Soluções da Lista de Exercícios Unidade 4

Tamanho: px
Começar a partir da página:

Download "Soluções da Lista de Exercícios Unidade 4"

Transcrição

1 Soluções da Lista de Exercícios Unidade 4. a) Como 4! 4 e 4 6, de fato temos n! > n para n 4. Suponhamos que a desigualdade valha para algum n 4, ou seja n! > n. Multiplicando os dois lados da desigualdade por n +, obtemos (n+)! > (n+) n >. n n+ (a última desigualdade vale porque n + > para todo n 4). Logo, a desigualdade também vale para n +. Portanto, por indução, ela é válida para todo n 4. b) Como 7! 040 e 7 87, de fato temos n! > n para n 7. Suponhamos que a desigualdade valha para algum n 7, ou seja n! > n. Multiplicando os dois lados da desigualdade por n +, obtemos (n+)! > (n+) n >. n n+ (a última desigualdade vale porque n + > para todo n 7). Logo, a desigualdade também vale para n +. Portanto, por indução, ela é válida para todo n 7. c) Como >, a desigualdade vale para n. 4 Suponhamos que ela seja válida para algum n, ou seja, n + + n n > 4. Subtraindo n + e somando n + + a ambos os lados da desigualdade, obtemos n + n + + n (n + ) > 4 + n + + n + n + (n + ) + (n + ) (n + ) + 4 (n + )(n + ) 4 + (n + )(n + ) >. Logo, a desigualdade também é válida para n +. Portanto, 4 por indução, ela é válida para todo n. d) Como + < 4, a desigualdade vale para n. Ela também vale para n, já que + <. Suponhamos que ela seja válida para algum n, ou seja, n > + n n. Multiplicando os dois lados da desigualdade por, obtemos n+ >

2 ( + n n ) + n n. Mas, para todo n, temos n n + ( )n > n + 0, 4n > n +. Logo, a desigualdade também vale para n +. Portanto, por indução, a propriedade vale para todo n.. Certamente a propriedade vale para n : basta. pesagem para determinar o mais leve e o mais pesado. Suponhamos que n pesagens sejam suficientes para determinar o mais leve e o mais pesado dentre objetos a, a,..., a n (onde n ) e suponhamos que um objeto adicional a n+ seja acrescentado. Com n pesagens, determinamos o mais leve e o mais pesado dentre a, a,..., a n. Com duas pesagens adicionais, comparamos estes dois objetos com o adicional, determinando o mais leve e o mais pesado dentre os n + objetos, utilizando no total n + (n + ) pesagens. Logo, a propriedade também vale para conjuntos com n + objetos. Portanto, por indução, vale para conjuntos com n objetos para todo n.. Não é possível tomar n < 4 porque não existem inteiros não negativos x e y tais que 7x + 8y 4 (basta verificar diretamente para y 0,,..., ). Por outro lado, , mostrando que 4 pode ser escrito nesta forma. Suponhamos que, para um certo n 4, existam inteiros x e y tais que 7x+8y n. Se x, então x 0 e podemos obter n + como 7(x ) + 8(y + ) 7x + 8y + n +. Por outro lado, quando x 0, temos necesseriamente y 6. Usando o fato de que , temos n + 7x x + 8y (x + 7) + 8(y 6), o que mostra que n + pode ser escrito na forma 7x +8y, onde x e y são inteiros não negativos. Portanto, por indução, para todo natural n 4 existem inteiros não negativos x e y tais que 7x + 8y n. 4. Certamente a propriedade vale para n, já que existem triângulos com ângulos agudos. Suponhamos que a propriedade vale para algum n, isto é, existe um polígono convexo com n lados e exatamente e ângulos agudos. Tomemos um destes ângulos agudos, de medida α e tracemos uma reta que intersecta apenas os lados que formam este ângulo, de modo a determinar um triângulo com um outro ângulo agudo e um obtuso (por exemplo, um triângulo com ângulos iguais a 4 α, α e α. Esta reta produz um polígono convexo com n + lados,

3 ainda com ângulos agudos. Logo, a propriedade vale para n +. Portanto, por indução, vale para todo n natural.. A expressão do termo geral está correta para n e n, já que a + e a +. Suponhamos que ela esteja correta para n e n +. Então a n+ a n+ a n ( n+ + ) ( n + ). n+ n+ + n+ +. Logo, a expressão também está correta para n +. Portanto, por indução, ela é válida para todo n natural. 6. A expressão está correta para n 0 e n, já que F 0 0 ) 0 ( ) 0 ) ( ) e F. Suponhamos que a expressão esteja correta para n e n +. Então F n+ F n + F n+ ) n ( ) n + ( ) n ( ) ) n+ ( ) n+ ( ) n ( ) + ) n ( ) + ( ) n ( ) ) n+ ( ) n+. Logo, a expressão também está correta para n +. indução, ela está correta para todo n natural Portanto, por 7. a) A propriedade vale para n, já que F e F. Suponhamos que ela seja válida para um natural n, ou seja, F + F + + F n F n+. Somando F n+ aos dois lados da igualdade, obtemos F + F + + F n + F n+ F n+ + F n+ F n+, o que mostra que a igualdade também vale para n +. Portanto, por indução, ela vale para todo n natural. b) A propriedade vale para n, já que F F. Suponhamos que ela seja válida para um natural n, ou seja, F + F + + F n F n. Somando F n+ aos dois lados da igualdade, obtemos F + F + + F n + F n+ F n + F n+ F n+, o que mostra que a igualdade também vale para n +. Portanto, por indução, ela vale para todo n natural. c) A propriedade vale para n, já que F e F. Suponhamos que ela seja válida para um natural n, ou seja, F +

