DOUGLAS LÉO MATEMÁTICA
|
|
|
- Alexandre Alves Camelo
- 8 Há anos
- Visualizações:
Transcrição
1
2 DOUGLAS LÉO MATEMÁTICA
3 1 - (CESPE - UNB - MS - AGENTE ADMINISTRATIVO) 26- Se o diretor de uma secretaria do MS quiser premiar 3 de seus 6 servidores presenteando um deles com um ingresso para cinema, outro com um ingresso para teatro e o terceiro com um ingresso para show, ele terá mais de 100 maneiras diferentes para fazê-lo. 27- Se o diretor de uma secretaria do MS quiser premiar 3 de seus 6 servidores presenteando cada um deles com um ingresso para teatro, ele terá mais de 24 maneiras diferentes para fazê-lo.
4 2 - (CESPE - UNB - BB - ESCRITURÁRIO) Ao visitar o portal do Banco do Brasil, os clientes do Banco do Brasil Estilo podem verificar que, atualmente, há 12 tipos diferentes de fundos de investimento Estilo à sua disposição, listados em uma tabela. Com respeito à quantidade e diversidade de fundos disponíveis, julgue os itens subseqüentes.
5 I - Considere que, entre os fundos de investimento Estilo, haja 3 fundos classificados como de renda fixa, 5 fundos classificados como de multimercado, 3 fundos de ações e 1 fundo referenciado. Considere, ainda, que, no portal do Banco do Brasil, esses fundos sejam exibidos em uma coluna, de modo que os fundos de mesma classificação aparecem juntos em seqüência. Sendo assim, a quantidade de maneiras diferentes que essa coluna pode ser formada é inferior a
6 II- Considere que os 12 fundos Estilo mencionados sejam assim distribuídos: 1 fundo referenciado, que é representado pela letra A; 3 fundos de renda fixa indistinguíveis, cada um representado pela letra B; 5 fundos multimercado indistinguíveis, cada um representado pela letra C; e 3 fundos de ações indistinguíveis, cada um representado pela letra D. Dessa forma, o número de escolhas distintas que o banco dispõe para listar em coluna esses 12 fundos, utilizando-se apenas suas letras de representação A, B, C e D, é inferior a 120 mil.
7 3 - (CESPE - UNB - BB - ESCRITURÁRIO) Há exatamente 495 maneiras diferentes de se distribuírem 12 funcionários de um banco em 3 agências, de modo que cada agência receba 4 funcionários.
8 4 (CESPE UNB PRF) Uma unidade policial, com 12 agentes, vai preparar equipes de educação para o trânsito para, no período carnavalesco, conscientizar motoristas de que atitudes imprudentes como desrespeito à sinalização, excesso de velocidade, ultrapassagens indevidas e a condução de veículo por indivíduo alcoolizado têm um potencial ofensivo tão perigoso quanto o de uma arma de fogo. Com base nessas informações, julgue os itens seguintes. 46. Existem 12!/(3!) 4 maneiras de se montar quatro equipes, cada uma delas com 3 agentes. 47. Se cada equipe for formada por 3 agentes, então, a partir dos 12 agentes da unidade, a quantidade de maneiras diferentes de se formar essas equipes será superior a 200.
9 5 (CESPE UNB STJ Téc.Jud. 2008) Com relação a combinatória, cada um dos itens subsequentes apresenta uma situação hipotética, seguida de uma assertiva a ser julgada. I - Em um tribunal, o desembargador tem a sua disposição 10 juízes para distribuir 3 processos para julgamento: um da área trabalhista, outro da área cível e o terceiro da área penal. Nesse tribunal, todos os juízes têm competência para julgar qualquer um dos 3 processos, mas cada processo será distribuído para um único juiz, que julgará apenas esse processo. Nessa situação, o desembargador tem mais de 700 formas diferentes para distribuir os processos.
10 II - Em um tribunal, deve ser formada uma comissão de 8 pessoas, que serão escolhidas entre 12 técnicos de informática e 16 técnicos administrativos. A comissão deve ser composta por 3 técnicos de informática e 5 técnicos administrativos. Nessa situação, a quantidade de maneiras distintas de se formar a comissão pode ser corretamente representada por. 12! 3!.9! + 16! 5!.11!
11 6 - (CESPE - UNB - ABIN - AG. TÉC. INTELIGENCIA) Com relação aos princípios e técnicas de contagem, julgue o item subsequente. I - Caso o chefe de um órgão de inteligência tenha de escolher 3 agentes entre os 7 disponíveis para viagens um deles para coordenar a equipe, um para redigir o relatório de missão e um para fazer os levantamentos de informações, o número de maneiras de que esse chefe dispõe para fazer suas escolhas é inferior a 200.
