemática Professor(a): Rosemara 1º Bimestre Data: /03/2016 Conteúdo: POTENCIAÇÃO E RADICIAÇÃO DE NÚMEROS INTEIROS Valor
8º ANO ENSINO FUNDAMENTAL Matemática. 1º Trimestre 45 questões 26 de abril (Sexta-feira)
8º ANO ENSINO FUNDAMENTAL Matemática S º Trimestre 5 questões 6 de abril (Sexta-feir 09 SIMULADO OBJETIVO 8º ANO º TRIMESTRE. O número, corresponde à fração 0. 00. 000.. 99. MATEMÁTICA COMENTÁRIO/RESOLUÇÃO:
Apontamentos de Matemática 6.º ano
Revisão (divisores de um número) Os divisores de um número são os números naturais pelos quais podemos dividir esse número de forma exata (resto zero). Exemplos: Os divisores de 4 são 1, e 4, pois se dividirmos
Números Naturais Operações Fundamentais com Números Naturais *Adição; Subtração; Multiplicação e Divisão Exercícios
Curso de Elétrica... Matemática Básica Curso de Elétrica... Matemática Básica Sumário 1_Números Inteiros Números Naturais Operações Fundamentais com Números Naturais *Adição; Subtração; Multiplicação e
Material Teórico - Módulo de Potenciação e Dízimas Periódicas. Oitavo Ano. Prof. Ulisses Lima Parente
Material Teórico - Módulo de Potenciação e Dízimas Periódicas Potenciação Oitavo Ano Prof Ulisses Lima Parente 1 Potência de expoente inteiro positivo Antes de estudar potências, é conveniente relembrar
Portal da OBMEP. Material Teórico - Módulo de Potenciação e Dízimas Periódicas. Oitavo Ano
Material Teórico - Módulo de Potenciação e Dízimas Periódicas Potenciação Oitavo Ano Autor: Prof Angelo Papa Neto Revisor: Prof Antonio Caminha M Neto 1 Potência de expoente inteiro positivo Antes de estudar
AGRUPAMENTO DE ESCOLAS DR. VIEIRA DE CARVALHO
AGRUPAMENTO DE ESCOLAS DR. VIEIRA DE CARVALHO DEPARTAMENTO DE MATEMÁTICA E CIÊNCIAS EXPERIMENTAIS MATEMÁTICA 6.º ANO PLANIFICAÇÃO GLOBAL ANO LECTIVO 2011/2012 Compreender a noção de volume. VOLUMES Reconhecer
MÓDULO 1 RECORDANDO AS QUATRO OPERAÇÕES FUNDAMENTAIS
MATEMÁTICA MÓDULO 1 RECORDANDO AS QUATRO OPERAÇÕES FUNDAMENTAIS Todos os dias, você usa dos recursos da Matemática para resolver pequenos e grandes problemas que aparecem na sua vida. Nesse módulo você
Onde estão as potências?
A ideia de potência é muito antiga e desde tempos remotos suas aplicações facilitaram a vida humana auxiliando, tornando possíveis muitas representações matemáticas solucionando problemas de elevado grau
MATEMÁTICA - 3o ciclo Sequências e sucessões (7 o ano)
MATEMÁTICA - 3o ciclo Sequências e sucessões (7 o ano) Exercícios de provas nacionais e testes intermédios 1. Na figura seguinte, estão representados os quatro primeiros termos de uma sucessão de sólidos
ESCOLA TÉCNICA ESTADUAL FREDERICO GUILHERME SCHMIDT
PRODUTOS NOTÁVEIS Quadrado da soma de dois termos (a + b) 2 = a 2 + 2ab + b 2 quadrado do segundo termo primeiro termo 2 x (primeiro termo) x (segundo termo) quadrado do primeiro termo segundo termo Quadrado
MATEMÁTICA - 3o ciclo Sequências e sucessões (7 o ano)
MATEMÁTICA - 3o ciclo Sequências e sucessões (7 o ano) Exercícios de provas nacionais e testes intermédios 1. Representam-se a seguir os três primeiros termos de uma sucessão de figuras constituídas por
Percentual de acertos NOME Nᴼ 09/06/2017 Durante a semana 20/06/2017 TURMA: Data para tirar dúvidas em sala de aula
Data de recebimento pelo aluno Universidade Federal de Juiz de Fora/Colégio de Aplicação João XIII 6º ano/ Ensino Fundamental / Matemática/2017 Profa.: Cláudia Tavares Barbosa dos Santos Profa.: Camila
... (<) 4.3. Unidade I: Números racionais - Multiplicação e divisão, propriedades; - Potências; e - Raiz quadrada e raiz cúbica.