4 F F n F n+. Somando F n+ aos dois lados da igualdade, obtemos F +F 4 + +F n +F n+ F n+ +F n+ F n+, o que mostra que a igualdade também vale para n +. Portanto, por indução, ela vale para todo n natural. d) A propriedade vale para n, já que F F F. Suponhamos que ela seja válida para um natural n, ou seja, F + F + + F n F n F n+. Somando F n+ aos dois lados da igualdade, obtemos F + F + + F n + F n+ F n F n+ + F n+ F n + (F n + F n+ ) F n + F n +, o que mostra que a igualdade também vale para n+. Portanto, por indução, ela vale para todo n natural. 8. A propriedade vale para n e n, já que F > ( ) e F ( 0. ) Suponhamos que a desigualdade seja válida para n e n +. Então F n+ F n + F n+ ( n ( ) + n ( ) ) n ( + ) ( ) n ( ) ( > ) n ( 9 ) ( 4 ) n. Logo, a desigualdade vale para n +. Portanto, por indução, vale para todo n natural. 9. Como é primo, a propriedade vale para n. Suponhamos que ela seja válida para todo natural k tal que k n. Se n + não for primo, então pode ser expresso na forma a.b, onde a e b são números naturais maiores que e menores que n +. Portanto, pela hipótese de indução, cada um dos números a e b é primo ou um produto de primos, o que mostra que n + é um produto de primos. Logo, a propriedade também vale para n +. Logo, por indução (completa), a propriedade vale para todo n natural. 0. A afirmativa é verdadeira se o número de palitos é,, ou 4. No primeiro caso, o primeiro jogador não tem uma estratégia vencedora, já que é obrigado a tirar o único palito e perde o jogo. Nos demais, ele pode, tirando, ou palitos, respectivamente, deixar o segundo jogador com apenas um palito e, assim, garantir a vitória. Suponhamos agora, que a propriedade seja verdadeira para todo natural k menor ou igual a n e consideremos um jogo com n + palitos. Se n + 4, a afirmativa é verdadeira, como mostrado acima. Caso contrário, se o resto da divisão de n + por 4 não é, o primeiro jogador pode sempre retirar, ou palitos de modo a deixar o segundo jogador com um 4

5 número de palitos menor ou igual a n tal que o resto da divisão por 4 é. Pela hipótese de indução, esta não é uma posição vencedora para o segundo jogador e, portanto, o primeiro ganha o jogo. Por outro lado, se o resto da divisão de n + por 4 for, o primeiro jogador não tem uma estratégia vencedora, já que qualquer jogada faz com que o segundo tenha uma quantidade de palitos menor ou igual a n, com resto da divisão por 4 diferente de, podendo assim ganhar o jogo. Logo, a propriedade vale para n+ palitos. Portanto, por indução vale para qualquer quantidade de palitos.. a) Se dois pontos não estão conectados por um caminho, pode-se ligálos por um segmento sem que um ciclo seja criado. Por outro lado, se dois pontos estão conectados por dois caminhos diferentes, eles formam um ciclo. Logo, ao final do processo cada par de pontos está ligado por um único caminho. b) A propriedade vale para n, já que, neste caso, o número de segmentos é 0. Suponhamos que a propriedade valha para todos os conjuntos nos quais o número de pontos seja menor ou igual a n e suponhamos que o processo foi encerrado para um conjunto com n + pontos. A retirada de qualquer segmento desta configuração decompõe o conjunto de pontos em dois outros, respectivamente com n e n pontos, tais que n + n (n + ). Em cada um destes conjuntos não há ciclos e acrescentandose qualquer segmento forma-se um ciclo. Assim, como n n e n n, há neles, pela hipótese de indução, n e n segmentos. Logo, o número total de segmentos com n + pontos é (n ) + (n ) + n + n n. Logo, a propriedade vale para conjuntos com n+ pontos. Portanto, por indução, vale para conjuntos com quaisquer quantidade de pontos.. O argumento não funciona na passagem de n para n.

NÍVEL 3 - Prova da 2ª fase - Soluções

NÍVEL 3 - Prova da 2ª fase - Soluções NÍVEL 3 - Prova da ª fase - Soluções QUESTÃO 1 (a) Se o Dodó colocar um número x no visor e apertar, aparece o valor x 3 4 3 5 de f ( x) =. Logo, para x = 4, o valor que vai aparecer é f (4) = = =,5. x

Leia mais

Aula 12. Ângulo entre duas retas no espaço. Definição 1. O ângulo (r1, r2 ) entre duas retas r1 e r2 se define da seguinte maneira:

Aula 12. Ângulo entre duas retas no espaço. Definição 1. O ângulo (r1, r2 ) entre duas retas r1 e r2 se define da seguinte maneira: Aula 1 1. Ângulo entre duas retas no espaço Definição 1 O ângulo (r1, r ) entre duas retas r1 e r se define da seguinte maneira: (r1, r ) 0o se r1 e r são coincidentes, Se as retas são concorrentes, isto

Leia mais

MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL. ENQ Gabarito

MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL. ENQ Gabarito MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL ENQ 016. Gabarito Questão 01 [ 1,00 ] A secretaria de educação de um município recebeu uma certa quantidade de livros para distribuir entre as escolas

Leia mais

Objetivos. em termos de produtos internos de vetores.

Objetivos. em termos de produtos internos de vetores. Aula 5 Produto interno - Aplicações MÓDULO 1 - AULA 5 Objetivos Calcular áreas de paralelogramos e triângulos. Calcular a distância de um ponto a uma reta e entre duas retas. Determinar as bissetrizes

Leia mais

Olimpíada Mineira de Matemática 2008

Olimpíada Mineira de Matemática 2008 Questão 1) Alternativa C) Olimpíada Mineira de Matemática 008 Resolução Nível III Refletindo a imagem Após 1 hora e 0 minutos Refletindo novamente Observação: A posição original do relógio não é uma configuração

Leia mais

J. Delgado - K. Frensel - L. Crissaff Geometria Analítica e Cálculo Vetorial

J. Delgado - K. Frensel - L. Crissaff Geometria Analítica e Cálculo Vetorial 178 Capítulo 10 Equação da reta e do plano no espaço 1. Equações paramétricas da reta no espaço Sejam A e B dois pontos distintos no espaço e seja r a reta que os contém. Então, P r existe t R tal que

Leia mais

Relembrando: Ângulos, Triângulos e Trigonometria...

Relembrando: Ângulos, Triângulos e Trigonometria... Relembrando: Ângulos, Triângulos e Trigonometria... Este texto é apenas um resumo. Procure estudar esses assuntos em um livro apropriado. Ângulo é a região de um plano delimitada pelo encontro de duas

Leia mais

Aula 4 Colinearidade, coplanaridade e dependência linear

Aula 4 Colinearidade, coplanaridade e dependência linear Aula 4 Colinearidade, coplanaridade e dependência linear MÓDULO 1 - AULA 4 Objetivos Compreender os conceitos de independência e dependência linear. Estabelecer condições para determinar quando uma coleção

Leia mais

J. Delgado - K. Frensel - L. Crissaff Geometria Analítica e Cálculo Vetorial

J. Delgado - K. Frensel - L. Crissaff Geometria Analítica e Cálculo Vetorial 76 Capítulo 4 Distâncias no plano e regiões no plano 1. Distância de um ponto a uma reta Dados um ponto P e uma reta r no plano, já sabemos calcular a distância de P a cada ponto P r. Definição 1 Definimos

Leia mais

Capítulo 12. Ângulo entre duas retas no espaço. Definição 1. O ângulo (r1, r2 ) entre duas retas r1 e r2 é assim definido:

Capítulo 12. Ângulo entre duas retas no espaço. Definição 1. O ângulo (r1, r2 ) entre duas retas r1 e r2 é assim definido: Capítulo 1 1. Ângulo entre duas retas no espaço Definição 1 O ângulo (r1, r ) entre duas retas r1 e r é assim definido: (r1, r ) 0o se r1 e r são coincidentes, se as retas são concorrentes, isto é, r1

Leia mais

MA12 - Unidade 3. Paulo Cezar Pinto Carvalho PROFMAT - SBM

MA12 - Unidade 3. Paulo Cezar Pinto Carvalho PROFMAT - SBM MA12 - Unidade 3 O Método da Indução Paulo Cezar Pinto Carvalho PROFMAT - SBM Definições por indução ou recorrência Como definir, apropriadamente, n! = 1 2... n? i) Definimos 1! = 1 ii) A seguir, supondo

Leia mais

AV1 - MA UMA SOLUÇÃO. d b =. 3q 2 = 2p 2,

AV1 - MA UMA SOLUÇÃO. d b =. 3q 2 = 2p 2, AV1 - MA 11-01 Questão 1. Prove que se a, b, c e d são números racionais tais que a + b 3 = c + d 3 então a = c e b = d. A igualdade a + b 3 = c + d 3 implica que (a c) = (d b) 3. Suponha que tenhamos

Leia mais

Conceitos e Controvérsias

Conceitos e Controvérsias Conceitos e Controvérsias QUAL É A SOMA DOS ÂNGULOS (internos ou externos) DE UM POLÍGONO (convexo ou não)? Elon Lages Lima IMPA Introdução Todos sabem que a soma dos ângulos internos de um triângulo vale

Leia mais

Soluções do Capítulo 8 (Volume 2)

Soluções do Capítulo 8 (Volume 2) Soluções do Capítulo 8 (Volume 2) 1. Não. Basta considerar duas retas concorrentes s e t em um plano perpendicular a uma reta r. As retas s e t são ambas ortogonais a r, mas não são paralelas entre si.

Leia mais

MA12 - Unidade 3. Paulo Cezar Pinto Carvalho. 31 de Janeiro de 2014 PROFMAT - SBM

MA12 - Unidade 3. Paulo Cezar Pinto Carvalho. 31 de Janeiro de 2014 PROFMAT - SBM MA12 - Unidade 3 O Método da Indução Paulo Cezar Pinto Carvalho PROFMAT - SBM 31 de Janeiro de 2014 Definições por indução ou recorrência Como definir, apropriadamente, n! = 1 2... n? i) Definimos 1! =

Leia mais

OPRM a Fase Nível 3 01/09/18 Duração: 4 horas

OPRM a Fase Nível 3 01/09/18 Duração: 4 horas 1. Considere os números de Fibonacci: 1, 1, 2, 3, 5, 8, 13, 21,..., onde cada termo na sequência é a soma dos dois termos anteriores. O ano mais próximo de 2018 que é número de Fibonacci foi o ano de 1597.

Leia mais

Roteiro da segunda aula presencial - ME

Roteiro da segunda aula presencial - ME PIF Enumerabilidade Teoria dos Números Congruência Matemática Elementar Departamento de Matemática Universidade Federal da Paraíba 29 de outubro de 2014 PIF Enumerabilidade Teoria dos Números Congruência

Leia mais

Elementos de Matemática Finita

Elementos de Matemática Finita Elementos de Matemática Finita Exercícios Resolvidos - Princípio de Indução; Algoritmo de Euclides 1. Seja ( n) k n! k!(n k)! o coeficiente binomial, para n k 0. Por convenção, assumimos que, para outros

Leia mais

MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL. ENQ Gabarito

MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL. ENQ Gabarito MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL ENQ 2017.1 Gabarito Questão 01 [ 1,25 ] Determine as equações das duas retas tangentes à parábola de equação y = x 2 2x + 4 que passam pelo ponto (2,

Leia mais

GABARITO E PAUTA DE CORREÇÃO DO ENQ Questão 2 [ 1,0 pt ::: (a)=0,5; (b)=0,5 ] Sejam a, b, p inteiros, com p primo.

GABARITO E PAUTA DE CORREÇÃO DO ENQ Questão 2 [ 1,0 pt ::: (a)=0,5; (b)=0,5 ] Sejam a, b, p inteiros, com p primo. GABARITO E PAUTA DE CORREÇÃO DO ENQ-014. Questão 1 [ 1,0 pt ::: (a)=0,5; (b)=0,5 ] Sejam a, b, p inteiros, com p primo. Demonstre que: (a) se p não divide a, então (p, a) = 1. (b) se p ab, então p a ou

Leia mais

2. Chamemos de partição em uns de um número sua decomposição no menor número possível de parcelas que só tenham o dígito 1...

2. Chamemos de partição em uns de um número sua decomposição no menor número possível de parcelas que só tenham o dígito 1... Nível 1 1. Brincando com suas bolinhas de gude, Lucas notou um fato curioso... (a) Como sempre sobram duas bolinhas nas divisões mencionadas no enunciado, se duas bolinhas forem retiradas do total, o número

Leia mais

XX OLIMPÍADA REGIONAL DE MATEMÁTICA DE SANTA CATARINA Resolução do treinamento 6 Nível 3

XX OLIMPÍADA REGIONAL DE MATEMÁTICA DE SANTA CATARINA Resolução do treinamento 6 Nível 3 UNIVERSIDADE FEDERAL DE SANTA CATARINA CENTRO DE CIÊNCIAS FÍSICAS E MATEMÁTICAS DEPARTAMENTO DE MATEMÁTICA PET MATEMÁTICA XX OLIMPÍADA REGIONAL DE MATEMÁTICA DE SANTA CATARINA Resolução do treinamento

Leia mais

Soluções dos Exercícios do Capítulo 2

Soluções dos Exercícios do Capítulo 2 A MATEMÁTICA DO ENSINO MÉDIO Volume 1 Soluções dos Exercícios do Capítulo 2 2.1. Seja X = {n N; a + n Y }. Como a Y, segue-se que a + 1 Y, portanto 1 X. Além disso n X a + n Y (a + n) + 1 Y n + 1 X. Logo

Leia mais

n 2,

n 2, 1. Considere o polinômio P (x) = ax 3 + bx 2 + cx, com a, b, c R. Suponha que P satisfaz P (x + 1) P (x) = x 2, para todo x R. i. Calcule os valores de a, b e c. ii. Usando a propriedade acima, calcule

Leia mais

Números Naturais. MA12 - Unidade 1. Os Axiomas de Peano. O Axioma da Indução. Exemplo: uma demonstração por indução

