O potencial degrau (Energia menor do que a altura do degrau)

Tamanho: px
Começar a partir da página:

Download "O potencial degrau (Energia menor do que a altura do degrau)"

Transcrição

1 O potencial degrau (Energia menor do que a altura do degrau) Cleber de Oliveira dos Santos 1 Faculdade capivari - FUCAP, Capivari de Baixo, SC cleber_013@hotmail.com Resumo: Nesse artigo, vamos mostrar as soluções da equação de Schröedinger independente do tempo para uma partícula cuja energia potencial possa ser representada por uma função V(x) que tenha um valor constante diferente em cada uma de várias regiões adjacentes do eixo x. Esses potenciais mudam de valor rapidamente (isto é, que são funções descontínuas de x) não existem realmente na natureza. No entanto, esses potenciais idealizados são frequentemente utilizados na mecânica quântica para aproximar situações reais, pois, por serem constantes em cada região, eles são de fácil tratamento matemático. Os resultados que obtemos para estes potenciais nos permitem ilustrar uma série de fenômenos quânticos característicos. O potencial idealizado que tratamos nesse artigo é o degrau de potencial ou potencial degrau. Se escolhermos a origem do eixo x como estando sobre o degrau, e a constante aditiva arbitrária que sempre aparece na definição de uma energia potencial de forma tal que a energia arbitrária que sempre aparece na definição de uma energia potencial de forma tal que a energia potencial da partícula seja nula à esquerda do degrau, V(x) pode ser escrita como: { Figura 1 Um degrau de potencial Fonte: Eisberg e Resnick (1979) 1 Mestre em Educação: linha de pesquisa: Educação em Ciências/Matemática pela Universidade do Sul de Santa Catarina - UNISUL (2017), Especialista em Matemática pela Universidade Federal de Santa Catarina - UFSC (2011), graduado em Matemática - UNISUL (2005), Especialista em Educação Matemática pela UNISUL (2007), graduado em Física - UNISUL (2016). Atualmente é professor das disciplinas de Cálculo III, Álgebra linear, Geometria Analítica, Equações Diferenciais, Física I dos Cursos de Engelharia de Produção, Civil, Mecânica e Ambiental e sanitária da Faculdade Capivari (FUCAP). Tem experiência na área de Matemática e Física. Integrante de dois grupos de pesquisa: GPEMAHC (Grupo de Pesquisa em Educação Matemática: uma Abordagem Histórico-Cultural) e o TEDMAT (Teoria do Ensino Desenvolvimental na Educação Matemática).

2 Onde: V o é uma constante. V (x) é uma representação idealizada da função energia potencial para uma partícula carregada se movendo ao longo do eixo x de um sistema de dois eletrodos ligeiramente separados que são mantidos a voltagens diferentes. Figura 2 Ilustração de um sistema físico com uma função energia potencial que pode ser aproximada por um degrau de potencial. Uma partícula carregada se move ao longo do eixo de dois eletrodos cilíndricos mantidos a diferentes voltagens. Sua energia potencial é constante quando ela está dentro de um dos eletrodos, mas muda muito rapidamente ao passar de um para o outro. Fonte: Eisberg e Resnick (1979) A parte superior da figura 2 ilustra esse sistema, e a parte inferior ilustra a função energia potencial correspondente. À medida que a separação diminui, a função potencial se aproxima da idealização mostrada na figura 1. Supomos que uma partícula de massa m e energia total E esteja na região x < 0, e que esteja se dirigindo para o ponto x = 0, no qual o potencial V(x) muda rapidamente seu valor. De acordo com a mecânica clássica, a partícula vai se mover livremente nessa região até atingir x = 0, onde ela estará sujeita a uma força impulsiva dada por: A força F atua no sentido decrescente de x. O potencial idealizado (1) dá uma força impulsiva de módulo infinito atuando apenas no ponto x = 0. No entanto, como ela age sobre a partícula apenas durante um tempo infinitesimal, a grandeza (o impulso), que determina a variação no seu momento, é finita. Na verdade, a variação no momento não é afetada pela idealização. O movimento da partícula após sofrer a ação da força em x = 0 depende, na mecânica clássica, da relação entre E e V 0. Isto também vale na mecânica quântica. Neste artigo, tratamos o caso em que E < V 0, isto é, no qual a energia total é menor que a altura do degrau de potencial, como está ilustrada na figura 3.