12 II - Caso o servidor responsável pela guarda de processos de determinado órgão tenha de organizar, em uma estante com 5 prateleiras, 3 processos referentes a cidades da região Nordeste, 3 da região Norte, 2 da região Sul, 2 da região Centro-Oeste e 1 da região Sudeste, de modo que processos de regiões distintas fiquem em prateleiras distintas, então esse servidor terá maneiras distintas para organizar esses processos.
13 7 - (CESPE - UNB - CPRM - ANALISTA DE GEOCIÊNCIAS) Considerando que, em um sistema de coordenadas cartesianas ortogonais xoy, os pontos de coordenadas (x, y) que satisfazem à equação 2x 2 12x + 2y2 + 4y + 2 = 0 estão sobre uma circunferência, é correto afirmar que o centro dessa circunferência está no primeiro quadrante.
14 Considerando que, em um sistema de coordenadas cartesianas ortogonais xoy, os pontos de coordenadas (x, y) que satisfazem à equação 2x 2 12x + 2y 2 + 4y + 2 = 0 estão sobre uma circunferência, é correto afirmar que o raio da circunferência é igual a 3.
15
16
17
a) 20 b) 16 c) 12 d) 10 e) 4
Uma loja vende barras de chocolate de diversos sabores. Em uma promoção, era possível comprar três barras de chocolate com desconto, desde que estas fossem dos sabores ao leite, amargo, branco ou com amêndoas,
RACIOCÍNIO LÓGICO Edital-PCDF: 1.2 RACIOCÍNIO LÓGICO (6 QUESTÕES): 11 Proposições e conectivos. 12 Operações lógicas sobre proposições.
RACIOCÍNIO LÓGICO Edital-PCDF: 1.2 RACIOCÍNIO LÓGICO (6 QUESTÕES): 11 Proposições e conectivos. 12 Operações lógicas sobre proposições. 13 Tabelas-verdade. 14 Tautologias, contradições e contingências.
RACIOCÍNIO LÓGICO-MATEMÁTICO 20 AULAS
RACIOCÍNIO LÓGICO-MATEMÁTICO 20 AULAS 1 Números inteiros, racionais e reais. 1.1 Problemas de contagem. 2 Sistema legal de medidas. 3 Razões e proporções; divisão proporcional. 3.1 Regras de três simples
CONHECIMENTOS ESPECÍFICOS
De acordo com o comando a que cada um dos itens de 51 a 120 se refira, marque, na folha de respostas, para cada item: o campo designado com o código C, caso julgue o item CERTO; ou o campo designado com
Estratégias de Aprovação Desvendando as Carreiras
Estratégias de Aprovação Desvendando as Carreiras Diretoria Comercial e Marketing Agosto de 2011 Área Fiscal Nível Superior: Receita Federal ICMS (Estadual) ISS (Municipal) MTE INSS TCU TCM (RJ/SP) Auditor
COLÉGIO EQUIPE DE JUIZ DE FORA MATEMÁTICA - 3º ANO EM. 1. O número de anagramas da palavra verão que começam e terminam por consoante é:
1. O número de anagramas da palavra verão que começam e terminam por consoante é: a) 120 b) 60 c) 12 d) 24 e) 6 2. Com as letras da palavra prova, podem ser escritos x anagramas que começam por vogal e
RACIOCÍNIO LOGICO- MATEMÁTICO. Prof. Josimar Padilha
RACIOCÍNIO LOGICO- MATEMÁTICO Prof. Josimar Padilha Um jogo é constituído de um tabuleiro com 4 filas (colunas) numeradas de 1 a 4 da esquerda para direita e de 12 pedras 4 de cor amarela, 4 de cor verde
Quero ver nos comentários quantas cada um acertou! E ganha surpresa!
Raciocínio lógico matemático Quero ver nos comentários quantas cada um acertou! E ganha surpresa! Análise combinatória 1 - ( CESPE - 2005 - TRT-16R ) Uma moeda é jogada para o alto 10 vezes. Em cada jogada,
16/11/2016 A) 10,15% B) 10,35 C) 9,26% D) 9,85% E) 10,24%
1 (FUNRIO TEC. ENF. PM RJ) Num determinado país, o governo instituiu, no mesmo mês, dois reajustes consecutivos no preço do litro da gasolina. O primeiro reajuste foi de 4% e o segundo reajuste, aplicado
Matemática. Questão 1. 3 a série do Ensino Médio Turma. 1 o Bimestre de 2016 Data / / Escola. Aluno RESOLUÇÃO: AVALIAÇÃO DA APRENDIZAGEM EM PROCESSO
EM AVALIAÇÃO DA APRENDIZAGEM EM PROCESSO Matemática 3 a série do Ensino Médio Turma GOVERNO DO ESTADO DE SÃO PAULO SECRETARIA DA EDUCAÇÃO 1 o Bimestre de 2016 Data / / Escola Aluno Questão 1 Sabemos que
Proposta de teste de avaliação
Proposta de teste de avaliação Matemática A 10. O ANO DE ESCOLARIDADE Duração: 90 minutos Data: Grupo I Na resposta aos itens deste grupo, selecione a opção correta. Escreva, na folha de respostas, o número
Análise Combinatória Intermediário
Análise Combinatória Intermediário 1. (AFA) As senhas de acesso a um determinado arquivo de um microcomputador de uma empresa deverão ser formadas apenas por 6 dígitos pares, não nulos. Sr. José, um dos
A partir das proposições Se não tem informações precisas ao tomar decisões, então o policial toma decisões ruins e Se o policial teve treinamento
Se as premissas P1 e P2 de um argumento forem dadas, respectivamente, por Todos os leões são pardos e Existem gatos que são pardos, e a sua conclusão P3 for dada por Existem gatos que são leões, então
Projeto Jovem Nota 10 Permutação Lista 1 Professor Marco Costa 1. (Fgv 97) Um processo industrial deve passar pelas etapas A, B, C, D e E.
