Exercício 2: Considere a seguinte sequência de números:
|
|
|
- Luiz Guilherme Weber de Sintra
- 8 Há anos
- Visualizações:
Transcrição
1 Fenômenos periódicos Nos próximos exercícios ilustramos como o resto de uma divisão pode ser utilizado na resolução de problemas que envolvem fenômenos periódicos. Exercício 1: Pedro caminha ao redor de uma praça retangular onde estão dispostas 12 árvores, brincando de tocar cada árvore durante seu passeio. Se no início ele toca a árvore indicada na figura, e se ele anda no sentido da seta, indique que árvore ele estará tocando ao encostar em uma árvore pela centésima vez. Solução. Na figura, próximo de cada áarvore escreva os números 1, 2, 3,..., correspondentes aos números de árvores tocadas por Pedro (a árvore indicada pela letra P recebe o número 1, a próxima o número 2, e assim por diante). Como existem 12 árvores na praça, na árvore indicada pela letra P estarão escritos os número 1, 13, 25,... que são todos os números que deixam resto 1 quando divididos por 12. Dividindo 100 por 12, obtemos quociente 8 e resto 4, isto é, 100 = Daí vemos que na centésima vez, Pedro estará tocando a árvore que está 3 posições à frente daquela indicada pela letra P. Exercício 2: Considere a seguinte sequência de números: 1, 2, 3, 4, 5, 4, 3, 2, 1, 2, 3, 4, 5, 4, 3, 2, 1, 2, 3, 4, 5... formada alternadamente pelos algarismos (1, 2, 3, 4, 5) e pelos algarismos (5, 4, 3, 2, 1). Qual algarismo aparece na posição 2015 nesta sequência? Solucão. Na sequência dada é importante observar que o bloco de algarismos 1, 2, 3, 4, 5, 4, 3, 2 fica se repetindo indefinidamente, como está ilustrado na figura a seguir: Dividindo 2015 por 8 (que é a quantidade de algarismos do bloco que fica se repetindo), obtemos 2015 = Daí, para se chegar até o algarismo da posição 2015, deve-se escrever 251 blocos de oito algarismos cada, e depois mais sete algarismos. Portanto o número que está na posicão 2015 é o número da sétima posição dentro do bloco, ou seja, o número 3. 1
2 Exercício 3: Qual é o algarismo da unidade de ? Solução. Calculando as primeiras potências de 2 obtemos:2 1 = 2, 2 2 = 4, 2 3 = 8, 2 4 = 16, 2 5 = 32, 2 6 = 64, 2 7 = 128, 2 8 = 256, 2 9 = 512. Observando esses números, vemos que os últimos algarismos formam uma sequência periódica: 2, 4, 8, 6, 2, 4, 8, 6, 2 etc., em que os quatro números 2, 4, 8, 6 ficam se repetindo infinitamente. Dividindo 2015 por 4 obtemos quociente 503 e resto 3, de modo que 2015 = Na sequência acima, os expoentes que deixam resto 3 quando divididos por 4 definem potências de 2 com último algarismo 8 (2 3 = 8, 2 7 = 128 etc.). Daí o algarismo da unidade de é 8. Exercício 4: João decidiu nadar de três em três dias. O primeiro dia que ele nadou foi um sábado, o segundo dia foi uma terça-feira, o terceiro dia foi uma sexta-feira, e assim por diante. Em qual dia da semana João estará nadando pela centésima vez? Solução. Na tabela a seguir, listamos os dias da semana que João está nadando pelas primeiras 21 vezes. Analisando a tabela vemos, por exemplo, que os múltiplos de 7 sempre estão na quarta-feira, que os números que deixam resto 1 quando divididos por 7 estão no sábado e que os números que deixam resto 2 quando divididos por 7 estão na terça-feira. Dividindo 100 por 7 obtemos quociente 14 e resto 2 (100 = ). Daí concluímos que na centésima vez, João estará nadando em uma terça-feira. Exercício 5: Encontre o último algarismo do número Solução. Para começar, note que o último algarismo do número é igual ao último algarismo do número Escrevendo as primeiras potências de 9 obtemos: 9 1 = 9, 9 2 = 81, 9 3 = 729 etc. Daí observamos que os ltimos algarismos destes números formam a sequência 9, 1, 9, 1 etc. Assim o último algarismo de 9 n é 9 se n é ímpar e o último algarismo de 9 n é 1 se n é par. Observamos que para resolver este tipo de problema, não é necessário calcular as potências de 9. Basta calcular o último algarismo das potˆencias de 9. Para fazer isso, começamos por 9 1 = 9. Multiplicando por 9, obtemos 9 9 = 81. Para calcular o último algarismo de 9 3, multiplicamos o último algarismo de 9 2 por 9, obtendo 1 9 = 9. Então o último algarismo de 9 3 é 9. E assim, por diante, vamos olhando sempre para o último algarismo dos produtos, e efetuado o produto, consideramos somente o seu último algarismo para fazer a próxima multiplicação. 2