3 Figura 3 A relação entre as energias potencial e total para uma partícula incidente sobre um degrau de potencial com energia menor do que a altura do degrau. Fonte: Eisberg e Resnick (1979) Como a energia total E é uma constante, a mecânica clássica diz que a partícula não pode passar para a região x > 0. A razão é que nessa região: ou. Logo, a energia cinética E = seria negativa na região: x > 0, o que implicaria em um valor imaginário para o momento p nessa região. Isto, além de não ser possível, não tem sentido físico na mecânica clássica. Segundo a mecânica clássica, a força impulsiva vai mudar o momento da partícula de uma forma tal que seu movimento ficará exatamente invertido, afastando se no sentido de x decrescente, com momento em sentido oposto ao sentido de seu momento inicial. O módulo do momento p será o mesmo antes e depois da inversão, pois a energia total E = permanece constante. De acordo com a mecânica quântica, para determinar o movimento da partícula devemos achar a função de onda que é uma solução, para a energia total E < V 0, da equação de Schröedinger para o degrau de potencial de (1). Como esse potencial é independente do tempo, o problema real é resolver a equação de Schroedinger independente do tempo. Para o potencial degrau, o eixo x se divide em duas regiões. (a) Na região onde x < 0 (à esquerda do degrau), temos V(x) = 0, de forma que a autofunção que descreve o comportamento da partícula é uma solução de equação de Schroedinger independente do tempo: (b) Na região onde x > 0 (á dereita do degrau), temos V(x) = V 0, e a autofunção é uma solução de uma equação de Schroedinger independente do tempo:

4 Estas duas equações são resolvidas separadamente. Constrói-se então uma autofunção válida para todos os x juntando-se as duas soluções em x = 0 de forma a satisfazer às exigências, de que a autofunção e sua primeira derivada sejam em todos os pontos finitas, unívocas e contínuas. Consideremos a equação diferencial válida para a região na qual V(x) = 0, (2). Como esta é precisamente a equação de Schröedinger independente do tempo para uma partícula livre tomamos como sua solução geral a autofunção: Agora, vamos considerar a equação diferencial válida na região na qual V(x) = V 0, (3). Não esperamos que uma função oscilatória, como em (4), seja uma solução, pois a energia total E é menor do que a energia potencial V 0 na região considerada. Na verdade, estas considerações nos dizem que a solução será uma função que se aproxima gradualmente do eixo x. A função mais simples com esta propriedade é a exponencial real decrescente, que pode ser escrita como: Vamos determinar se esta é uma solução; e se for, obter também o valor exigido para k 2 substituindo a em (3), que é a equação à qual ela deve satisfazer. Primeiro calculamos a segunda derivada da função (5): = = A substituição dá que:. A equação é satisfeita, e portanto a solução está verificada, desde que: A solução que acabamos de verificar não é uma solução geral da equação de Schroedinger independente do tempo, (3). A razão é que a equação contém uma segunda derivada, de forma que a solução geral deve conter duas constantes arbitrárias. No entanto, se pudermos encontrar uma solução da equação para a mesma E, com forma diferente da que obtivemos, podemos fazer uma combinação linear das duas, chamadas