1 1. (Fgv 97) Um processo industrial deve passar pelas etapas A, B, C, D e E. a) Quantas seqüências de etapas podem ser delineadas se A e B devem ficar juntas no início do processo e A deve anteceder B?
1. Sobre as medidas cautelares pessoais no processo penal, é correto afirmar que:
P á g i n a 1 PROVA DAS DISCIPLINAS CORRELATAS DIREITO PROCESSUAL PENAL 1. Sobre as medidas cautelares pessoais no processo penal, é correto afirmar que: I - De acordo com o Código de Processo Penal, as
Raciocínio Lógico- Matemático
CEM CADERNO DE EXERCÍCIOS MASTER Raciocínio Lógico- Matemático Período: 2008-2017 Sumário Raciocínio Lógico e Matemático... 3 Tabela verdade das proposições compostas... 3 Associação de informações...
ano. O seu valor, em reais, após três anos será; A) R$ ,00 B) R$ 8.190,0 C) R$ 6.553,60 D) R$ 5.242,88 E) R$ 4.194,30
Matemática Douglas Léo EXERCÍCIOS 1. (FUNRIO TEC. ENF. PM RJ - 2008) Num determinado país, o governo instituiu, no mesmo mês, dois reajustes consecutivos no preço do litro da gasolina. O primeiro reajuste
Análise Combinatória
Introdução Análise combinatória PROBLEMAS DE CONTAGEM Princípio Fundamental da Contagem Exemplo: Um número de telefone é uma seqüência de 8 dígitos, mas o primeiro dígito deve ser diferente de 0 ou 1.
RACIOCÍNIO LÓGICO. Com o Prof. Paulo Henrique (PH)
RACIOCÍNIO LÓGICO Com o Prof. Paulo Henrique (PH) RACIOCÍNIO LÓGICO: (1) Questões Lógicas Sequências, reconhecimento de padrões, progressões aritmética e geométrica. Problemas de raciocínio: deduzir informações
Matemática. Resolução das atividades complementares. M21 Geometria Analítica: Cônicas
Resolução das atividades complementares Matemática M Geometria Analítica: Cônicas p. FGV-SP) Determine a equação da elipse de centro na origem que passa pelos pontos A, 0), B, 0) e C0, ). O centro da elipse
F I C H A D E D I A G N O S E. Curso CCS e CCT Componente de Formação Geral Data / / Nome Nº GRUPO I
COLÉGIO INTERNACIONAL DE VILAMOURA INTERNATIONAL SCHOOL Disciplina Matemática A T E S T E D E A V A L I A Ç Ã O F I C H A D E D I A G N O S E Ensino Secundário Ano 11º - A e B Duração 90 min Curso CCS
Análise Combinatória
Análise Combinatória PFC Princípio Fundamental da Contagem O princípio fundamental da contagem está diretamente ligado às situações que envolvem as possibilidades de um determinado evento ocorrer, por
Progressão aritmética e progressão geométrica
Progressão aritmética e progressão geométrica Qualquer conjunto cujos elementos obedecem a uma ordem é uma sequência. No cotidiano, encontramos várias sequências: a lista de chamada de uma turma, as palavras
Centro Educacional ETIP
Centro Educacional ETIP Trabalho Trimestral de Matemática 2 Trimestre/2014 Data: 08/08/2014 Professor: Nota: Valor : [0,0 2,0] Nome do (a) aluno (a): Nº Turma: 3 M CONTEÚDO Análise Combinatória, Princípio
Matrizes e Determinantes
Aula 10 Matrizes e Determinantes Matrizes e Determinantes se originaram no final do século XVIII, na Alemanha e no Japão, com o intuito de ajudar na solução de sistemas lineares baseados em tabelas formadas
Matemática Financeira, Raciocínio Lógico E Matemática
Matemática Financeira, Raciocínio Lógico E Matemática CAIXA ECONÔMICA FEDERAL (CAIXA) CESPE www.thiagopacifico.com.br Página thiagopacifico Thiago Pacífico III Matemática Fácil com Thiago PROVA COMENTADA
Matemática Aplicada à Informática
Matemática Aplicada à Informática Unidade 10.0 Matrizes Curso Técnico em Informática Aline Maciel Zenker SUMÁRIO SUMÁRIO... 2 MATRIZES... 3 1 O QUE É UMA MATRIZ?... 3 1.1 Exemplos 1 de Matriz... 4 1.2
Escola Secundária de Alberto Sampaio Ficha Formativa de Matemática A Geometria II O produto escalar na definição de lugares geométricos
Escola Secundária de Alberto Sampaio Ficha Formativa de Matemática A Geometria II O produto escalar na definição de lugares geométricos º Ano No plano Mediatriz de um segmento de reta [AB] Sendo M o ponto
Proposta de Teste Intermédio Matemática A 11.º ano
Nome da Escola no letivo 20-20 Matemática 11.º ano Nome do luno Turma N.º Data Professor - - 20 GRUP I s cinco itens deste grupo são de escolha múltipla. Em cada um deles, são indicadas quatro opções,
Matemática 2 Ano do Ensino Médio. Lista 1 Análise Combinatória. 1. Simplifique as expressões algébricas.