3 Exercício 6: Encontre o último algarismo do número Solução. Para começar, note que o último algarismo do número é igual ao último algarismo do número Procedendo como explicado no exercício anterior, podemos calcular o último algarismo das primeiras potências de 7. Dai vemos que o ciclo 7, 9, 3, 1 se repete infinitamente. Dividindo 777 por 4 (que é o tamanho do ciclo), obtemos quociente 194 e resto 1. Daí o último algarismo de é igual ao último algarismo de 7 1, que é 7. 3
4 Exercício 7: Os números de 0 a 2000 foram ligados por flechas. A figura dada mostra o começo do processo. Qual é a sucessão de flechas que liga o número 1997 ao número 2000? Solução. A alternativa correta é a (e). Observe que o seguinte caminho, formado por seis flechas, é um padrão que se repete na figura dada. Este caminho-padrão sempre começa nos múltiplos de 6, ou seja, em 0, 6, 12 etc. Vamos averiguar qual é a posição de 1997 em relacão ao múltiplo de 6 mais próximo. Dividindo 1997 por 6, obtemos 1997 = , correspondendo a 332 caminhos-padrão mais o resto de 5 flechas. Portanto, 1998 é múltiplo de 6 mais próximo de 1997, ocupando a primeira posição no caminho-padrão. Assim, a figura seguinte ilustra as flechas que ligam 1997 a
5 5
Planejamento Acadêmico - Grupo 1 - PIC 2012 Encontro 2 - Módulo 1 - Aritmética
Planejamento Acadêmico - Grupo 1 - PIC 2012 Encontro 2 - Módulo 1 - Aritmética 1. Divisão Euclidiana Exemplo 1: (Banco de Questões 2012, nível 1, problema 12) A figura abaixo representa o traçado de uma
DIVISÃO EUCLIDIANA. (a) Quais são os postos de partida e chegada de uma corrida de 14 quilômetros?
DIVISÃO EUCLIDIANA LISTA 04 DIVISÃO EUCLIDIANA E PROBLEMAS PERIÓDICOS Prof: Wagner Monte Raso Braga Aluno(a): 12/07/2016 01) Em cada caso calcule o quociente q e o resto r da divisão de a por b. Em seguida
Critérios de divisibilidade Para alguns números como o dois, o três, o cinco e outros, existem regras que permitem verificar a divisibilidade sem se
Critérios de divisibilidade Para alguns números como o dois, o três, o cinco e outros, existem regras que permitem verificar a divisibilidade sem se efetuar a divisão. Essas regras são chamadas de critérios
Monster. Concursos. Matemática 1 ENCONTRO
Monster Concursos Matemática 1 ENCONTRO CONJUNTOS NUMÉRICOS Conjuntos numéricos podem ser representados de diversas formas. A forma mais simples é dar um nome ao conjunto e expor todos os seus elementos,
Sequências - Aula 06
Sequências - Aula 06 Muitos problemas, de álgebra ou teoria dos números, envolvem sequências. Elas podem ser definidas como uma lista ordenada de elementos. Por exemplo, na sequência (, 3, 5, 8) o primeiro
MAT Laboratório de Matemática I - Diurno Profa. Martha Salerno Monteiro
MAT 1511 - Laboratório de Matemática I - Diurno - 2005 Profa. Martha Salerno Monteiro Representações decimais de números reais Um número real pode ser representado de várias maneiras, sendo a representação
CONJUNTO DOS NÚMEROS INTEIROS. No conjunto dos números naturais operações do tipo
CONJUNTO DOS NÚMEROS INTEIROS No conjunto dos números naturais operações do tipo 9-5 = 4 é possível 5 5 = 0 é possível 5 7 =? não é possível e para tornar isso possível foi criado o conjunto dos números
Números Primos, Fatores Primos, MDC e MMC
Números primos são os números naturais que têm apenas dois divisores diferentes: o 1 e ele mesmo. 1) 2 tem apenas os divisores 1 e 2, portanto 2 é um número primo. 2) 17 tem apenas os divisores 1 e 17,
O conjunto dos números naturais é representado pela letra N e possui como elementos: N = { 0, 1, 2, 3, 4,...}
07 I. Números naturais e inteiros O conjunto dos números naturais é representado pela letra N e possui como elementos: N = { 0,,,, 4,...} Já o conjunto dos números inteiros é representado pela letra Z
fios ( ) 8 = 2704 m
Resposta da questão 1: [C] A quantidade de fios necessária será igual ao perímetro da chácara multiplicado por 8, o seja: fios (52 + 52 + 117 + 117) 8 = 2704 m Se as estacas estão igualmente espaçadas,
NÚMEROS INTEIROS E CRIPTOGRAFIA UFRJ
NÚMEROS INTEIROS E CRIPTOGRAFIA UFRJ GABARITO LISTA 6: ALGORITMO CHINÊS DO RESTO 1. Ver gabarito das questões do livro. 2. Aplique o Algoritmo de Fermat para encontrar 999367 = 911 1097. Como 911 e 1097
Módulo de Progressões Aritméticas. Soma dos termos de uma P.A. 1 a série E.M. Professores Tiago Miranda e Cleber Assis