Números Naturais. MA12 - Unidade 1. Os Axiomas de Peano. O Axioma da Indução. Exemplo: uma demonstração por indução Os Números Naturais MA1 - Unidade 1 Números Naturais Paulo Cezar Pinto Carvalho PROFMAT - SBM January 7, 014 Números Naturais: modelo abstrato para contagem. N = {1,,3,...} Uma descrição precisa e concisa

Leia mais

(R. 2 3 ) a) 243 b) 81 c) 729 d) 243 e) 729

(R. 2 3 ) a) 243 b) 81 c) 729 d) 243 e) 729 08. Determine o valor de 8 + 14 + 6 + 4. (R. ) 01. O valor da expressão LISTA 1 GEOMETRIA PLANA PROF. NATHALIE 1º Ensino Médio - 017 1 + 1 + 1 1 a) b) c) 0 d) 4 e) 4 (Alternativa E) 0. A expressão com

Leia mais

MA14 - Aritmética Unidade 4 - Parte 2. Representação dos Números Inteiros (O Jogo de Nim)

MA14 - Aritmética Unidade 4 - Parte 2. Representação dos Números Inteiros (O Jogo de Nim) MA14 - Aritmética Unidade 4 - Parte 2 Representação dos Números Inteiros (O Jogo de Nim) Abramo Hefez PROFMAT - SBM Aviso Este material é apenas um resumo de parte do conteúdo da disciplina e o seu estudo

Leia mais

Programa Princípios Gerais Forças, vetores e operações vetoriais

Programa Princípios Gerais Forças, vetores e operações vetoriais Programa Princípios Gerais Forças, vetores e operações vetoriais Representação gráfica de vetores Graficamente, um vetor é representado por uma flecha: a intensidade é o comprimento da flecha; a direção

Leia mais

P1 de Álgebra Linear I

P1 de Álgebra Linear I P1 de Álgebra Linear I 2008.1 Gabarito 1) Decida se cada afirmação a seguir é verdadeira ou falsa e marque COM CANETA sua resposta no quadro a seguir. Itens V F N 1.a x 1.b x 1.c x 1.d x 1.e x 1.a) Para

Leia mais

O PRINCÍPIO DAS GAVETAS Paulo Cezar Pinto Carvalho - IMPA

O PRINCÍPIO DAS GAVETAS Paulo Cezar Pinto Carvalho - IMPA Nível Intermediário O PRINCÍPIO DAS GAVETAS Paulo Cezar Pinto Carvalho - IMPA Muitos problemas atraentes de matemática elementar exploram relações entre conjuntos finitos, expressas em linguagem coloquial.

Leia mais

Aula Distância entre duas retas paralelas no espaço. Definição 1. Exemplo 1

Aula Distância entre duas retas paralelas no espaço. Definição 1. Exemplo 1 Aula 1 Sejam r 1 = P 1 + t v 1 t R} e r 2 = P 2 + t v 2 t R} duas retas no espaço. Se r 1 r 2, sabemos que r 1 e r 2 são concorrentes (isto é r 1 r 2 ) ou não se intersectam. Quando a segunda possibilidade

Leia mais

35ª OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 2 (8º e 9º anos do Ensino Fundamental) GABARITO

35ª OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 2 (8º e 9º anos do Ensino Fundamental) GABARITO 5ª OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL (8º e 9º anos do Ensino Fundamental) GABARITO GABARITO NÍVEL 1) D) 6) D) 11) E) 16) B) 1) Anulada ) A) 7) D) 1) C) 17) C) ) B) ) D) 8) E) 1) D)

Leia mais

Matemática 1 a QUESTÃO

Matemática 1 a QUESTÃO Matemática a QUESTÃO IME-007/008 Temos que: i) sen 3 x + cos 3 x = (senx + cosx) (sen x senxcosx + cos x) = (senx + cosx) ( senxcosx) ii) sen xcos x = ( + senxcosx) ( senxcosx) Então, a equação dada é

Leia mais

OBMEP na Escola 2014 Soluções QUESTÃO 1. Começamos por designar os valores a serem colocados nos diversos quadradinhos pelas letras a, b, c, d, e, f.

OBMEP na Escola 2014 Soluções QUESTÃO 1. Começamos por designar os valores a serem colocados nos diversos quadradinhos pelas letras a, b, c, d, e, f. 1 QUESTÃO 1 Começamos por designar os valores a serem colocados nos diversos quadradinhos pelas letras a, b, c, d, e, f. a. [6 pontos] Igualando os produtos dos números na primeira linha e na primeira

Leia mais

XXXVIII Olimpíada Cearense de Matemática Nível 2 - Oitavo e Nono Anos

XXXVIII Olimpíada Cearense de Matemática Nível 2 - Oitavo e Nono Anos XXXVIII Olimpíada Cearense de Matemática Nível 2 - Oitavo e Nono Anos Problema 1. Antônio e Bruno compraram ingressos para um evento. Ao chegarem em casa, eles perceberam que os ingressos eram numerados

Leia mais

Gabarito Final com Distribuição dos Pontos - Questão 1. (1 ponto) Assim, Logo,. Daí,. (2 pontos) Portanto, Agora, como é uma P.G. com e razão, temos:

Gabarito Final com Distribuição dos Pontos - Questão 1. (1 ponto) Assim, Logo,. Daí,. (2 pontos) Portanto, Agora, como é uma P.G. com e razão, temos: PROCESSO SELETIVO 009- Gabarito Final com Distribuição dos Pontos - Questão 1 A) De acordo com o enunciado, temos a P.A. 4. Assim, de razão r= e soma igual a () Logo,. () Daí,. Portanto, ( pontos) Agora,

Leia mais

ENQ Gabarito e Pauta de Correção

ENQ Gabarito e Pauta de Correção ENQ014.1 - Gabarito e Pauta de Correção Questão 1 [ 1,0 pt ] O máximo divisor comum de dois inteiros positivos é 0. Para se chegar a esse resultado pelo processo das divisões sucessivas, os quocientes

Leia mais

Comprimento de Arco, o Número π e as Funções Trigonométricas

Comprimento de Arco, o Número π e as Funções Trigonométricas Comprimento de Arco, o Número π e as Funções Trigonométricas J. A. Verderesi Apresentaremos a seguir a medida de um ângulo como limite de poligonais inscritas e circunscritas à circunfêrencia unitária,

Leia mais

Material Teórico - Módulo: Vetores em R 2 e R 3. Módulo e Produto Escalar - Parte 2. Terceiro Ano - Médio

Material Teórico - Módulo: Vetores em R 2 e R 3. Módulo e Produto Escalar - Parte 2. Terceiro Ano - Médio Material Teórico - Módulo: Vetores em R 2 e R 3 Módulo e Produto Escalar - Parte 2 Terceiro Ano - Médio Autor: Prof. Angelo Papa Neto Revisor: Prof. Antonio Caminha M. Neto Nesta segunda parte, veremos