Unidade I: Números racionais - Multiplicação e divisão, propriedades; - Potências; e - Raiz quadrada e raiz cúbica. 1. Considere o conjunto 8 1 9 A 1 ; ; 0,; ; ; 81; ; ;1. 11 1.1. Indique os números que
Estudo Dirigido. 1) Preencha a tabela com o sucessor e o antecessor dos números naturais a seguir: Números Naturais Sucessor Antecessor
Estudante: 6º Ano/Turma: Educador: Lilian Nunes C. Curricular: Matemática Estudo Dirigido 1º Trimestre Números naturais e sistema de numeração. 1) Preencha a tabela com o sucessor e o antecessor dos números
unidade de milhar Centena dezena unidade ordem
1 REPRESENTAÇÃO NA FORMA DECIMAL A representação dos números fracionária já era conhecida há quase 3.000 anos, enquanto a forma decimal surgiu no século XVI com o matemático francês François Viète. O uso
3Parte. Soluções das fichas de reforço FICHA DE REFORÇO 1 PÁG. 251 FICHA DE REFORÇO 2 PÁG. 252 FICHA DE REFORÇO 3 PÁG. 253
Parte Soluções das fichas de reforço UNIDADE FICHA DE REFORÇO PÁG. aresta face vértice Sim, porque todas as faces são polígonos regulares iguais e em cada vértice encontram-se o mesmo número de faces.
A evolução do caderno. matemática. 6 o ano ENSINO FUNDAMENTAL
A evolução do caderno matemática 6 o ano ENSINO FUNDAMENTAL a edição são paulo 0 Coleção Caderno do Futuro Matemática IBEP, 0 Diretor superintendente Jorge Yunes Gerente editorial Célia de Assis Editor
EXPRESSÕES ARITMÉTICAS PARTE 1
AULA 5 EXPRESSÕES ARITMÉTICAS PARTE 1 5.1 Operadores aritméticos Os operadores aritméticos definem as operações aritméticas que podem ser realizadas sobre os números inteiros e reais. Para os inteiros,
ADIÇÃO E SUBTRAÇÃO DE FRAÇÕES 1A
ADIÇÃO E SUBTRAÇÃO DE FRAÇÕES A Exemplos: 9 7 9 9 7 7 9 0 0 0 0 0 0 Denominadores iguais: Na adição e subtração de duas ou mais frações que têm denominadores iguais, conservamos o denominador comum e somamos
Matemática. Atividades. complementares. 9-º ano. Este material é um complemento da obra Matemática 9. uso escolar. Venda proibida.
9 ENSINO 9-º ano Matemática FUNDAMENTAL Atividades complementares Este material é um complemento da obra Matemática 9 Para Viver Juntos. Reprodução permitida somente para uso escolar. Venda proibida. Samuel
Adição de números decimais
NÚMEROS DECIMAIS O número decimal tem sempre uma virgula que divide o número decimal em duas partes: Parte inteira (antes da virgula) e parte decimal (depois da virgula). Ex: 3,5 parte inteira 3 e parte
FRAÇÕES. O QUE É UMA FRAÇÃO? Fração é um número que exprime uma ou mais partes iguais em que foi dividida uma unidade ou um inteiro.