Módulo de Progressões Aritméticas Soma dos termos de uma PA 1 a série EM Professores Tiago Miranda e Cleber Assis Progressões Aritméticas Soma dos termos de uma PA 1 Exercícios Introdutórios Exercício
Material Teórico - Módulo Miscelânea. Resolução de Exercícios - Parte 1. Oitavo Ano
Material Teórico - Módulo Miscelânea Resolução de Exercícios - Parte 1 Oitavo Ano Autor: Prof. Ulisses Lima Parente Revisor: Prof. Antonio Caminha M. Neto 1 Resolução de exercícios Nesse material, apresentamos
Aula demonstrativa Apresentação... 2 Relação das Questões Comentadas... 8 Gabaritos... 11
Aula demonstrativa Apresentação... Relação das Questões Comentadas... 8 Gabaritos... 11 1 Apresentação Olá pessoal! Saiu o edital para o TJ-SP. A banca organizadora é a VUNESP e esta é a aula demonstrativa
M odulo de Potencia c ao e D ızimas Peri odicas Potencia c ao Oitavo Ano
Módulo de Potenciação e Dízimas Periódicas Potenciação Oitavo Ano Módulo de Potenciação e Dízimas Periódicas Potenciação Exercícios Introdutórios Exercício. Calcule o valor das expressões: a) 3 5. b) 2
GABARITO - ANO 2018 OBSERVAÇÃO:
GABARITO - ANO 018 OBSERVAÇÃO: Embora as soluções neste gabarito se apresentem sob a forma de um texto explicativo, gostaríamos de salientar que para efeito de contagem dos pontos adquiridos, na avaliação
Apontamentos de matemática 6.º ano Decomposição de um número em fatores primos
Divisores de um número (revisão do 5.º ano) Os divisores de um número são os números naturais pelos quais podemos dividir esse número de forma exata (resto zero). Exemplos: Os divisores de 4 são 1, 2 e
OBMEP 2010 Soluções da prova da 2ª Fase Nível 2. Questão 1
Questão a) Para saber o número que deve dizer ao matemágico, Joãozinho deve fazer quatro contas: ª conta: multiplicar o número no cartão escolhido por 2; 2ª conta: somar 3 ao resultado da primeira conta;
a) Falsa. Por exemplo, para n = 2, temos 3n = 3 2 = 6, ou seja, um número par.
Matemática Unidade I Álgebra Série - Teoria dos números 01 a) Falsa. Por exemplo, para n =, temos 3n = 3 = 6, ou seja, um número par. b) Verdadeira. Por exemplo, para n = 1, temos n = 1 =, ou seja, um
Aula 5: Conversões Entre Bases Numéricas
Aula 5: Conversões Entre Bases Numéricas Diego Passos Universidade Federal Fluminense Fundamentos de Arquiteturas de Computadores Diego Passos (UFF) Conversões Entre Bases Numéricas FAC 1 / 43 Conversão
CINCO QUESTÕES FGV MUITO SIMILARES
CINCO QUESTÕES FGV MUITO SIMILARES Olá, tudo bem? Sou o Prof. Arthur Lima, e separei essas CINCO questões da FGV, que foram aplicadas em concursos distintos, embora sejam bastante similares. Elas abordam
Resoluções. Aula 1 NÍVEL 2. Classe
www.cursoanglo.com.br Treinamento para Olimpíadas de Matemática NÍVEL 2 Resoluções Aula 1 Classe 1. Observe que: 14 1 = 14 14 2 = 196 14 par termina em 6 e 14 ímpar termina em 4 14 3 = 2.744 14 4 = 38.416...
MÓDULO III OPERAÇÕES COM DECIMAIS. 3 (três décimos) 3 da. 2 da área. 4. Transformação de número decimal em fração
MÓDULO III OPERAÇÕES COM DECIMAIS. Frações decimais Denominam-se frações decimais aquelas, cujos denominadores são formados pelo número 0 ou suas potências, tais como: 00, 000, 0000, etc. Exemplos: a)
A divisão também é usada para se saber quantas vezes uma quantidade cabe em outra.
DIVISÃO É o contrário da multiplicação. Ou seja, tem o sentido de dividir, repartir ou distribuir. Quando dividimos um número pelo outro, estamos diminuindo seu tamanho, distribuindo de maneira igual à
Percentual de acertos NOME Nᴼ 09/06/2017 Durante a semana 20/06/2017 TURMA: Data para tirar dúvidas em sala de aula
Data de recebimento pelo aluno Universidade Federal de Juiz de Fora/Colégio de Aplicação João XIII 6º ano/ Ensino Fundamental / Matemática/2017 Profa.: Cláudia Tavares Barbosa dos Santos Profa.: Camila
Adição de números decimais
NÚMEROS DECIMAIS O número decimal tem sempre uma virgula que divide o número decimal em duas partes: Parte inteira (antes da virgula) e parte decimal (depois da virgula). Ex: 3,5 parte inteira 3 e parte
Exemplos: Os números 12, 18 e 30 têm conjuntos de divisores respectivamente iguais a:
Lista de atividades sobre MDC. Nesta aula, definiremos e estudaremos métodos para calcular o máximo divisor comum e o mıınimo múltiplo comum de números naturais, bem como algumas de suas propri edades.