Leia mais

Gabarito da Primeira Fase Nível Beta

Gabarito da Primeira Fase Nível Beta . Gabarito da Primeira Fase 2019 - Nível Beta Questão 1 (20 pontos) A Figura 1 a seguir é uma representação da praça do ciclo básico na Unicamp. Nos extremos desta praça, cujo formato é circular, se encontram

Leia mais

Comprimento do Arco. Carina Cortielha Maria Tereza Dias

Comprimento do Arco. Carina Cortielha Maria Tereza Dias UNIVERSIDDE FEDERL DE MINS GERIS INSTITUTO DE IÊNIS EXTS FUNDMENTOS DE GEOMETRI PLN E DESENHO GEOMÉTRIO omprimento do rco arina ortielha Maria Tereza Dias Teorema 1: O comprimento do arco de circunferência

Leia mais

Matemática: Cálculos Rápidos

Matemática: Cálculos Rápidos Matemática: Cálculos Rápidos 50 dicas para cálculo rápido. Mostradas em 23 grupos de dicas, sendo que os ítens do mesmo grupo apresentam características semelhantes. Dica 01-1: Multiplicar por 10 Deslocar

Leia mais

INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA

INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA PARA A COMPUTAÇÃO PROF. DANIEL S. FREITAS UFSC - CTC - INE Prof. Daniel S. Freitas - UFSC/CTC/INE/2007 p.1/20 3 - INDUÇÃO E RECURSÃO 3.1) Indução Matemática 3.2)

Leia mais

Respostas sem justificativas não serão aceitas. Além disso, não é permitido o uso de aparelhos eletrônicos. x x = lim.

Respostas sem justificativas não serão aceitas. Além disso, não é permitido o uso de aparelhos eletrônicos. x x = lim. UNIVERSIDADE FEDERAL RURAL DE PERNAMBUCO UNIDADE ACADÊMICA DO CABO DE SANTO AGOSTINHO CÁLCULO DIFERENCIAL E INTEGRAL 1-2017.2 1A VERIFICAÇÃO DE APRENDIZAGEM - TURMA GEA Nome Legível RG CPF Respostas sem

Leia mais

Belos Problemas: Indução e Princípio das Gavetas de Dirichlet

Belos Problemas: Indução e Princípio das Gavetas de Dirichlet Belos Problemas: Indução e Princípio das Gavetas de Dirichlet Rogério Ricardo Steffenon 1 1 Universidade do Vale do Rio dos Sinos, Email: steffenonenator@gmail.com Neste minicurso serão apresentados e

Leia mais

Ainda Sobre o Teorema de Euler para Poliedro Convexos

Ainda Sobre o Teorema de Euler para Poliedro Convexos 1 Introdução Ainda Sobre o Teorema de Euler para Poliedro Convexos Elon Lages Lima Instituto de M atemática Pura e Aplicada Estr. D. Castorina, 110 22460 Rio de Janeiro RJ O número 3 da RPM traz um artigo

Leia mais

Sistemas de equações lineares com três variáveis

Sistemas de equações lineares com três variáveis 18 Sistemas de equações lineares com três variáveis Sumário 18.1 Introdução....................... 18. Sistemas de duas equações lineares........... 18. Sistemas de três equações lineares........... 8

Leia mais

Aula 2 A distância no espaço

Aula 2 A distância no espaço MÓDULO 1 - AULA 2 Objetivos Aula 2 A distância no espaço Determinar a distância entre dois pontos do espaço. Estabelecer a equação da esfera em termos de distância. Estudar a posição relativa entre duas

Leia mais

Lógica Matemática - Indução

Lógica Matemática - Indução Lógica Matemática - Indução Prof. Elias T. Galante - 017 Breve introdução losóca à indução Raciocinar é inferir, ou seja, passar do que já se conhece de algum modo ao que ainda não se conhece. Este processo

Leia mais

Aula 3 Polígonos Convexos

Aula 3 Polígonos Convexos MODULO 1 - AULA 3 Aula 3 Polígonos Convexos Conjunto convexo Definição: Um conjunto de pontos chama-se convexo se, quaisquer que sejam dois pontos distintos desse conjunto, o segmento que tem esses pontos

Leia mais

Objetivos. Expressar o vértice da parábola em termos do discriminante e dos

Objetivos. Expressar o vértice da parábola em termos do discriminante e dos MÓDULO 1 - AULA 17 Aula 17 Parábola - aplicações Objetivos Expressar o vértice da parábola em termos do discriminante e dos coeficientes da equação quadrática Expressar as raízes das equações quadráticas

Leia mais

Ângulos entre retas Retas e Planos Perpendiculares. Walcy Santos

Ângulos entre retas Retas e Planos Perpendiculares. Walcy Santos Ângulos entre retas Retas e Planos Perpendiculares Walcy Santos Ângulo entre duas retas A idéia do ângulo entre duas retas será adaptado do conceito que temos na Geometria Plana. Se duas retas são concorrentes

Leia mais

10. Determine as equações cartesianas das famílias de retas que fazem um ângulo de π/4 radianos com a reta y = 2x + 1.

10. Determine as equações cartesianas das famílias de retas que fazem um ângulo de π/4 radianos com a reta y = 2x + 1. Geometria Analítica. 1. Determine as posições relativas e as interseções entre os conjuntos em R abaixo. Em cada item também faça um esboço dos dois conjuntos dados no mesmo sistema de eixos. (a) C : (x

Leia mais

3º. EM Prof a. Valéria Rojas Assunto: Determinante, Área do Triângulo, Equação da reta, Eq. Reduzida da Reta

3º. EM Prof a. Valéria Rojas Assunto: Determinante, Área do Triângulo, Equação da reta, Eq. Reduzida da Reta 1 - O uso do Determinante de terceira ordem na Geometria Analítica 1.1 - Área de um triângulo Seja o triângulo ABC de vértices A(x a, y a ), B(x b, x c ) e C(x c, y c ). A área S desse triângulo é dada

Leia mais

XXVI OLIMPÍADA BRASILEIRA DE MATEMÁTICA TERCEIRA FASE NÍVEL 1 (5ª e 6ª séries - Ensino Fundamental)

XXVI OLIMPÍADA BRASILEIRA DE MATEMÁTICA TERCEIRA FASE NÍVEL 1 (5ª e 6ª séries - Ensino Fundamental) TERCEIRA FASE NÍVEL 1 (5ª e 6ª séries - Ensino Fundamental) PROBLEMA 1 Encontre todos os números naturais n de três algarismos que possuem todas as propriedades abaixo: n é ímpar; n é um quadrado perfeito;