5 soluções particulares. A combinação linear também será uma solução, e, como ela conterá duas constantes arbitrárias, vai ser uma solução geral. Para encontrar a outra solução, notamos que k 2 aparece como um quadrado em (6), logo seu sinal não interessa e a exponencial é crescente dada por: A equação (7) também é uma solução da equação de Schröedinger independente do tempo que estamos considerando. É igualmente fácil verificar isto, por substituição na equação (3). Mas vamos verificar em vez disso que a combinação linear arbitrária (8) das duas soluções particulares onde C e D são constantes arbitrárias é solução de (3). Para isso calculamos a segunda derivada da função (8) e substituímos na equação (3) para verificar a igualdade. Assim,. Esta expressão é obviamente verdadeira, verificamos que (8) é uma solução. Como ela contém duas constantes arbitrárias, é a solução geral da equação de Schröedinger independente do tempo na região do potencial degrau onde V(x) = V 0, com E < V 0. Embora a parte com a exponencial crescente não vá ser utilizada neste artigo, o será em um artigo futuro. As constantes A, B, C e D de (4) e (8) devem ser escolhidas de forma tal que a autofunção total satisfaça às exigências relativas à limitação, unicidade e continuidade de (x) e ). Consideremos inicialmente o comportamento de (x) quando x +. Nesta região do eixo, a forma geral de (x) é dada por (8). Podemos verificar que ela vai em geral crescer sem limite quando x + devido à presença do primeiro termo,. Para evitar isto, e manter (x) finita, devemos fazer com que o coeficiente arbitrário C do primeiro termo seja igual à zero. Assim: C = 0. (9) A unicidade é automaticamente satisfeita por essas funções. Para estudar sua continuidade, consideramos o ponto x = 0. Neste ponto, as duas formas de (x), dadas por (4) e (8), devem se juntar de uma forma tal que (x) e ) sejam contínuas. A continuidade de (x) é obtida se a seguinte relação for satisfeita:

6 Igualando as duas formas em x = 0, temos: D = A + B (10) A continuidade na derivada das duas formas: É obtido se igualarmos estas derivadas em x = 0. Portanto, fazemos: Isto dá: Somando (10) e (11), temos: Subtraindo-as, temos: Já determinamos A, B e C em função de D. portanto, a autofunção para o degrau de potencial com energia E <, é: { A constante arbitrária restante, D, determina a amplitude da autofunção, mas ela não aparece em nenhuma de suas características mais importantes. A presença dessa constante reflete o fato de que a equação de Schröedinger independente do tempo é linear em (x), e, portanto são possíveis soluções com qualquer amplitude. Veremos que é normalmente possível obtermos resultados úteis sem nos preocuparmos em normalizar, o que especificaria D. A razão disso é que as grandezas mensuráveis que obteremos como previsões da teoria contêm D tanto no numerador quanto no denominador de uma fração, de forma que este valor se cancela, não aparecendo no resultado.

7 A função de onda correspondente à autofunção é: { Consideremos a região x < 0. O primeiro termo da função de onda nesta região é uma onda se propagando no sentido de x crescente. Esse termo descreve uma partícula se movendo no sentido de x crescente. O segundo termo da função de onda para x < 0 é uma onda se propagando no sentido de x decrescente, e descreve uma partícula se movendo neste sentido. Essas informações, somadas às previsões clássicas descritas anteriormente, sugerem que deveríamos associar o primeiro termo à incidência de uma partícula sobre o degrau de potencial, e o segundo termo à reflexão da partícula pelo degrau. Vamos usar esta associação para calcular a probabilidade que a partícula incidente seja refletida, que chamamos coeficiente de reflexão R. Evidentemente, R depende da razão, que específica à amplitude da parte refletida da função de onda relativamente à amplitude da parte incidente. Mas na mecânica quântica as probabilidades dependem das intensidades, como B*B e A*A e não das amplitudes. Portanto, devemos calcular R a partir da fórmula: Isto é, o coeficiente de reflexão é igual à razão entre a intensidade da parte da onda que descreve a partícula refletida e a intensidade da parte que descreve a partícula incidente. Obtemos: Ou O fato de que esta razão seja igual a um significa que uma partícula incidente sobre o degrau de potencial, com energia total menor do que a altura do degrau tem probabilidade um de ser refletida é sempre refletida. Isto está de acordo com as previsões da mecânica quântica. Consideremos agora a autofunção (14), usando a relação:

8 É fácil mostrar que a autofunção pode ser expressa como: { Se gerarmos a função de onda, multiplicando (x) por, vemos imediatamente que temos na verdade uma onda estacionária, pois as localizações dos nós não mudam com o tempo. Neste problema, as ondas incidente e refletida para x < 0 se combinam formando uma onda estacionária, pois elas têm a mesma intensidade. A figura (4) ilustra isto de forma esquemática. Figura 4 - Ilustração esquemática da combinação de uma onde incidente e de uma onda refletida de mesmas intensidades, formando uma onda estacionária. A função de onda é refletida por um degrau de potencial em x = 0. Observe que os nós das ondas incidente e refletida se movem para a direita ou para a esquerda, mas os da onda resultante são estacionários. Fonte: Eisberg e Resnick (1979) Na parte superior figura (5), ilustramos a função de onda por meio de um gráfico da autofunção, (19), que é uma função real de x se tomar D real. Pode-se imaginar a função de onda oscilando no tempo segundo, com uma amplitude cuja dependência espacial é dada por. Obtemos aqui uma característica que está em flagrante contraste com as previsões clássicas. Embora na região x > 0 a densidade de probabilidade: Ilustrada na parte inferior da figura (5) decresça rapidamente à medida que x cresce, há uma probabilidade finita de encontrar a partícula na região x > 0. Segundo a mecânica clássica, seria absolutamente impossível encontrar a partícula na região x > 0, pois aí a energia total é menor do que a energia potencial, de forma que a energia cinética seria negativa e o momento p, imaginário. Este fenômeno, chamado

9 penetração na região classicamente proibida, é uma das previsões mais notáveis da mecânica quântica. Figura 5 - Ao alto: A autofunção (x) para uma partícula incidente sobre um degrau de potencial em x = 0, com energia total menor do que a altura do degrau. Observe a penetração da autofunção na região classicamente proibida, x > 0. Embaixo: A densidade de probabilidade correspondente a esta autofunção. O espaçamento entre os picos de é duas vezes menor do que o espaçamento entre os picos de. Fonte: Eisberg e Resnick (1979) Discutiremos mais tarde algumas experiências que confirmaram essa previsão, mas aqui gostaríamos de apresentar alguns pontos a seu respeito. Um deles é que a penetração não significa que a partícula seja mantida na região classicamente proibida. De fato, vimos que a partícula incidente é certamente refletida pelo degrau. Outro ponto é que a penetração na região proibida, que obedece a (21), não está em conflito com as experiências da mecânica clássica. É evidente, a partir da equação, que a probabilidade de encontrar a partícula com uma coordenada x > 0 é apreciável apenas em uma região começando em x = 0 e se estendendo em uma distância de penetração Δx, que é igual a. A razão disto é que cai muito rapidamente a zero quando x é muito maior do que. Como, temos:. No limite clássico, o produto de m por é tão grande, comparado a, que Δx imensuravelmente pequeno.

10 REFERÊNCIA EISBERG, Robert; RESNICK, Robert. FÍSICA QUANTÍCA: Átomos, moléculas, Sólidos, Núcleos e Partículas. 23ª ed, Rio de janeiro: Campus, 1979.