FRAÇÕES O QUE É UMA FRAÇÃO? Fração é um número que exprime uma ou mais partes iguais em que foi dividida uma unidade ou um inteiro. Assim, por exemplo, se tivermos uma pizza inteira e a dividimos em quatro
EXERCÍCOS DE REVISÃO TREINANDO PARA AS PROVAS 2º. BIMESTRE 8o. ANO
EXERCÍCOS DE REVISÃO TREINANDO PARA AS PROVAS 2º. BIMESTRE 8o. ANO POTENCIAÇÃO PROPRIEDADES: EXPOENTE NEGATIVO 1. Usando as propriedades da potenciação, calcule: a) x. x. x 5 = b) a 6 : a 4 c) [ ( -2 )
INSTITUTO DE APLICAÇÃO FERNANDO RODRIGUES DA SILVEIRA LISTA 1 POTENCIAÇÃO
INSTITUTO DE APLICAÇÃO FERNANDO RODRIGUES DA SILVEIRA Professores: Gabriela Brião / Marcello Amadeo Aluno(a): Turma: POTENCIAÇÃO LISTA 1 POTENCIAÇÃO Dados dois números naturais, a e n (com n > 1), a expressão
ADA 1º BIMESTRE CICLO I MATEMÁTICA 9º ANO DO ENSINO FUNDAMENTAL 2018
ADA 1º BIMESTRE CICLO I MATEMÁTICA 9º ANO DO ENSINO FUNDAMENTAL 018 ITEM 1 DA ADA Observe potência a seguir: ( ) O resultado dessa potenciação é igual a (A) 8 1. (B) 1 8. (C) 1 81 81 (D) 1 Dada uma potência
MATEMÁTICA PLANEJAMENTO 2º BIMESTRE º B - 11 Anos
PREFEITURA MUNICIPAL DE IPATINGA ESTADO DE MINAS GERAIS SECRETARIA MUNICIPAL DE EDUCAÇÃO DEPARTAMENTO PEDAGÓGICO/ SEÇÃO DE ENSINO FORMAL Centro de Formação Pedagógica CENFOP MATEMÁTICA PLANEJAMENTO 2º
NEEJA: NÚCLEO ESTADUAL DE EDUCAÇÃO DE JOVENS E ADULTOS CONSTRUINDO UM NOVO MUNDO
NEEJA: NÚCLEO ESTADUAL DE EDUCAÇÃO DE JOVENS E ADULTOS CONSTRUINDO UM NOVO MUNDO PROFESSOR:Ardelino R Puhl Ano 2015 MÓDULO- 3 ( QUINTA SÉRIE ) PROBLEMAS ENVOLVENDO AS QUATRO OPERAÇÕES 1-A um teatro compareceram
COLÉGIO SALESIANO SÃO GONÇALO CUIABÁ MT Escola de Educação Básica
COLÉGIO SALESIANO SÃO GONÇALO CUIABÁ MT Escola de Educação Básica Aluno(a): 6ºAno Professora: Roberto Figueiredo e Fernanda Ivo Caderno de Recuperação de Matemática 01) Represente cada multiplicação por
Potências e logaritmos, tudo a ver!