Estudante: Nº. Matemática 2 Ano do Ensino Médio Professor: Diego Andrades Lista 1 Análise Combinatória 1. Simplifique as expressões algébricas. ( x 1)! x! a) ( n 1)! b) ( k 2)! k! c) ( n 1)! ( n 2)! d)
MARATONA INSS. Prof. Josimar Padilha
MARATONA INSS Prof. Josimar Padilha Mariana é uma estudante que tem grande apreço pela matemática, apesar de achar essa uma área muito difícil. Sempre que tem tempo suficiente para estudar, Mariana é aprovada
MINISTÉRIO DA EDUCAÇÃO COLÉGIO PEDRO II DIRETORIA-GERAL SECRETARIA DE ENSINO EXAME DE SELEÇÃO E CLASSIFICAÇÃO DE CANDIDATOS
MINISTÉRIO DA EDUCAÇÃO COLÉGIO PEDRO II DIRETORIA-GERAL SECRETARIA DE ENSINO EXAME DE SELEÇÃO E CLASSIFICAÇÃO DE CANDIDATOS À MATRÍCULA NA 1ª SÉRIE DO ENSINO MÉDIO INTEGRADO - ÁREA DE FORMAÇÃO: TÉCNICO
Este caderno, com dezesseis páginas numeradas sequencialmente, contém dez questões de Matemática. Não abra o caderno antes de receber autorização.
2ª Fase Exame Discursivo 29/11/2015 Matemática Caderno de prova Este caderno, com dezesseis páginas numeradas sequencialmente, contém dez questões de Matemática. Não abra o caderno antes de receber autorização.
MARATONA INSS LEI 8.112/90. Rodrigo Cardoso
MARATONA INSS LEI 8.112/90 Rodrigo Cardoso Acerca das responsabilidades e penalidades do servidor público, julgue os itens que se seguem. 1. (CESPE 2015/TJDFT/ANALISTA JUDICIÁRIO/ÁREA JUDICIÁRIA) A aplicação
... n = 10, então n não é múlti- a = 2, então. log c = 2,7, então a, b, c, nesta ordem, formam
1. (UFRGS/000) As rodas traseiras de um veículo têm 4,5 metros de circunferência cada uma. Enquanto as rodas dianteiras dão 15 voltas, as traseiras dão somente 1 voltas. A circunferência de cada roda dianteira
MATEMÁTICA. O aluno achou interessante e continuou a escrever, até a décima linha. Somando os números dessa linha, ele encontrou:
MATEMÁTICA Passando em uma sala de aula, um aluno verificou que, no quadro-negro, o professor havia escrito os números naturais ímpares da seguinte maneira: 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 O aluno
DEFINIÇÃO DE FUNÇÃO y = x²
DEFINIÇÃO DE FUNÇÃO Definimos função como a relação entre dois ou mais conjuntos, estabelecida por uma lei de formação, isto é, uma regra geral. Os elementos de um grupo devem ser relacionados com os elementos
Professor Wisley Aula 09
- Professor Wisley www.aprovaconcursos.com.br Página 1 de 5 FORRO POR PRERROGATIVA DE FUNÇÃO 1. OBSERVAÇÕES I Não se fala mais em manutenção
Teste de Matemática A 2016 / 2017
Teste de Matemática A 2016 / 2017 Teste N.º 4 Matemática A Duração do Teste: 90 minutos 11.º Ano de Escolaridade Nome do aluno: N.º: Turma: Grupo I Os cinco itens deste grupo são de escolha múltipla. Em
SIMULADO. 05) Atribuindo-se todos os possíveis valores lógicos V ou F às proposições A e B, a proposição [( A) B] A terá três valores lógicos F.