UNIVERSIDADE FEDERAL DO CEARÁ CENTRO DE TECNOLOGIA PROGRAMA DE EDUCAÇÃO TUTORIAL APOSTILA DE CÁLCULO. Realização:

UNIVERSIDADE FEDERAL DO CEARÁ CENTRO DE TECNOLOGIA PROGRAMA DE EDUCAÇÃO TUTORIAL APOSTILA DE CÁLCULO. Realização: UNIVERSIDADE FEDERAL DO CEARÁ CENTRO DE TECNOLOGIA PROGRAMA DE EDUCAÇÃO TUTORIAL APOSTILA DE CÁLCULO Realização: Fortaleza, Fevereiro/2010 1. LIMITES 1.1. Definição Geral Se os valores de f(x) puderem

Leia mais

Equação de Schrödinger

Equação de Schrödinger Maria Inês Barbosa de Carvalho Equação de Schrödinger Apontamentos para a disciplina Física dos Estados da Matéria 00/0 Licenciatura em Engenharia Electrotécnica e de Computadores Faculdade de Engenharia

Leia mais

- identificar operadores ortogonais e unitários e conhecer as suas propriedades;

- identificar operadores ortogonais e unitários e conhecer as suas propriedades; DISCIPLINA: ELEMENTOS DE MATEMÁTICA AVANÇADA UNIDADE 3: ÁLGEBRA LINEAR. OPERADORES OBJETIVOS: Ao final desta unidade você deverá: - identificar operadores ortogonais e unitários e conhecer as suas propriedades;

Leia mais

ÁLGEBRA LINEAR: aplicações de sistemas lineares

ÁLGEBRA LINEAR: aplicações de sistemas lineares ÁLGEBRA LINEAR: aplicações de sistemas lineares SANTOS, Cleber de Oliveira dos RESUMO Este artigo apresenta algumas aplicações de sistemas lineares, conteúdo estudado na disciplina de Álgebra linear da

Leia mais

Função de Onda e Equação de Schrödinger

Função de Onda e Equação de Schrödinger 14/08/013 Função de Onda e Equação de Schrödinger Prof. Alex Fabiano C. Campos, Dr A Função de Onda (ψ) A primeira formulação para esta nova interpretação da Mecânica, a Mecânica Quântica, teoria foi proposta

Leia mais

ADL Sistemas de Segunda Ordem Subamortecidos

ADL Sistemas de Segunda Ordem Subamortecidos ADL19 4.6 Sistemas de Segunda Ordem Subamortecidos Resposta ao degrau do sistema de segunda ordem genérico da Eq. (4.22). Transformada da resposta, C(s): (4.26) Expandindo-se em frações parciais, (4.27)

Leia mais

Universidade Federal de Pelotas Cálculo com Geometria Analítica I Prof a : Msc. Merhy Heli Rodrigues Aplicações da Derivada

Universidade Federal de Pelotas Cálculo com Geometria Analítica I Prof a : Msc. Merhy Heli Rodrigues Aplicações da Derivada 1) Velocidade e Aceleração 1.1 Velocidade Universidade Federal de Pelotas Cálculo com Geometria Analítica I Prof a : Msc. Merhy Heli Rodrigues Aplicações da Derivada Suponhamos que um corpo se move em

Leia mais

Capí tulo 6 Movimento Oscilato rio Harmo nico

Capí tulo 6 Movimento Oscilato rio Harmo nico Capí tulo 6 Movimento Oscilato rio Harmo nico 1. O Movimento Harmónico Simples Vamos estudar o movimento de um corpo sujeito a uma força elástica. Consideramos o sistema como constituído por um corpo de

Leia mais

Capítulo 3 O Oscilador Hamônico

Capítulo 3 O Oscilador Hamônico Capítulo 3 O Oscilador Hamônico Uma força unidimensional, que depende somente da posição x, tem uma expansão de Taylor em torno da sua posição de equilíbrio x=0 (onde F=0) Quando somente o termo linear

Leia mais

Derivadas Parciais Capítulo 14

Derivadas Parciais Capítulo 14 Derivadas Parciais Capítulo 14 DERIVADAS PARCIAIS 14.2 Limites e Continuidade Nesta seção, aprenderemos sobre: Limites e continuidade de vários tipos de funções. LIMITES E CONTINUIDADE Vamos comparar o