SOLUÇÕES OBMEP 2ª. FASE 2016
SOLUÇÕES OBMEP 2ª. FASE 2016 N1Q1 Solução Carolina escreveu os números 132 e 231. Esses são os únicos números que cumprem as exigências do enunciado e que possuem o algarismo 3 na posição central. Para
AULA 8. Conteúdo: Equivalência de Frações. Objetivo: Compreender o significado e o processo de obtenção de frações equivalentes.
AULA 8 Conteúdo: Equivalência de Frações. Objetivo: Compreender o significado e o processo de obtenção de frações equivalentes. 8.1 Tarefa 1: Problema Gerador Na terça-feira, a turma dividiu um bolo pequeno
Raciocínio Lógico. Números. Professor Edgar Abreu.
Raciocínio Lógico Números Professor Edgar Abreu www.acasadoconcurseiro.com.br Raciocínio Lógico QUESTÕES ENVOLVENDO SEQUÊNCIA DE NÚMEROS É comum aparecer em provas de concurso questões envolvendo sequências
SISTEMA DECIMAL. No sistema decimal o símbolo 0 (zero) posicionado à direita implica em multiplicar a grandeza pela base, ou seja, por 10 (dez).
SISTEMA DECIMAL 1. Classificação dos números decimais O sistema decimal é um sistema de numeração de posição que utiliza a base dez. Os dez algarismos indo-arábicos - 0 1 2 3 4 5 6 7 8 9 - servem para
MATEMÁTICA 1 ARITMÉTICA Professor Matheus Secco
MATEMÁTICA 1 ARITMÉTICA Professor Matheus Secco MÓDULO 3 Números Racionais e Operações com Frações 1.INTRODUÇÃO Quando dividimos um objeto em partes iguais, uma dessas partes ou a reunião de várias delas
Observe o que ocorre com as multiplicações com parcelas iguais cujos algarismos são todos iguais a 1:
1 QUESTÃO 1 Ao efetuarmos a operação 111 x 111 obtemos: Logo a soma dos algarismos do resultado é 1+ 2+ 3+ 2+ 1= 9. A conta acima também pode ser feita da seguinte maneira: 111 111 = 111 (100 + 10 + 1)
Lista 1- Cálculo I Lic. - Resolução
Lista 1- Cálculo I Lic. - Resolução Exercício 6: Uma molécula de açúcar comum (sacarose) pesa 5,7 10 - g e uma de água, 3 10-3 g. Qual das duas é mais pesada? Quantas vezes uma é mais pesada que a outra?
Módulo de Números Naturais. Divisibilidade e Teorema da Divisão Euclideana. 8 ano E.F.
Módulo de Números Naturais. Divisibilidade e Teorema da Divisão Euclideana. 8 ano E.F. Módulo de Números Naturais. Divisibilidade e Teorema da Divisão Euclideana. 1 Exercícios Introdutórios Exercício 1.
Divisibilidade Múltiplos de um número Critérios de divisibilidade 5367
Divisibilidade Um número é divisível por outro quando sua divisão por esse número for exata. Por exemplo: 20 : 5 = 4 logo 20 é divisível por 5. Múltiplos de um número Um número tem um conjunto infinito
Lista de Questões OBMEP NA ESCOLA Grupo N1 Ciclo 1
Lista de Questões OBMEP NA ESCOLA Grupo N1 Ciclo 1 Em 2017 o Planejamento Acadêmico do Programa OBMEP na Escola prevê a realização de atividades avaliativas em forma de listas de questões. A cada ciclo
38 a OLIMPÍADA BRASILEIRA DE MATEMÁTICA 2 a Fase Nível 1 (6 o ou 7 o ano)
38 a OLIMPÍADA BRASILEIRA DE MATEMÁTICA a Fase Nível 1 (6 o ou 7 o ano) GABARITO PARTE A - Cada problema vale 5 pontos CRITÉRIO DE CORREÇÃO: PARTE A Na parte A serão atribuídos 5 pontos para cada resposta
QUESTÃO 01 QUESTÃO 06 QUESTÃO 02 QUESTÃO 07 QUESTÃO 03 QUESTÃO 08 QUESTÃO 09 QUESTÃO 04 QUESTÃO 10 QUESTÃO 05
QUESTÃO 01 Resolução O próximo encontro ocorrerá em 30 horas, pois o MMC(2,3,5) = 30. Como 30 horas correspondem a 1 dia (24 horas) mais 6 horas, logo a resposta 13 horas do dia seguinte. QUESTÃO 02 Resolução
Fundamentos de Arquiteturas de Computadores
Fundamentos de Arquiteturas de Computadores Cristina Boeres Instituto de Computação (UFF) Conversões Entre Bases Numéricas Material de Fernanda Passos (UFF) Conversões Entre Bases Numéricas FAC 1 / 42