01) Considere as seguintes roosições: P: Está quente e Q: Está chovendo. Então a roosição R: Se está quente e não está chovendo, então está quente ode ser escrita na forma simbólica P..( Q) P, em que P..(
POLÍCIA RODOVIÁRIA FEDERAL
TABELA VERDADE O Globo, 7/3/2007, p. 31 (com adaptações). Com referência ao texto e considerando o gráfico nele apresentado, julgue os itens a seguir. O número de mulheres no mercado de trabalho mundial
Aula 00 Aula Demonstrativa
Aula 00 Aula Demonstrativa Apresentação... Relação das questões comentadas... 10 Gabarito... 1 www.pontodosconcursos.com.br 1 Apresentação Olá, pessoal! Tudo bem com vocês? Esta é a aula demonstrativa
REVISÃO 1 - VETORES. 02) Dados os vetores a, b e c, represente graficamente: a + b ; a + c ; a + b + c.
Estudante: Turma: 23 Professores: Renato Miletti Componente Curricular: FÍSICA Data: / /2010 1º Trimestre/2010 REVISÃO 1 - VETORES 01) Dados os etores a e b, cujos módulos alem, respectiamente, 6 e 8,
Como o número de convidados de Daniel é igual à soma do número de convidados de Bernardo e Carlos, temos que D B C. (Equação 1)
UFJF MÓDULO III DO PISM TRIÊNIO 01-01 PROVA DE MATEMÁTICA Questão 1 Quatro formandos da UFJF, André, Bernardo, Carlos e Daniel, se juntaram para organizar um churrasco O número de convidados de Daniel
FUNÇÕES(1) FUNÇÃO POLINOMIAL DO 2º GRAU
FUNÇÕES(1) FUNÇÃO POLINOMIAL DO º GRAU 1. (Uece 015) Se a função real de variável real, definida por f(1) =, f() = 5 e f(3) =, então o valor de f() é a). b) 1. c) 1. d). f(x) = ax + bx + c, é tal que.
Na resposta a cada um dos itens deste grupo, selecione a única opção correta.
Exame Nacional exame nacional do ensino secundário Decreto Lei n. 9/0, de de julho Prova Escrita de Matemática A. Ano de Escolaridade Prova 6/.ª Fase Duração da Prova: 0 minutos. Tolerância: 0 minutos
LISTA DE EXERCÍCIOS ESPELHOS ESFÉRICOS E PLANOS Prof. Evandro 1ª Série E.M.
LISTA DE EXERCÍCIOS ESPELHOS ESFÉRICOS E PLANOS Prof. Evandro 1ª Série E.M. 01 Um objeto é colocado a 10 cm de um espelho côncavo, de distância focal igual a 20 cm. A imagem do objeto será: a) do tamanho
CEF Matemática / Estatística I Prof. Douglas Léo
CEF Matemática / Estatística I Prof. Douglas Léo 1- (CESPE UNB B.B S.A CAD. YANKE 2007) 2- (CESPE UNB B.B S.A CAD. BRANCO 2007) 1 2 3 - (CESPE UNB B.B S.A CAD. C 2008) 3 4 - (CESPE UNB B.B S.A CAD. VERMELHO
TESTE RÁPIDO RACIOCÍNIO LÓGICO MATEMÁTICO
TESTE RÁPIDO RACIOCÍNIO LÓGICO MATEMÁTICO RACIOCÍNIO LÓGICO MATEMÁTICO 1- Prova: CESPE - 2013 - MI - Assistente Técnico Administrativo cisternas. Com base nessas informações e considerando que todos os
MATEMÁTICA ELEMENTAR II:
Marcelo Gorges Olímpio Rudinin Vissoto Leite MATEMÁTICA ELEMENTAR II: situações de matemática do ensino médio no dia a dia 2009 2009 IESDE Brasil S.A. É proibida a reprodução, mesmo parcial, por qualquer
CONTEÚDOS DO PRIMEIRO PERÍODO EXERCÍCIOS DE RECUPERAÇÃO DO PRIMEIRO PERÍODO
Aluno(: Nº Comp. Curricular: Estatística Data: 16/04/2012 1º Período Ensino Médio Comércio Exterior Turma: 5 3MC1/ 2 Professor: José Manuel Análise Combinatória: CONTEÚDOS DO PRIMEIRO PERÍODO 1) Fatorial
2, 1x 4 se x > 10 representa a quantidade de água consumida (em m 3 ) e B(x) representa o valor a ser pago (em reais).