Leia mais

A Segunda Derivada: Análise da Variação de Uma Função

A Segunda Derivada: Análise da Variação de Uma Função A Segunda Derivada: Análise da Variação de Uma Função Suponhamos que a função y = f() possua derivada em um segmento [a, b] do eio-. Os valores da derivada f () também dependem de, ou seja, a derivada

Leia mais

Física Módulo 2 Ondas

Física Módulo 2 Ondas Física Módulo 2 Ondas Ondas, o que são? Onda... Onda é uma perturbação que se propaga no espaço ou em qualquer outro meio, como, por exemplo, na água. Uma onda transfere energia de um ponto para outro,

Leia mais

Limites Uma teoria abordando os principais tópicos sobre a teoria dos limites. José Natanael Reis

Limites Uma teoria abordando os principais tópicos sobre a teoria dos limites. José Natanael Reis Limites Uma teoria abordando os principais tópicos sobre a teoria dos limites Este trabalho tem como foco, uma abordagem sobre a teoria dos limites. Cujo objetivo é o método para avaliação da disciplina

Leia mais

Estatística Aplicada ao Serviço Social

Estatística Aplicada ao Serviço Social Estatística Aplicada ao Serviço Social Módulo 7: Correlação e Regressão Linear Simples Introdução Coeficientes de Correlação entre duas Variáveis Coeficiente de Correlação Linear Introdução. Regressão

Leia mais

Métodos de Física Teórica II Prof. Henrique Boschi IF - UFRJ. 1º. semestre de 2010 Aulas 3 e 4 Ref. Butkov, cap. 8, seção 8.3

Métodos de Física Teórica II Prof. Henrique Boschi IF - UFRJ. 1º. semestre de 2010 Aulas 3 e 4 Ref. Butkov, cap. 8, seção 8.3 Métodos de Física Teórica II Prof. Henrique Boschi IF - UFRJ 1º. semestre de 2010 Aulas 3 e 4 Ref. Butkov, cap. 8, seção 8.3 Equações de Poisson e Laplace Vimos na aula passada o método de separação de

Leia mais

Física II Ondas, Fluidos e Termodinâmica USP Prof. Antônio Roque Aula

Física II Ondas, Fluidos e Termodinâmica USP Prof. Antônio Roque Aula Aula 3 010 Movimento Harmônico Simples: Exemplos O protótipo físico do movimento harmônico simples (MHS) visto nas aulas passadas um corpo de massa m preso a uma mola executando vibrações de pequenas amplitudes

Leia mais

Ondas EM no Espaço Livre (Vácuo)

Ondas EM no Espaço Livre (Vácuo) Secretaria de Educação Profissional e Tecnológica Instituto Federal de Santa Catarina Campus São José Área de Telecomunicações ELM20704 Eletromagnetismo Professor: Bruno Fontana da Silva 2014-1 Ondas EM

Leia mais

GABARITO - LISTA 1 DE SÉRIES

GABARITO - LISTA 1 DE SÉRIES 1-A- Pelo teste da integral temos: GABARITO - LISTA 1 DE SÉRIES Uma vez que o valor da integral é um valor finito, a série converge. Resolução alternativa: Teste da razão: Dividindo o numerador e denominador

Leia mais

O ÁTOMO DE HIDROGÊNIO

O ÁTOMO DE HIDROGÊNIO O ÁTOMO DE HIDROGÊNIO Alessandra de Souza Barbosa 04 de dezembro de 013 O átomo de hidrogênio Alessandra de Souza Barbosa CF37 - Mecânica Quântica I /36 Sistema de duas particulas um elétron e um próton;

Leia mais

UNIVERSIDADE FEDERAL DA BAHIA ESCOLA POLITÉCNICA DEPARTAMENTO DE ENGENHARIA QUÍMICA ENG 008 Fenômenos de Transporte I A Profª Fátima Lopes

UNIVERSIDADE FEDERAL DA BAHIA ESCOLA POLITÉCNICA DEPARTAMENTO DE ENGENHARIA QUÍMICA ENG 008 Fenômenos de Transporte I A Profª Fátima Lopes Equações básicas Uma análise de qualquer problema em Mecânica dos Fluidos, necessariamente se inicia, quer diretamente ou indiretamente, com a definição das leis básicas que governam o movimento do fluido.