Solução: Primeiramente pode-se discutir algumas possibilidades. Podemos cortar cada um dos rolos em pedaços de um metro, obtendo 210
Máximo Divisor Comum Antes de apresentar a definição formal de Máximo Divisor Comum e também antes de apresentar estratégias para o cálculo do mdc, veremos como esse conceito aparece naturalmente na solução
RESPOSTAS DA LISTA 5 (alguns estão com a resolução ou o resumo da resolução):
Lista de Matemática Básica I - RESPOSTAS) RESPOSTAS DA LISTA alguns estão com a resolução ou o resumo da resolução): Resposta: < < < < < 8 Justificativa: observe que Também observe que: e são simétricos;
MÚLTIPLOS DE UM NÚMERO NATURAL
PROFESSOR: EQUIPE DE MATEMÁTICA BANCO DE QUESTÕES - MATEMÁTICA - 5º ANO - ENSINO FUNDAMENTAL ======================================================================== MÚLTIPLOS DE UM NÚMERO NATURAL Para
1 Congruências e aritmética modular
1 Congruências e aritmética modular Vamos considerar alguns exemplos de problemas sobre números inteiros como motivação para o que se segue. 1. O que podemos dizer sobre a imagem da função f : Z Z, f(x)
MATEMÁTICA PROF. JOSÉ LUÍS NÚMEROS DECIMAIS
NÚMEROS DECIMAIS Em todo numero decimal: CONVENÇÃO BÁSICA DO SISTEMA DECIMAL a parte inteira é separada da parte decimal por uma vírgula; um algarismo situado a direita de outro tem um valor significativo
Módulo de Sistemas de Numeração e Paridade. Sistemas de Numeração. Tópicos Adicionais. Professores Tiago Miranda e Cleber Assis
Módulo de Sistemas de Numeração e Paridade Sistemas de Numeração Tópicos Adicionais Professores Tiago Miranda e Cleber Assis Sistemas de Numeração e Paridade Sistemas de Numeração 1 Exercícios Introdutórios
MÓDULO 2 POTÊNCIA. Capítulos do módulo:
MÓDULO 2 POTÊNCIA Sabendo que as potências tem grande importância no mundo da lógica matemática, nosso curso terá por objetivo demonstrar onde podemos utilizar esses conceitos no nosso cotidiano e vida
Solução da prova da 2.ª Fase
Nível 1 6.º e 7.º anos do Ensino Fundamental 2. a Fase 15 de setembro de 2018 QUESTÃO 1 a) A máquina deve ser usada duas vezes. Inicialmente temos 3 maçãs; colocamos duas dessas maçãs na máquina, elas
SOCIEDADE EDUCACIONAL DO AMANHÃ. Profª: EDNALVA DOS SANTOS
SOCIEDADE EDUCACIONAL DO AMANHÃ Profª: EDNALVA DOS SANTOS 1 Frações O que são? 2 Para representar os números fracionários foi criado um símbolo, que é a fração. Sendo a e b números naturais e b 0 (b diferente
1. O que podemos dizer sobre a imagem da função. f : Z Z, f(x) = x 2 + x + 1?
1 Congruências e aritmética modular Vamos considerar alguns exemplos de problemas sobre números inteiros como motivação para o que se segue. 1. O que podemos dizer sobre a imagem da função f : Z Z, f(x)
MATEMÁTICA PROF. JOSÉ LUÍS FRAÇÕES
FRAÇÕES I- INTRODUÇÃO O símbolo a / b significa a : b, sendo a e b números naturais e b diferente de zero. Chamamos: a / b de fração; a de numerador; b de denominador. Se a é múltiplo de b, então a / b
Os logaritmos decimais
A UA UL LA Os logaritmos decimais Introdução Na aula anterior, vimos que os números positivos podem ser escritos como potências de base 10. Assim, introduzimos a palavra logaritmo no nosso vocabulário.
Apontamentos de Matemática 6.º ano
Apontamentos de Matemática.º ano Introdução noção de potência Exemplo Uma bactéria divide-se dando origem a duas novas bactérias. Suponha que havia inicialmente duas bactérias e que ocorreram sucessivamente
SEBENTA de Sistemas de Numeração
SEBENTA de Sistemas de Numeração Prof. Índice 1. REPRESENTAÇÃO NUMÉRICA EM DIFERENTES BASES...5 1.1. BASE DECIMAL...5 1.2. SIGNIFICADO DA REPRESENTAÇÃO NUMÉRICA...6 1.3. CONTAR EM BASE 8 (OCTAL)...6 1.4.