MATEMÁTICA 1 Na cidade A, o valor a ser pago pelo consumo de água é calculado pela companhia de saneamento, conforme mostra o quadro a seguir Quantidade de água consumida (em m 3 ) Valor a ser pago pelo
Associação Catarinense das Fundações Educacionais ACAFE
2 3 4 11) Assinale a alternativa correta em relação à sequência: ( 2, 2, 2, 2,K). A A mesma sequência pode ser representada por ( 2, 4, 8, 16, K) B É uma progressão geométrica de razão igual a -2. C É
GEOMETRIA ANALÍTICA 2017
GEOMETRIA ANALÍTICA 2017 Tópicos a serem estudados 1) O ponto (Noções iniciais - Reta orientada ou eixo Razão de segmentos Noções Simetria Plano Cartesiano Abcissas e Ordenadas Ponto Médio Baricentro -
Como o número de convidados de Daniel é igual à soma do número de convidados de Bernardo e Carlos temos que D B C. (Equação 1)
UFJF MÓDULO III DO PISM TRIÊNIO 0-0 PROVA DE MATEMÁTICA Questão Quatro formandos da UFJF, André, Bernardo, Carlos e Daniel, se juntaram para organizar um churrasco O número de convidados de Daniel é igual
b) externa. EXERCÍCIOS c) tangente. d) secante.
Matemática Douglas Léo EXERCÍCIOS 1. (PUC-RS) A equação da reta que passa pelo ponto P(2,5) e é paralela a reta de equação X Y + 2 = 0 é: a) 3x 2y + 4 = 0 b) 2x 3y + 11 = 0 c) X Y + 7 =0 d) x y + 3 = 0
Prova de Agente de Polícia Federal 2012 (CESPE) Solução e Comentários de Raciocínio Lógico Professor Valdenilson. Caderno de Questões Tipo I
Prova de Agente de Polícia Federal 01 (CESPE) Solução e Comentários de Raciocínio Lógico Professor Valdenilson Caderno de Questões Tipo I Texto 1. Um jovem, ao ser flagrado no aeroporto portando certa
REINALDO ROSSANO LÉO MATOS INFORMÁTICA EXERCÍCIOS QUADRIX LINUX DIREITO PROCESSUAL PENAL
REINALDO ROSSANO LÉO MATOS INFORMÁTICA EXERCÍCIOS QUADRIX LINUX DIREITO PROCESSUAL PENAL CARGOS: OFICIAL DE JUSTIÇA E ANALISTA JUDICIÁRIO FUNÇÃO JUDICIÁRIA PROVA OBJETIVA: 9.1.3. A Prova Objetiva será
matemática geometria analítica pontos, baricentro do triângulo, coeficiente angular e equações da reta Exercícios de distância entre dois pontos
Exercícios de distância entre dois pontos 1. (FUVEST 1ª fase) Sejam A = (1, ) e B = (3, ) dois pontos do plano cartesiano. Nesse plano, o segmento AC é obtido do segmento AB por uma rotação de 60º, no
Curso de Dicas Direito Administrativo Giuliano Menezes
Curso de Dicas Direito Administrativo Giuliano Menezes 2014 2014 Copyright. Curso Agora Eu Eu Passo - - Todos os direitos reservados ao ao autor. AGENTE ADMINISTRATIVO POLÍCIA FEDERAL - 2014 37 A instituição
CPV O Cursinho que Mais Aprova na GV
CPV O Cursinho que Mais Aprova na GV FGV ADM 05/junho/06 MATEMÁTICA APLICADA 0. Para a construção de uma janela na sala de um teatro, existe a dúvida se ela deve ter a forma de um retângulo, de um círculo
10. ANÁLISE COMBINATÓRIA
10. ANÁLISE COMBINATÓRIA 1) Observe a figura: Nessa figura, está representada uma bandeira que deve ser pintada com duas cores diferentes, de modo que a faixa do meio tenha a cor diferente das outras faixas.
Direito Trabalhista 1
Direito Trabalhista 1 Organização da Justiça do Trabalho Emenda Constitucional n. 24 de 09/12/99 colocou fim à representação classista A Emenda Constitucional n. 24 de 9/12/99 pôs fim à representação classista
Coordenadas Polares. Exemplos: Representar em um sistema de coordenadas polares, os seguintes pontos: d) P 4,
Cálculo II Profa. Adriana Cherri 1 Coordenadas Polares Existem vários sistemas de coordenadas que mostram a posição de um ponto em um plano. O sistema de coordenadas polares é um deles. No sistema cartesiano,
Resolução de questões de provas específicas de
4.11.016 Resolução de questões de provas específicas de 4.11.016 #6 - Resoluções de Questões Específicas de Matemática 1. Em um triângulo equilátero de perímetro igual a 6 cm, inscreve-se um retângulo
Legislação Penal Extravagante
CEM CADERNO DE EXERCÍCIOS MASTER Legislação Penal Extravagante Período: 2008-2017 Sumário Legislação Penal Extravagante... 3 Decreto-Lei nº 3.688/1941 - Lei das Contravenções Penais... 3 Lei nº 4.898/1965
Contagem. Próxima Aula: Prova
Contagem Próxima Aula: Prova Conteúdo Correção dos Exercícios Exercício 1 Em época de eleição para o grêmio estudantil do colégio, tiveram 12 candidatos aos cargos de presidente, vice-presidente e secretário.