Leia mais

36ª Olimpíada Brasileira de Matemática GABARITO Segunda Fase

36ª Olimpíada Brasileira de Matemática GABARITO Segunda Fase 36ª Olimpíada Brasileira de Matemática GABARITO Segunda Fase Soluções Nível 2 Segunda Fase Parte A CRITÉRIO DE CORREÇÃO: PARTE A Na parte A serão atribuídos 5 pontos para cada resposta correta e a pontuação

Leia mais

1º Período MATEMÁTICA 4.º ANO. setembro. Domínios Conteúdos programáticos Objetivos/Descritores de desempenho

1º Período MATEMÁTICA 4.º ANO. setembro. Domínios Conteúdos programáticos Objetivos/Descritores de desempenho 1º Período setembro Números e Operações Dezenas e centenas de milhar. Resolução de problemas. Rever a matéria do ano anterior Reconhecer que se poderia prosseguir a contagem indefinidamente introduzindo

Leia mais

CRITÉRIOS DE AVALIAÇÃO 1º CICLO 4.º ANO DE ESCOLARIDADE MATEMÁTICA

CRITÉRIOS DE AVALIAÇÃO 1º CICLO 4.º ANO DE ESCOLARIDADE MATEMÁTICA ANO LETIVO 0/06 CRITÉRIOS DE AVALIAÇÃO º CICLO.º ANO DE ESCOLARIDADE MATEMÁTICA Números e Operações Números naturais Contar Reconhece, sem falhas, que se poderia prosseguir a contagem indefinidamente introduzindo

Leia mais

Números e Funções Reais, E. L. Lima, Coleção PROFMAT.

Números e Funções Reais, E. L. Lima, Coleção PROFMAT. Aviso Este material é apenas um resumo de parte do conteúdo da disciplina. O material completo a ser estudado encontra-se no Capítulo 9 - Seção 9,5 do livro texto da disciplina: Números e Funções Reais,

Leia mais

Material Teórico - Módulo: Vetores em R 2 e R 3. Módulo e Produto Escalar - Parte 1. Terceiro Ano - Médio

Material Teórico - Módulo: Vetores em R 2 e R 3. Módulo e Produto Escalar - Parte 1. Terceiro Ano - Médio Material Teórico - Módulo: Vetores em R 2 e R 3 Módulo e Produto Escalar - Parte 1 Terceiro Ano - Médio Autor: Prof. Angelo Papa Neto Revisor: Prof. Antonio Caminha M. Neto 1 Módulo de um vetor O módulo

Leia mais

Introdução à Geometria Plana. Professor: Antonio Carlos Barros

Introdução à Geometria Plana. Professor: Antonio Carlos Barros Introdução à Geometria Plana Professor: Antonio Carlos Barros Entes Primitivos São os elementos matemáticos que não possuem definição. Ponto nomeado por letra Latina maiúscula. Reta nomeado por letra Latina

Leia mais

Buscando um Invariante

Buscando um Invariante Resolução de Problemas Lista 01 com dicas e discussão Faça mentalmente as seguintes multiplicações: 1. 27 37 2. 21 23 Invente e resolva um problema, usando como inspiração o problema anterior. Decida o

Leia mais

B) Outra Solução: Com 320 sorvetes sem cobertura e com 400 sorvetes com cobertura, obteve-se um apurado de 1.600,00. Como = 720, então,

B) Outra Solução: Com 320 sorvetes sem cobertura e com 400 sorvetes com cobertura, obteve-se um apurado de 1.600,00. Como = 720, então, MATEMÁTICA QUESTÃO 1 A) O apurado é obtido da seguinte maneira: Número de sorvetes com cobertura vendidos = 400 Número de sorvetes simples vendidos = 320 Apurado do dia = 400 x 2,40 + 320 x 2,00 = 960,00

Leia mais

QUESTÃO 16 A figura abaixo representa um pentágono regular, do qual foram prolongados os lados AB e DC até se encontrarem no ponto F.

QUESTÃO 16 A figura abaixo representa um pentágono regular, do qual foram prolongados os lados AB e DC até se encontrarem no ponto F. Nome: N.º: endereço: data: Telefone: E-mail: Colégio PARA QUEM CURSA O 8 Ọ ANO EM 0 Disciplina: MaTeMÁTiCa Prova: desafio nota: QUESTÃO 6 A figura abaixo representa um pentágono regular, do qual foram

Leia mais

ENQ Gabarito MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL. (a) Sejam a, b, n Z com n > 0. Mostre que a + b a 2n b 2n.

ENQ Gabarito MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL. (a) Sejam a, b, n Z com n > 0. Mostre que a + b a 2n b 2n. MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL ENQ 2018.2 Gabarito Questão 01 [ 1,25 ::: (a)=0,50; (b)=0,75 ] (a) Sejam a, b, n Z com n > 0. Mostre que a + b a 2n b 2n. (b) Para quais valores de

Leia mais

Matemática I. 1 Propriedades dos números reais

Matemática I. 1 Propriedades dos números reais Matemática I 1 Propriedades dos números reais O conjunto R dos números reais satisfaz algumas propriedades fundamentais: dados quaisquer x, y R, estão definidos a soma x + y e produto xy e tem-se 1 x +

Leia mais

Comentários sobre a oficina Abrindo problemas 4. Encontro da Revista do Professor de Matemática IME/USP 29 e 30 de maio de 2009

Comentários sobre a oficina Abrindo problemas 4. Encontro da Revista do Professor de Matemática IME/USP 29 e 30 de maio de 2009 Comentários sobre a oficina Abrindo problemas 4 Encontro da Revista do Professor de Matemática IME/USP 29 e 30 de maio de 2009 Seguem duas páginas com tarefas apresentadas aos participantes Introdução

Leia mais

SIMULADO. conhecimento específico. CONHECIMENTO ESPECÍFICo - MATEMÁTICA

SIMULADO. conhecimento específico. CONHECIMENTO ESPECÍFICo - MATEMÁTICA MATEMÁTICA conhecimento específico 1 01. CONJUNTOS Interessado em lançar os modelos A, B e C de sandálias, em uma determinada região do estado, foi realizada uma pesquisa sobre a preferência de compra

Leia mais

Equação Geral do Segundo Grau em R 2

Equação Geral do Segundo Grau em R 2 8 Equação Geral do Segundo Grau em R Sumário 8.1 Introdução....................... 8. Autovalores e autovetores de uma matriz real 8.3 Rotação dos Eixos Coordenados........... 5 8.4 Formas Quadráticas..................