Reforço escolar M ate mática Potências e logaritmos, tudo a ver! Dinâmica 1 2ª Série 1º Bimestre DISCIPLINA SÉRIE CAMPO CONCEITO Aluno Matemática 2ª do Ensino Médio Algébrico simbólico Função Logarítmica
Revisão de Frações. 7º ano Professor: André
Revisão de Frações 7º ano Professor: André FRAÇÃO COMO PARTE DE UMA FIGURA OU OBJETO. O CÍRCULO ACIMA QUE ESTAVA INTEIRO FOI DIVIDIDO EM QUATRO PARTES IGUAIS. CADA UMA DESTAS PARTES REPRESENTA UM PEDAÇO
MÚLTIPLOS DE UM NÚMERO NATURAL
PROFESSOR: EQUIPE DE MATEMÁTICA BANCO DE QUESTÕES - MATEMÁTICA - 5º ANO - ENSINO FUNDAMENTAL ========================================================================== MÚLTIPLOS DE UM NÚMERO NATURAL Para
2 8 o ano Ensino Fundamental Livro 1
Resoluções das atividades CAPÍTULO Potenciação Abertura de capítulo e radiciação 0 bilhões de anos-luz correspondem, aproximadamente, a 0 000 000 000 0 000 000 000 km = 00 000 000 000 000 000 000 km, 0
PROFICIÊNCIA EM MATEMÁTICA Conjuntos Numéricos, Potenciação e Radiciação
PROFICIÊNCIA EM MATEMÁTICA Conjuntos Numéricos, Potenciação e Radiciação Professor Alexandre M. M. P. Ferreira Sumário Definição dos conjuntos numéricos... 3 Operações com números relativos: adição, subtração,
EXERCÍCOS DE REVISÃO TREINANDO PARA AS PROVAS 2º. BIMESTRE 8o. ANO
EXERCÍCOS DE REVISÃO TREINANDO PARA AS PROVAS 2º. BIMESTRE 8o. ANO 1. Fatore completamente as expressões algébricas: a) Fator Comum: I) bc b 2 = II) 4x 6ax 2 12x = b) Agrupamento: I) ax+bx + ay + by =
REVISÃO DOS CONTEÚDOS
REVISÃO DOS CONTEÚDOS As quatro operações fundamentais As operações fundamentais da matemática são quatro: Adição (+), Subtração (-), Multiplicação (* ou x ou.) e Divisão (: ou / ou ). Em linguagem comum,
NÚMEROS RACIONAIS. operações
UNIVERSIDADE FEDERAL FLUMINENSE INSTITUTO DE EDUCAÇÃO DE ANGRA DOS REIS DISCIPLINA: MATEMÁTICA CONTEÚDO E MÉTODO Período: 2018.2 NÚMEROS RACIONAIS operações Prof. Adriano Vargas Freitas Noção de número
RELATÓRIO 1 Data: 31/03/2017. Objetivo(s) - Retomar os conteúdos referentes a produtos notáveis e fatoração.
RELATÓRIO 1 Data: 31/03/2017 - Retomar os conteúdos referentes a produtos notáveis e fatoração. REVISÃO Produtos Notáveis Quadrado da soma de dois termos: (a + b)² = a² + 2 a b + b² Quadrado da diferença
Sequência divergente: toda sequência que não é convergente.
1.27. Sequências convergentes. 1.27.1 Noção de sequência convergente: uma sequência é dita convergente quando os termos dessa sequência, conforme o aumento do n, se aproximam de um número constante. Esse
Aula 1: Conjunto dos Números Inteiros
Aula 1: Conjunto dos Números Inteiros 1 Introdução Observe que, no conjunto dos números naturais N = {0, 1, 2, 3, 4, 5,..., a operação de subtração nem sempre é possível. a) 5 3 = 2 (é possível: 2 N) b)
RADICIAÇÃO, POTENCIAÇÃO, LOGARITMAÇÃO. Potência POTENCIAÇÃO, RADICIAÇÃO E LOGARITMAÇÂO NOS NÚMEROS REAIS. Potenciação 1
RADICIAÇÃO, POTENCIAÇÃO, LOGARITMAÇÃO Potência POTENCIAÇÃO, RADICIAÇÃO E LOGARITMAÇÂO NOS NÚMEROS REAIS Potenciação 1 Neste texto, ao classificarmos diferentes casos de potenciação, vamos sempre supor
Potências e logaritmos, tudo a ver!