Leia mais

Prof. Neckel. Capítulo 5. Aceleração média 23/03/2016 ACELERAÇÃO. É a taxa média de variação de velocidade em determinado intervalo de tempo = =

Prof. Neckel. Capítulo 5. Aceleração média 23/03/2016 ACELERAÇÃO. É a taxa média de variação de velocidade em determinado intervalo de tempo = = Capítulo 5 ACELERAÇÃO Aceleração média É a taxa média de variação de velocidade em determinado intervalo de tempo = = Se > >0 <

Leia mais

Cap. 7 - Momento Linear e Impulso

Cap. 7 - Momento Linear e Impulso Universidade Federal do Rio de Janeiro Instituto de Física Física I IGM1 2014/1 Cap. 7 - Momento Linear e Impulso Prof. Elvis Soares Consideremos o seguinte problema: ao atirar um projétil de um canhão

Leia mais

PROPRIEDADES ONDULATÓRIAS DO ELÉTRON

PROPRIEDADES ONDULATÓRIAS DO ELÉTRON MODELO QUÂNTICO PROPRIEDADES ONDULATÓRIAS DO ELÉTRON EINSTEIN: usou o efeito fotoelétrico para demonstrar que a luz, geralmente imaginada como tendo propriedades de onda, pode também ter propriedades de

Leia mais

1 Geometria Analítica Plana

1 Geometria Analítica Plana UNIVERSIDADE ESTADUAL DO PARANÁ CAMPUS DE CAMPO MOURÃO Curso: Matemática, 1º ano Disciplina: Geometria Analítica e Álgebra Linear Professora: Gislaine Aparecida Periçaro 1 Geometria Analítica Plana A Geometria

Leia mais

Para simplificar a notação, também usamos denotar uma sequência usando apenas a imagem de :

Para simplificar a notação, também usamos denotar uma sequência usando apenas a imagem de : Sequências Uma sequência é uma função f de em, ou seja. Para todo número natural i associamos um número real por meio de uma determinada regra de formação. A sequencia pode ser denotada por: Ou, por meio

Leia mais

Mecânica Quântica I. Slides 1. Ano lectivo 2008/2009 Semestre ímpar Docente: Alfred Stadler. Departamento de Física da Universidade de Évora

Mecânica Quântica I. Slides 1. Ano lectivo 2008/2009 Semestre ímpar Docente: Alfred Stadler. Departamento de Física da Universidade de Évora Mecânica Quântica I Ano lectivo 2008/2009 Semestre ímpar Docente: Alfred Stadler Slides 1 Departamento de Física da Universidade de Évora A equação de Schrödinger Comparação de descrição clássica e quântica:

Leia mais

Resolvendo inequações: expressões com desigualdades (encontrar os valores que satisfazem a expressão)

Resolvendo inequações: expressões com desigualdades (encontrar os valores que satisfazem a expressão) R é ordenado: Se a, b, c R i) a < b se e somente se b a > 0 (a diferença do maior com o menor será positiva) ii) se a > 0 e b > 0 então a + b > 0 (a soma de dois números positivos é positiva) iii) se a

Leia mais

Capítulo Equações da reta no espaço. Sejam A e B dois pontos distintos no espaço e seja r a reta que os contém. Então, P r existe t R tal que

Capítulo Equações da reta no espaço. Sejam A e B dois pontos distintos no espaço e seja r a reta que os contém. Então, P r existe t R tal que Capítulo 11 1. Equações da reta no espaço Sejam A e B dois pontos distintos no espaço e seja r a reta que os contém. Então, P r existe t R tal que AP = t AB Fig. 1: Reta r passando por A e B. Como o ponto