3. Números Racionais
. Números Racionais O conjunto dos números racionais, representado por Q, é o conjunto dos números formado por todos os quocientes de números inteiros (mas não pode dividir por zero). O uso do símbolo
Apontamentos de Matemática 6.º ano
Noção de potência Quando temos uma multiplicação sucessiva em que o mesmo número se repete, podemos transformar essa expressão numa potência. Veja os exemplos., o é o número que se repete e o número de
216 e) 10 1 = 10 f) (-0,4) 0 = 1 g) (-4,3) 1 = - 4,3
1 Prof. Ranildo Lopes U. E. PROFª HELENA CARVALHO Obrigado pela preferência de nossa ESCOLA! Pegue o material no http://uehelenacarvalho.wordpress.com ESTUDANDO A POTENCIAÇÃO E SUAS PROPRIEDADES POTENCIAÇÃO
SOLUÇÕES N item a) Basta continuar os movimentos que estão descritos no enunciado:
N1Q1 Solução SOLUÇÕES N1 2015 Basta continuar os movimentos que estão descritos no enunciado: Basta continuar por mais dois quadros para ver que a situação do Quadro 1 se repete no Quadro 9. Também é possível
Centro Estadual de Educação de Jovens e Adultos de Votorantim
Centro Estadual de Educação de Jovens e Adultos de Votorantim PROGRESSÕES PROGRESSÃO NUMÉRICA - é uma seqüência ou sucessão de números que obedecem a um raciocínio lógico. Sequências: Considere um campeonato
DESAFIO FINAL GABARITO ALL
DESAFIO FINAL GABARITO ALL 01. a) Queremos que apareça na tela o número 7 10 2 10 7 = 7 10 9. Uma maneira de fazer tal conversão, começando com 7 10 2, é apertar quatro vezes a tecla com a operação de
Soluções Simulado OBMEP 2017 Nível 1 6º e 7º anos do Ensino Fundamental. = 7 cm. Logo, ela parou na marca de = 13 cm.
Soluções Simulado OBMEP 2017 Nível 1 6º e 7º anos do Ensino Fundamental 1. ALTERNATIVA C Alvimar recebeu de troco 5,00 3,50 = 1,50 reais. Dividindo 1,50 por 0,25, obtemos o número de moedas de 25 centavos
1. Um quadradófago é um inseto que se alimenta de quadrados de tabuleiros de xadrez e dama. Um tabuleiro de tamanho 5 5 é mostrado abaixo
1. Um quadradófago é um inseto que se alimenta de quadrados de tabuleiros de xadrez e dama. Um tabuleiro de tamanho 5 5 é mostrado abaixo Quando um quadradófago começa a comer os quadrados de um tabuleiro
Módulo: aritmética dos restos. Divisibilidade e Resto. Tópicos Adicionais
Módulo: aritmética dos restos Divisibilidade e Resto Tópicos Adicionais Módulo: aritmética dos restos Divisibilidade e resto 1 Exercícios Introdutórios Exercício 1. Encontre os inteiros que, na divisão
1. Progressão aritmética Resumo e lista
Colégio Estadual Conselheiro Macedo Soares ª ano do Ensino Médio Atividade de Matemática do 1º bimestre de 019 Conteúdo: Progressão aritmética, Progressão geométrica Aluno(s):... N o(s) :... Aluno(s):...
Múltiplos, Divisores e Primos - Aula 02
Múltiplos, Divisores e Primos - Aula 02 Nessa lista vamos explorar conceitos básicos de divisão Euclidiana, múltiplos, divisores e primos. Quando dividimos o número 7 pelo número 3, obtemos um quociente
Os números decimais. Centenas Dezenas Unidades, Décimos Centésimos Milésimos. 2 Centenas 4 dezenas 0 unidades, 7 décimos 5 centésimos 1 milésimo
Os números decimais Leitura e escrita de números decimais A fração 6/10 pode ser escrita na forma 0,6, em que 10 é a parte inteira e 6 é a parte decimal. Aqui observamos que este número decimal é menor
Representação decimal dos números racionais
Representação decimal dos números racionais Alexandre Kirilov Elen Messias Linck 4 de abril de 2017 1 Introdução Um número é racional se puder ser escrito na forma a/b, com a e b inteiros e b 0; esta é
[C] [D] [A] [B] Calculando: = 4035 Divisores 4035 = (1 + 1).(1 + 1).(1 + 1) = 2.2.
RESOLUÇÕES 1 4 2 Calculando: 2018 2-2017 2 4072324-4068289 = 4035 Divisores 4035 = 3 1.5 1.269 1 (1 + 1).(1 + 1).(1 + 1) = 2.2.2 = 8 Sejam x, y, z e w, respectivamente, a idade da professora e de suas
Representação decimal dos números racionais
Representação decimal dos números racionais Alexandre Kirilov Elen Messias Linck 21 de março de 2018 1 Introdução Um número é racional se puder ser escrito na forma a/b, com a e b inteiros e b 0; esta
Questões Objetivas A) B) C)
Questões Objetivas 1) Wagner tem 15 moedas, algumas de 25 centavos e outras de 10 centavos, no valor total de 2 reais e 70 centavos. Se x é o número de moedas de 25 centavos que ele tem, qual das equações
Matemática E Extensivo V. 6
Etensivo V. 6 Eercícios ) a) P() é sempre igual à soma dos coeficientes de P(). b) P() é sempre igual ao termo independente de P(). c) P() é a raiz de P(), pois P() =. ) D a) P() = ³ + 7. ² 7. P() = +
Álgebra. Progressão geométrica (P.G.)