Reforço escolar M ate mática Potências e logaritmos, tudo a ver! Dinâmica 2ª Série º Bimestre Professor DISCIPLINA SÉRIE CAMPO CONCEITO Matemática 2ª do Ensino Médio Algébrico simbólico Função Logarítmica
Expoentes fracionários
A UUL AL A Expoentes fracionários Nesta aula faremos uma revisão de potências com expoente inteiro, particularmente quando o expoente é um número negativo. Estudaremos o significado de potências com expoentes
Física Mecânica Roteiros de Experiências 69. Estudo Teórico Sobre Potências De Dez. Potenciação
Física Mecânica Roteiros de Experiências 69 UNIMONTE, Engenharia Laboratório de Física Mecânica Estudo Teórico Sobre Potências De Dez Turma: Data: : Nota: Nome: RA: Potenciação É uma operação matemática
Trabalho para recuperação do 1º Trimestre
Trabalho para recuperação do 1º Trimestre Nome: nº: Ano: 6ºAno E.F. Data: / / 2019 Professor (a):carlos 1) Traçando linhas retas, ligue os pontos da figura de todos os modos possíveis. Quantos segmentos
AGRUPAMENTO DE ESCOLAS DR. VIEIRA DE CARVALHO
AGRUPAMENTO DE ESCOLAS DR. VIEIRA DE CARVALHO DEPARTAMENTO DE MATEMÁTICA E CIÊNCIAS EXPERIMENTAIS MATEMÁTICA 6.º ANO PLANIFICAÇÃO GLOBAL ANO LECTIVO 2012/2013 Compreender a noção de volume. VOLUMES Reconhecer
Frações são muito freqüentes em nosso cotidiano. Quando encomendamos uma pizza, por exemplo,
Acesse: http://fuvestibular.com.br/ Numa sala quadrada, com 4 m de lado, o piso foi revestido de lajotas, também quadradas, com 40 cm de lado. Após um problema de infiltração, algumas lajotas estão danificadas
à situação. à situação.
Unidade 1 Números naturais 1. Números naturais 2. Sistemas de numeração 3. Tabela simples Reconhecer os números naturais. Identificar o antecessor e o sucessor numa sequência de números naturais. Identificar
- Dizemos que um número é divisor de outro quando o resto da divisão é igual a zero. Ex.: 5 é divisor de 30, pois 30: 5 = 6 e o resto é 0.
Noções conceituais MDC - Dizemos que um número é divisor de outro quando o resto da divisão é igual a zero. Ex.: 5 é divisor de 30, pois 30: 5 = 6 e o resto é 0. - Todo número natural é produto de dois
Números Primos, Fatores Primos, MDC e MMC
Números primos são os números naturais que têm apenas dois divisores diferentes: o 1 e ele mesmo. 1) 2 tem apenas os divisores 1 e 2, portanto 2 é um número primo. 2) 17 tem apenas os divisores 1 e 17,
SISTEMA ANGLO DE ENSINO G A B A R I T O
Prova Anglo P-02 Tipo D8-08/200 G A B A R I T O 0. C 07. D 3. C 9. A 02. B 08. A 4. A 20. C 03. D 09. C 5. B 2. B 04. B 0. C 6. C 22. B 05. A. A 7. A 00 06. D 2. B 8. D DESCRITORES, RESOLUÇÕES E COMENTÁRIOS
Nível II (6º ao 9º ano) Sistema de Recuperação 3º período e Anual Matemática
Nível II (6º ao 9º ano) Sistema de Recuperação 3º período e Anual Matemática Orientações aos alunos e pais A prova de dezembro abordará o conteúdo desenvolvido nos três períodos do ano letivo. Ela será
Exercício 2: Considere a seguinte sequência de números:
Fenômenos periódicos Nos próximos exercícios ilustramos como o resto de uma divisão pode ser utilizado na resolução de problemas que envolvem fenômenos periódicos. Exercício 1: Pedro caminha ao redor de
CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA Potenciação. Lucas Araújo - Engenharia de Produção
CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA 2014.1 Potenciação Lucas Araújo - Engenharia de Produção Potenciação No século 3 a.c na Grécia antiga, Arquimedes resolveu calcular quantos grãos de areia
MATEMÁTICA - 3o ciclo Sequências e sucessões (7 o ano)
MATEMÁTICA - 3o ciclo Sequências e sucessões (7 o ano) Exercícios de provas nacionais e testes intermédios 1. Na figura ao lado, estão representados os quatro primeiros termos de uma sequência de conjuntos
Roberto Geraldo Tavares Arnaut Gustavo de Figueiredo Tarcsay. Potenciação. Sanja Gjenero. Fonte:
Potenciação 31 Sanja Gjenero Roberto Geraldo Tavares Arnaut Gustavo de Figueiredo Tarcsay Fonte: www.sxc.hu e-tec Brasil Estatística Aplicada META Apresentar as operações de potenciação. OBJETIVOS PRÉ-REQUISITOS