Leia mais

Aula 7 Complementos. Exercício 1: Em um plano, por um ponto, existe e é única a reta perpendicular

Aula 7 Complementos. Exercício 1: Em um plano, por um ponto, existe e é única a reta perpendicular MODULO 1 - AULA 7 Aula 7 Complementos Apresentamos esta aula em forma de Exercícios Resolvidos, mas são resultados importantes que foram omitidos na primeira aula que tratou de Conceitos Básicos. Exercício

Leia mais

Centro Educacional Evangélico - Trabalho 2º Bimestre

Centro Educacional Evangélico - Trabalho 2º Bimestre Centro Educacional Evangélico - Trabalho º Bimestre Disciplina: Matemática Data de Entrega:06/06/018 Nota: 10 Para cada questão que não conter a resposta completa (por escrito) será anulada 0,1 pontos;

Leia mais

PLANIFICAÇÃO ANUAL DE MATEMÁTICA

PLANIFICAÇÃO ANUAL DE MATEMÁTICA AGRUPAMENTO DE ESCOLAS MARQUÊS DE MARIALVA- Cantanhede DEPARTAMENTO CURRICULAR DO 1.º CICLO 4.º ANO DE ESCOLARIDADE PLANIFICAÇÃO ANUAL DE MATEMÁTICA Domínios Subdomínios / Conteúdos programáticos METAS

Leia mais

CONTEÚDO E HABILIDADES MATEMÁTICA REVISÃO 1 REVISÃO 2 REVISÃO 3. Conteúdo:

CONTEÚDO E HABILIDADES MATEMÁTICA REVISÃO 1 REVISÃO 2 REVISÃO 3. Conteúdo: 2 Conteúdo: Aula Revisão 1: Geometria Polígonos: Classificação, nome, cálculo das diagonais e a soma dos ângulos internos. Congruência e Semelhança de triângulos 3 Conteúdo: Aula Revisão 2: Álgebra Polinômios:

Leia mais

Aula 24 mtm B GEOMETRIA ESPACIAL

Aula 24 mtm B GEOMETRIA ESPACIAL Aula 24 mtm B GEOMETRIA ESPACIAL Entes Geométricos Ponto A T Reta r s Plano Espaço y α z x Entes Geométricos Postulados ou Axiomas Teorema a 2 = b 2 + c 2 S i =180 Determinação de uma reta Posições relativas

Leia mais

Sistemas de Coordenadas Lineares. Valor Absoluto. Desigualdades

Sistemas de Coordenadas Lineares. Valor Absoluto. Desigualdades Capítulo 1 Sistemas de Coordenadas Lineares. Valor Absoluto. Desigualdades SISTEMA DE COORDENADAS LINEARES Um sistema de coordenadas lineares é uma representação gráfica dos números reais como os pontos

Leia mais

Questões da 1ª avaliação de MA 13 Geometria, 2016

Questões da 1ª avaliação de MA 13 Geometria, 2016 uestões da 1ª avaliação de M 13 Geometria, 26 1. região na figura abaixo representa um lago. Descreva um processo pelo qual será possível medir a distância entre os pontos e (só medição fora do lago é

Leia mais

PLANIFICAÇÃO ANUAL MATEMÁTICA 4º ANO

PLANIFICAÇÃO ANUAL MATEMÁTICA 4º ANO PLANIFICAÇÃO ANUAL MATEMÁTICA 4º ANO Domínios Subdomínios Objetivos Descritores/ Metas de Aprendizagem ORGANIZAÇÃO E TRATAMENTO DE DADOS Tratamento dados de Representar e interpretar dados e situações

Leia mais

OBMEP ª fase Soluções - Nível 3

OBMEP ª fase Soluções - Nível 3 OBMEP 009 ª fase Soluções - Nível Nível questão 1 a) O número de cartões na caixa é a soma dos números inteiros de 1 a 10, isto é, 1 + + + + 9 + 10 = 55 b) Basta escolher o cartão de número 1 e depois

Leia mais

( )( ) valor do perímetro do painel, temos então que há 2( 8 + 9)

( )( ) valor do perímetro do painel, temos então que há 2( 8 + 9) OBMEP 0 a Fase N3Q Solução a) O valor da área de cada painel é igual ao total de lâmpadas vermelhas que o mesmo usa. Logo, em um painel de 5 metros por 8 metros há 5 8 = 40 lâmpadas vermelhas. b) Um painel

Leia mais

PLANIFICAÇÃO ANUAL 2015/ º Ano Matemática. METAS Domínios/Conteúdos Objetivos Descritores de Desempenho

PLANIFICAÇÃO ANUAL 2015/ º Ano Matemática. METAS Domínios/Conteúdos Objetivos Descritores de Desempenho METAS Domínios/Conteúdos Objetivos Descritores de Desempenho Número e Operações - Números naturais 1. Contar 1.1. Reconhecer que se poderia prosseguir a contagem indefinidamente introduzindo regras de

Leia mais

r O GABARITO - QUALIFICAÇÃO - Março de 2013

r O GABARITO - QUALIFICAÇÃO - Março de 2013 GABARITO - QUALIFICAÇÃO - Março de 013 Questão 1. (pontuação: 1,5) É dado um retângulo ABCD tal que em seu interior estão duas circunferências tangentes exteriormente no ponto T, como mostra a figura abaixo.

Leia mais

SOLUÇÃO DOS JOGOS COM VARETAS

SOLUÇÃO DOS JOGOS COM VARETAS SOLUÇÃO DOS JOGOS COM VARETAS 1. Fuga de triângulos Construção de uma figura formada por cinco triângulos pela eliminação de quatro varetas na figura com nove triângulos de ordem um. 2. De seis para três

Leia mais

4 º Ano Matemática. METAS Domínios/Conteúdos Objetivos Descritores de Desempenho

4 º Ano Matemática. METAS Domínios/Conteúdos Objetivos Descritores de Desempenho METAS Domínios/Conteúdos Objetivos Descritores de Desempenho Ao longo do ano Números e Operações 3. Resolver problemas 3.1. Resolver problemas de vários passos envolvendo as quatro operações. setembro/

Leia mais

Probabilidade Condicional

Probabilidade Condicional 18 Probabilidade Condicional Sumário 18.1 Introdução....................... 2 18.2 Probabilidade Condicional............... 2 1 Unidade 18 Introdução 18.1 Introdução Nessa unidade, é apresentada mais uma

Leia mais

Exercícios de Aprofundamento 2015 Mat - Polinômios

Exercícios de Aprofundamento 2015 Mat - Polinômios Exercícios de Aprofundamento 05 Mat - Polinômios. (Espcex (Aman) 05) O polinômio (x) x x deixa resto r(x). Sabendo disso, o valor numérico de r( ) é a) 0. b) 4. c) 0. d) 4. e) 0. 5 f(x) x x x, uando dividido

Leia mais

Poliedros. MA13 - Unidade 22. Resumo elaborado por Eduardo Wagner baseado no texto: A. Caminha M. Neto. Geometria. Coleção PROFMAT

Poliedros. MA13 - Unidade 22. Resumo elaborado por Eduardo Wagner baseado no texto: A. Caminha M. Neto. Geometria. Coleção PROFMAT Poliedros MA13 - Unidade 22 Resumo elaborado por Eduardo Wagner baseado no texto: A. Caminha M. Neto. Geometria. Coleção PROFMAT Poliedros Poliedro é um objeto da Matemática que pode ser definido com diversos

Leia mais

1 Formam-se n triângulos com palitos conforme mostram as figuras. Qual o número de palitos usados para construir n triângulos?