TEMA 1 PROBABILIDADES E COMBINATÓRIA FICHA DE TRABALHO 12.º ANO COMPILAÇÃO TEMA 1 PROBABILIDADES E COMBINATÓRIA
FICHA DE TRABALHO.º ANO COMPILAÇÃO TEMA 1 PROBABILIDADES E COMBINATÓRIA Site: http://www.mathsuccess.pt Facebook: https://www.facebook.com/mathsuccess TEMA 1 PROBABILIDADES E COMBINATÓRIA Matemática A.º
UFGD FCA PROF. OMAR DANIEL BLOCO 1.1 NOÇÕES DE CARTOGRAFIA
UFGD FCA PROF. OMAR DANIEL BLOCO 1.1 NOÇÕES DE CARTOGRAFIA (Copyright 1991-2006 SPRING - DPI/INPE) 1 (Para uso no SPRING) 1 - Sistemas de Coordenadas Um objeto geográfico qualquer, como uma cidade, a foz
Prova Escrita de Matemática A
EXAME NACIONAL DO ENSINO SECUNDÁRIO Decreto-Lei n.º 74/004, de 6 de Março Prova Escrita de Matemática A 1.º Ano de Escolaridade Prova 635/Época Especial 14 Páginas Duração da Prova: 150 minutos. Tolerância:
DIREITO ADMINISTRATIVO. Professor Emerson Caetano
DIREITO ADMINISTRATIVO Professor Emerson Caetano 1. Acerca de ato administrativo e de procedimento de licitação, julgue o item seguinte. Caso seja necessário, a administração pública poderá revogar ato
Hewlett-Packard PFC. Aulas 01 a. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz
Hewlett-Packard PFC Aulas 01 a Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Ano 2016 Sumário FATORIAL... 2 FATORIAL... 2... 2 PFC... 3 PRINCÍPIOS FUNDAMENTAIS DA CONTAGEM (PFC)... 3 PRELIMINAR 1... 3
A solução do sistema de equações lineares. x 2y 2z = 1 x 2z = 3. 2y = 4. { z = 1. x = 5 y = 2. y = 2 z = 1
MATEMÁTICA e A solução do sistema de equações lineares y z = z = 3 é: y z = a) = 5, y = e z =. b) = 5, y = e z =. c) = 5, y = e z =. d) = 5, y = e z =. e) = 5, y = e z =. y z = z = 3 y z = y z = y = z
GRUPO I. Na resposta a cada um dos itens deste grupo, seleccione a única opção correcta.
GRUPO I Na resposta a cada um dos itens deste grupo, seleccione a única opção correcta. Escreva, na folha de respostas, o número do item e a letra que identifica a opção seleccionada. Não apresente cálculos,
MATEMÁTICA. log 2 x : logaritmo de base 2 de x. 28. Sendo a, b e c números reais, considere as seguintes afirmações.
MATEMÁTICA NESTA PROVA SERÃO UTILIZADOS OS SEGUINTES SÍMBOLOS E CONCEITOS COM OS RESPECTIVOS SIGNIFICADOS: sen x : seno de x log x : logaritmo de base de x 6 Considere que o corpo de uma determinada pessoa
! ( ) Se todos os policiais em questão estiverem habilitados a dirigir, então, formadas as equipes, a quantidade de maneiras distintas de se organizar uma equipe dentro de um veículo com cinco lugares
Atividade extra. Exercício 1. Matemática e suas Tecnologias Matemática. A figura representa o gráfico de uma função.
Atividade extra Exercício 1 A figura representa o gráfico de uma função. Fonte:http://www.pucrs.br/famat/mbotin/matematica/Modificacao_funcoes20072.pdf Qual conjunto representa o domínio dessa função?
Programação II Prof. Marcos Antonio Estremote ESTRUTURAS CONDICIONAIS E DE REPETIÇÃO
Programação II Prof. Marcos Antonio Estremote ESTRUTURAS CONDICIONAIS E DE REPETIÇÃO (Utilizar a Estruturas Condicionais para os Exercícios 1 à 10) 1 - Uma agência bancária possui dois tipos de investimento,
Programa Anual MATEMÁTICA EXTENSIVO
Programa Anual MATEMÁTICA EXTENSIVO Os conteúdos conceituais de Matemática estão distribuídos em 5 frentes. A) Equações do 1º e 2º graus; Estudo das funções; Polinômios; Números complexos; Equações algébricas.