Progressão geométrica (P.G.). Calcule o valor de sabendo que: a) + 6 e 0-6 formam nessa ordem uma P.G.. b) + e + 6 formam nessa ordem uma P.G. crescente.. Calcule o seto termo de uma progressão geométrica
Material Teórico - Módulo de Divisibilidade. MDC e MMC - Parte 2. Sexto Ano. Prof. Angelo Papa Neto
Material Teórico - Módulo de Divisibilidade MDC e MMC - Parte 2 Sexto Ano Prof. Angelo Papa Neto 1 Mínimo múltiplo comum Continuando nossa aula, vamos estudar o mínimo múltiplo comum de um conjunto finito
MÓDULO II. Operações Fundamentais em Z. - Sinais iguais das parcelas, somam-se conservando o sinal comum. Exemplo: 2 4 = 6
1 MÓDULO II Nesse Módulo vamos aprofundar as operações em Z. Para introdução do assunto, vamos percorrer a História da Matemática, lendo os textos dispostos nos links a seguir: http://www.vestibular1.com.br/revisao/historia_da_matematica.doc
Material Teórico - Módulo de Potenciação e Dízimas Periódicas. Oitavo Ano. Prof. Ulisses Lima Parente
Material Teórico - Módulo de Potenciação e Dízimas Periódicas Potenciação Oitavo Ano Prof Ulisses Lima Parente 1 Potência de expoente inteiro positivo Antes de estudar potências, é conveniente relembrar
Portal da OBMEP. Material Teórico - Módulo de Potenciação e Dízimas Periódicas. Oitavo Ano
Material Teórico - Módulo de Potenciação e Dízimas Periódicas Potenciação Oitavo Ano Autor: Prof Angelo Papa Neto Revisor: Prof Antonio Caminha M Neto 1 Potência de expoente inteiro positivo Antes de estudar
Área e Teorema Fundamental do Cálculo
UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Área e Teorema Fundamental
Regras de Divisibilidade. 6 ano E.F. Professores Cleber Assis e Tiago Miranda
Módulo Resolução de Exercícios Regras de Divisibilidade 6 ano E.F. Professores Cleber Assis e Tiago Miranda Resolução de Exercícios Regras de Divisibilidade 1 Exercícios Introdutórios Exercício 1. de:
ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS 10º ANO DE MATEMÁTICA A Tema II Funções e Gráficos. Funções polinomiais. Função módulo.
ESCOLA SECUNDÁRIA COM º CICLO D. DINIS 0º ANO DE MATEMÁTICA A Ponto três do plano de trabalho nº 5 Tarefa nº 4. Considere a família de funções polinomiais: f(x) = a(x + )(x )(x + 5), a \ {0}.. Represente
A = B, isto é, todo elemento de A é também um elemento de B e todo elemento de B é também um elemento de A, ou usando o item anterior, A B e B A.
Capítulo 1 Números Reais 1.1 Conjuntos Numéricos Um conjunto é uma coleção de elementos. A relação básica entre um objeto e o conjunto é a relação de pertinência: quando um objeto x é um dos elementos
OPERAÇÕES COM NÚMEROS INTEIROS
ADIÇÃO DE NÚMEROS INTEIROS COM SINAIS IGUAIS OPERAÇÕES COM NÚMEROS INTEIROS 1º Caso: (+3 ) + (+4) = + 7 +3 + 4 = + 7 ADIÇÃO DE NÚMEROS INTEIROS Quando duas parcelas são positivas, o resultado da adição
Exemplos: -5+7=2; 12-5=7; -4-3=-7; -9+5=-4; -8+9=1; -4-2=-6; -6+10=4
0 - OPERAÇÕES NUMÉRICAS ) Adição algébrica de números inteiros envolve dois casos: os números têm sinais iguais: soma-se os números e conserva-se o sinal; os números têm sinais diferentes: subtrai-se o
2. Números Inteiros. A representação gráfica dos números Inteiros Os números podem ser representados numa reta horizontal, a reta numérica:
. Números Inteiros Sempre que estamos no inverno as temperaturas caem. Algumas cidades do Sul do Brasil chegam até mesmo a nevar. Quando isso acontece, a temperatura está menor do que zero. Em Urupema,
Matemática E Extensivo V. 6
Etensivo V. 6 Eercícios ) a) P() é sempre igual à soma dos coeficientes de P(). b) P() é sempre igual ao termo independente de P(). c) P() é a raiz de P(), pois P() =. a) P() = ³ + 7. ² 7. P() = + 7 7
Percebendo Padrões. Vitor T T T F T T T F T T T F T T T F T T T F Maria T T T T T T T F F F T T T T T T T F F F
Polos Olímpicos de Treinamento Curso de Combinatória - Nível 1 Prof. Bruno Holanda Aula 6 Percebendo Padrões Uma das principais habilidades que deve ser desenvolvida pelos alunos que desejam ter um bom
Apontamentos de Matemática 6.º ano
Revisão (divisores de um número) Os divisores de um número são os números naturais pelos quais podemos dividir esse número de forma exata (resto zero). Exemplos: Os divisores de 4 são 1, e 4, pois se dividirmos
MATEMÁTICA. Docente: Marina Mariano de Oliveira
MATEMÁTICA Docente: Marina Mariano de Oliveira MATEMÁTICA Docente: Marina Mariano de Oliveira Bacharelado em Meteorologia (incompleto) Instituto de Astronomia, Geofísica e Ciências Atmosféricas da Universidade
Hewlett-Packard CONJUNTOS NUMÉRICOS. Aulas 01 a 08. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Ramos
Hewlett-Packard CONJUNTOS NUMÉRICOS Aulas 01 a 08 Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Ramos Ano: 2019 Sumário CONJUNTOS NUMÉRICOS... 2 Conjunto dos números Naturais... 2 Conjunto dos números
Revisão: Potenciação e propriedades. Prof. Valderi Nunes.