1 Formam-se n triângulos com palitos conforme mostram as figuras. Qual o número de palitos usados para construir n triângulos? Resolução do capítulo 7 - Progressão Aritmética 1 Formam-se n triângulos com palitos conforme mostram as figuras. Qual o número de palitos usados para construir n triângulos? Sendo n o número de triângulos

Leia mais

Módulo: aritmética dos restos. Divisibilidade e Resto. Tópicos Adicionais

Módulo: aritmética dos restos. Divisibilidade e Resto. Tópicos Adicionais Módulo: aritmética dos restos Divisibilidade e Resto Tópicos Adicionais Módulo: aritmética dos restos Divisibilidade e resto 1 Exercícios Introdutórios Exercício 1. Encontre os inteiros que, na divisão

Leia mais

ENQ Gabarito MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL. Questão 01 [ 1,25 ]

ENQ Gabarito MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL. Questão 01 [ 1,25 ] MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL ENQ 017 Gabarito Questão 01 [ 1,5 ] Encontre as medidas dos lados e ângulos de dois triângulos ABC diferentes tais que AC = 1, BC = e A BC = 0 Considere

Leia mais

00. Qual o nome do vaso sangüíneo que sai do ventrículo direito do coração humano? (A) Veia pulmonar direita

00. Qual o nome do vaso sangüíneo que sai do ventrículo direito do coração humano? (A) Veia pulmonar direita MINISTÉRIO DA DEFESA EXÉRCITO BRASILEIRO DEP - DEPA (Casa de Thomaz Coelho/1889) CONCURSO DE ADMISSÃO À 1ª SÉRIE DO ENSINO MÉDIO 004005 DE OUTUBRO DE 004 INSTRUÇÕES AOS CANDIDATOS 01. Duração da prova:

Leia mais

CVGA Edezio 1. k e v = x2. u, v = u v = x 1 x 2 + y 1 y 2 + z 1 z 2

CVGA Edezio 1. k e v = x2. u, v = u v = x 1 x 2 + y 1 y 2 + z 1 z 2 CVGA Edezio 1 Cálculo Vetorial e Geometria Analítica Produto de Vetores Produto Escalar (ou Interno) Chama-se produto escalar (ou produto interno usual) de dois vetores x 1 i + y1 j + z1 k e x2 i + y2

Leia mais

Elementos de Matemática Finita

Elementos de Matemática Finita Elementos de Matemática Finita Exercícios Resolvidos 1 - Algoritmo de Euclides; Indução Matemática; Teorema Fundamental da Aritmética 1. Considere os inteiros a 406 e b 654. (a) Encontre d mdc(a,b), o

Leia mais

Aula 10 Produto interno, vetorial e misto -

Aula 10 Produto interno, vetorial e misto - MÓDULO 2 - AULA 10 Aula 10 Produto interno, vetorial e misto - Aplicações II Objetivos Estudar as posições relativas entre retas no espaço. Obter as expressões para calcular distância entre retas. Continuando

Leia mais

O problema proposto possui alguma solução? Se sim, quantas e quais são elas?

O problema proposto possui alguma solução? Se sim, quantas e quais são elas? PROVA PARA OS ALUNOS DE 3º ANO DO ENSINO MÉDIO 1) Considere o seguinte problema: Vitor ganhou R$ 3,20 de seu pai em moedas de 5 centavos, 10 centavos e 25 centavos. Se recebeu um total de 50 moedas, quantas

Leia mais

XXVI Olimpíada Brasileira de Matemática GABARITO Segunda Fase

XXVI Olimpíada Brasileira de Matemática GABARITO Segunda Fase XXVI Olimpíada Brasileira de Matemática GABARITO Segunda Fase Soluções Nível Solução do Problema : Os possíveis produtos x k x k são ( )( ) =, ( + )( + ) = + e ( )( + ) =. Suponha que a produtos são iguais

Leia mais

Prova do Nível 3. 1 a Parte - Questões Objetivas - Gabarito. 2 a Parte - Questões Discursivas - Gabarito

Prova do Nível 3. 1 a Parte - Questões Objetivas - Gabarito. 2 a Parte - Questões Discursivas - Gabarito Prova do Nível 1 a Parte - Questões Objetivas - Gabarito 1) ANULADA, ) B, ) A, ) C, 5) E, 6) C, 7) E, 8) A, 9) B, 10) C a Parte - Questões Discursivas - Gabarito 1. Se x, y, z são números reais positivos,

Leia mais

Colégio Naval 2008/2009 (PROVA VERDE)

Colégio Naval 2008/2009 (PROVA VERDE) Colégio Naval 008/009 (PROVA VERDE) 01) Um triângulo retângulo, de lados expressos por números inteiros consecutivos, está inscrito em um triângulo eqüilátero T de lado x. Se o maior cateto é paralelo

Leia mais

AGRUPAMENTO DE ESCOLAS DE VALE DE MILHAÇOS PLANIFICAÇÃO ANUAL DE MATEMÁTICA 4.º ANO DE ESCOLARIDADE

AGRUPAMENTO DE ESCOLAS DE VALE DE MILHAÇOS PLANIFICAÇÃO ANUAL DE MATEMÁTICA 4.º ANO DE ESCOLARIDADE Domínio/ NO4/ Números naturais NO4/ Números racionais não negativos AGRUPAMENTO DE ESCOLAS DE VALE DE MILHAÇOS PLANIFICAÇÃO ANUAL DE MATEMÁTICA 4.º ANO DE ESCOLARIDADE - 2016-2017 1. Contar 1. Reconhecer

Leia mais

Álgebra Linear I - Lista 7. Respostas

Álgebra Linear I - Lista 7. Respostas Álgebra Linear I - Lista 7 Distâncias Respostas 1) Considere a reta r que passa por (1,0,1) e por (0,1,1). Calcule a distância do ponto (2,1,2) à reta r. Resposta: 3. 2) Ache o ponto P do conjunto { (x,

Leia mais