5. De um bloco formado por cubos retiraram-se alguns cubos como mostra a figura. Quantos cubos foram retirados?
AGRUPAMENTO DE ESCOLAS D. JOSÉ I - VRSA MATEMÁTICA 6.º ANO 014/1 NOME N.º Turma Nas questões 1 a, assinale com x a opção correta. 1. O valor de 4 : 4 10. A soma de dois números negativos é um número: Positivo
MATRIZES E DETERMINANTES
MATRIZES E DETERMINANTES Matrizes Para representar matrizes, utilizamos a disposição de uma tabela. Chamamos de matriz toda a tabela m x n ( lê-se m por n ) em que números estão dispostos em linhas (m)
ROTEIRO DE RECUPERAÇÃO BIMESTRAL MATEMÁTICA 7º ANO. Nome: Nº - Série/Ano. Data: / / Professor(a): Décio/Eloy/Marcello
ROTEIRO DE RECUPERAÇÃO BIMESTRAL MATEMÁTICA 7º ANO Nome: Nº - Série/Ano Data: / / Professor(a): Décio/Eloy/Marcello Os conteúdos essenciais do bimestre. Capítulo 1 Números inteiros Ideia de número positivo
MATEMÁTICA I. Ana Paula Figueiredo
I Ana Paula Figueiredo Números Reais IR O conjunto dos números Irracionais reunido com o conjunto dos números Racionais (Q), formam o conjunto dos números Reais (IR ). Assim, os principais conjuntos numéricos
CRITÉRIOS GERAIS DE CLASSIFICAÇÃO
Teste Intermédio Matemática Critérios de Classificação 0.06.01.º Ano de Escolaridade Os testes intermédios do.º ano visam a recolha de informação sobre as aprendizagens desenvolvidas por cada aluno ao
Lista de Exercícios Estrutura de Repetição
Universidade Federal Fluminense Instituto de Computação Programação de Computadores III Luciana Brugiolo Gonçalves Lista de Exercícios Estrutura de Repetição E15. Desenvolva um algoritmo para exibir todos
Um abraço fraterno. Prof. Dirlene
Disciplina: Matemática Segmento: Ensino Fundamental II Ano/Série: 6º Turma: AA/AD Assunto: Roteiro de Estudos Para Recuperação da I Etapa/2019 Aluno (a): Nº: Nota: Valor: 5,0 Pontos Professor (a): Dirlene
AGRUPAMENTO DE ESCOLAS DR. VIEIRA DE CARVALHO
AGRUPAMENTO DE ESCOLAS DR. VIEIRA DE CARVALHO DEPARTAMENTO DE MATEMÁTICA E CIÊNCIAS EXPERIMENTAIS MATEMÁTICA 7.º ANO PLANIFICAÇÃO GLOBAL Múltiplos e divisores. Critérios de divisibilidade. - Escrever múltiplos
01- Verifique se o número é múltiplo de 29. R.: a) D (25) = b) D (17) = c) D (20) = d) D (18) =
PROFESSOR: EQUIPE DE MATEMÁTICA BANCO DE QUESTÕES - MATEMÁTICA - 5º ANO - ENSINO FUNDAMENTAL ========================================================================== 01- Verifique se o número 8 437 é
MATEMÁTICA. Docente: Marina Mariano de Oliveira
MATEMÁTICA Docente: Marina Mariano de Oliveira MATEMÁTICA Docente: Marina Mariano de Oliveira Bacharelado em Meteorologia (incompleto) Instituto de Astronomia, Geofísica e Ciências Atmosféricas da Universidade
ELETRÔNICA DE POTÊNCIA I Laboratório 1 Medição de tensão e corrente em sistemas elétricos
ELETRÔNICA DE POTÊNCIA I Laboratório 1 Medição de tensão e corrente em sistemas elétricos Objetivo: Essa experiência visa demonstrar ao aluno os fundamentos da operação de medição de parâmetros elétricos,