Revisão: Potenciação e propriedades. Prof. Valderi Nunes. Potenciação Antes de falar sobre potenciação e suas propriedades, é necessário que primeiro saibamos o que vem a ser uma potência. Observe o exemplo
PROJETO KALI MATEMÁTICA B AULA 3 FRAÇÕES
PROJETO KALI - 20 MATEMÁTICA B AULA FRAÇÕES Uma ideia sobre as frações Frações são partes de um todo. Imagine que, em uma lanchonete, são vendidos pedaços de pizza. A pizza é cortada em seis pedaços, como
Prog A B C A e B A e C B e C A,B e C Nenhum Pref
Polos Olímpicos de Treinamento Curso de Combinatória - Nível 2 Prof. Bruno Holanda Aula 2 Lógica II Quando lemos um problema de matemática imediatamente podemos ver que ele está dividido em duas partes:
UNIVERSIDADE FEDERAL DO CEARÁ CENTRO DE TECNOLOGIA PROGRAMA DE EDUCAÇÃO TUTORIAL APOSTILA DE CÁLCULO. Realização:
UNIVERSIDADE FEDERAL DO CEARÁ CENTRO DE TECNOLOGIA PROGRAMA DE EDUCAÇÃO TUTORIAL APOSTILA DE CÁLCULO Realização: Fortaleza, Fevereiro/2010 1. LIMITES 1.1. Definição Geral Se os valores de f(x) puderem
NÚMEROS RACIONAIS. operações
UNIVERSIDADE FEDERAL FLUMINENSE INSTITUTO DE EDUCAÇÃO DE ANGRA DOS REIS DISCIPLINA: MATEMÁTICA CONTEÚDO E MÉTODO Período: 2018.2 NÚMEROS RACIONAIS operações Prof. Adriano Vargas Freitas Noção de número
MATEMÁTICA. Aula 4. Professor : Dêner Rocha. Monster Concursos 1
MATEMÁTICA Aula 4 Professor : Dêner Rocha Monster Concursos 1 Divisibilidade Critérios de divisibilidade São critérios que nos permite verificar se um precisarmos efetuar grandes divisões. número é divisível
Frações Se dividirmos um objecto, ou seja, uma unidade em várias partes iguais, a cada uma dessas partes dá-se o nome de fração.
Frações Se dividirmos um objecto, ou seja, uma unidade em várias partes iguais, a cada uma dessas partes dá-se o nome de fração. numerador 1 6 traço de fração ( : ) denominador Uma fração envolve a seguinte
CONTAGEM. (a) uma semana (b) um mês (c) dois meses (d) quatro meses (e) seis meses
CONTAGEM Exercício 1(OBMEP 2011) Podemos montar paisagens colocando lado a lado, em qualquer ordem, os cinco quadros da figura. Trocando a ordem dos quadros uma vez por dia, por quanto tempo, aproximadamente,
Números Primos, MDC e MMC. O próximo teorema nos diz que os primos são as peças fundamentais dos números inteiros:
Polos Olímpicos de Treinamento Curso de Teoria dos Números - Nível Prof. Samuel Feitosa Aula 4 Números Primos, MDC e MMC. Definição 1. Um inteiro p > 1 é chamado número primo se não possui um divisor d
invés de dizermos, por exemplo, um seis, para a fração, dizemos um sexto. Os
FRAÇÕES Os números naturais {0,,, 3,...} são uteis para realizar contagens de objetos, por exemplo. No entanto, eles não dão conta de algumas situações do cotidiano, como quantificar partes de um todo.
O espião que me amava
Reforço escolar M ate mática O espião que me amava Dinâmica 2 3ª Série 4º Bimestre DISCIPLINA Série CAMPO CONCEITO Matemática Ensino Médio 3ª Algébrico-Simbólico. Polinômios e Equações Algébricas. Aluno