RAIO-X Língua Portuguesa Caixa Econômica Federal
RAIO-X Língua Portuguesa Caixa Econômica Federal Foram analisadas as três últimas provas para Técnico Bancário: - 2010: banca CESPE (múltipla escolha) - 2012: banca CESGRANRIO (múltipla escolha) - 2014:
RESOLUÇÃO DA PROVA DE RACIOCÍCNIO LÓGICO, MATEMÁTICA E ESTATÍSTICA P/ PAPILOSCOPISTA
RESOLUÇÃO DA PROVA DE RACIOCÍCNIO LÓGICO, MATEMÁTICA E ESTATÍSTICA P/ PAPILOSCOPISTA Olá galera!!!! Hoje estou postando a resolução da prova de Raciocínio Lógico para agente penitenciário do DF, ocorrida
MAGISTRATURA FEDERAL
COLEÇÃO EDITAL SISTEMATIZADO Leonardo Garcia Roberval Rocha ME MAGISTRATURA FEDERAL JUIZ FEDERAL SUBSTITUTO edital sistematizado Mais de 2200 questões (2100 objetivas, 156 discursivas). Extraídas de provas
A x,y e B x,y, as coordenadas do ponto médio desse segmento serão dadas por:
. Plano Cartesiano: é formado por dois eixos perpendiculares, um horizontal (eixo das abscissas) e outro vertical (eixo das ordenadas), dividido em quatro quadrantes contados no sentido anti-horário como
RACIOCÍNIO LÓGICO. Raciocínio Lógico Ficha 1 Prof. Nelson Carnaval
RACIOCÍNIO LÓGICO Lógica proposicional Chama-se proposição toda sentença declarativa que pode ser classificada em verdadeira ou falsa, mas não as duas. Letras são usualmente utilizadas para denotar proposições.
Escola Secundária da Sobreda. Análise Combinatória e Probabilidades. Actividade 4
Escola Secundária da Sobreda Análise Combinatória e Probabilidades Actividade 4 Os vinte alunos de uma turma de uma escola secundária resolveram formar uma comissão de três de entre eles para organizar
Módulo de Geometria Anaĺıtica 1. 3 a série E.M.
Módulo de Geometria Anaĺıtica 1 Equação da Reta. 3 a série E.M. Geometria Analítica 1 Equação da Reta. 1 Exercícios Introdutórios Exercício 1. Determine a equação da reta cujo gráfico está representado
PROBABILIDADE. Prof. Patricia Caldana
PROBABILIDADE Prof. Patricia Caldana Estudamos probabilidade com a intenção de prevermos as possibilidades de ocorrência de uma determinada situação ou fato. Para determinarmos a razão de probabilidade,
Teste Intermédio Matemática A. Versão 1. Teste Intermédio Matemática A. Versão 1. Duração do Teste: 90 minutos º Ano de Escolaridade
Teste Intermédio Matemática A Versão 1 Teste Intermédio Matemática A Versão 1 Duração do Teste: 90 minutos 6.05.2008 11.º Ano de Escolaridade Decreto-Lei n.º 74/2004, de 26 de Março Na sua folha de respostas,
TJRJ SUMÁRIO. Língua Portuguesa. Gêneros textuais: descrição, narração, dissertação expositiva e argumentativa...3
Língua Portuguesa Gêneros textuais: descrição, narração, dissertação expositiva e argumentativa...3 Tipos textuais: informativo, publicitário, didático, instrucional e preditivo...3 Marcas de textualidade:
(a) R$ 2000,00. (b) R$ 1500,00. (c) R$ 2500,00. (d) R$ 1000,00. (e) R$ 3000,00. (f) I. R.
1) Um investidor tem 2/5 do seu dinheiro empregado em títulos, que lhe asseguram um rendimento a juros simples de 0,5% por mês, e o restante em ações, que lhe proporcionam 30% de lucro ao ano. Qual foi
COLÉGIO NOSSA SENHORA DA ASSUNÇÃO
COLÉGIO NOSSA SENHORA DA ASSUNÇÃO FAMALICÃO ANADIA FICHA DE TRABALHO N.º2 DE MATEMÁTICA Data: Outubro de 2009 Turmas: 12ºA e 12ºB TÉCNICAS DE CONTAGEM: Arranjos com repetição ; Arranjos sem repetição;
PODERES ADMINISTRATIVOS
PODERES ADMINISTRATIVOS Direito Administrativo Prof. Rodrigo Cardoso PODER HIERÁRQUICO É o que consta no art. 116, da Lei n. 8.112/1990: Art. 116. São deveres do servidor: (...) IV cumprir as ordens superiores,
Exercícios de Matemática Geometria Analítica
Eercícios de Matemática Geometria Analítica. (UFRGS) Considere um sistema cartesiano ortogonal e o ponto P(. ) de intersecção das duas diagonais de um losango. Se a equação da reta que contém uma das diagonais