Leia mais

Escoamento completamente desenvolvido

Escoamento completamente desenvolvido Escoamento completamente desenvolvido A figura mostra um escoamento laminar na região de entrada de um tubo circular. Uma camada limite desenvolve-se ao longo das paredes do duto. A superfície do tubo

Leia mais

Técnicas de. Integração

Técnicas de. Integração Técnicas de Capítulo 7 Integração TÉCNICAS DE INTEGRAÇÃO 7.4 Integração de Funções Racionais por Frações Parciais Nessa seção, vamos aprender como integrar funções racionais reduzindo-as a uma soma de

Leia mais

Professor Msc. Leonardo Henrique Gonsioroski

Professor Msc. Leonardo Henrique Gonsioroski Professor Msc. Leonardo Henrique Gonsioroski Professor Leonardo Henrique Gonsioroski UNIVERSIDADE GAMA FILHO PROCET DEPARTAMENTO DE ENGENHARIA CONTROLE E AUTOMAÇÃO Definições Um sistema que estabeleça

Leia mais

Capítulo 3 Equações Diferenciais. O Wronskiano (de Josef Hoëné-Wronski, polonês, )

Capítulo 3 Equações Diferenciais. O Wronskiano (de Josef Hoëné-Wronski, polonês, ) Capítulo 3 Equações Diferenciais O Wronskiano (de Josef Hoëné-Wronski, polonês, 1776 1853) Seja a equação diferencial, ordinária, linear e de 2ª. ordem Podemos dividir por os 2 membros e escrever a equação

Leia mais

UNIVERSIDADE FEDERAL DE PELOTAS INSTITUTO DE FÍSICA E MATEMÁTICA Departamento de Física Disciplina: Física Básica II

UNIVERSIDADE FEDERAL DE PELOTAS INSTITUTO DE FÍSICA E MATEMÁTICA Departamento de Física Disciplina: Física Básica II UNIVERSIDADE FEDERAL DE PELOTAS INSTITUTO DE FÍSICA E MATEMÁTICA Departamento de Física Disciplina: Física Básica II Perguntas: 1. A figura 1a mostra um instantâneo de uma onda que se propaga no sentido

Leia mais

Módulo 1 Potenciação, equação exponencial e função exponencial

Módulo 1 Potenciação, equação exponencial e função exponencial Módulo 1 Potenciação, equação exponencial e função exponencial 1. Potenciação e suas propriedades 1.1. Potência de expoente natural Potenciação nada mais é do que uma multiplicação de fatores iguais. Casos

Leia mais

PARTE I EQUAÇÕES DE UMA VARIÁVEL REAL

PARTE I EQUAÇÕES DE UMA VARIÁVEL REAL PARTE I EQUAÇÕES DE UMA VARIÁVEL REAL. Introdução Considere f uma função, não constante, de uma variável real ou complexa, a equação f(x) = 0 será denominada equação de uma incógnita. EXEMPLO e x + senx

Leia mais

INTRODUÇÃO À ONDULATÓRIA

INTRODUÇÃO À ONDULATÓRIA INTRODUÇÃO À ONDULATÓRIA Considerações Iniciais Considerações Iniciais: O que é ONDA??? Perturbação produzida: PULSO O PULSO se movimenta a partir da região onde foi gerado: ONDA A onda se movimenta transferindo

Leia mais

Experiência 05: TRANSITÓRIO DE SISTEMAS RC

Experiência 05: TRANSITÓRIO DE SISTEMAS RC ( ) Prova ( ) Prova Semestral ( ) Exercícios ( ) Prova Modular ( ) Segunda Chamada ( ) Exame Final ( ) Prática de Laboratório ( ) Aproveitamento Extraordinário de Estudos Nota: Disciplina: Turma: Aluno

Leia mais

Cap.12: Rotação de um Corpo Rígido

Cap.12: Rotação de um Corpo Rígido Cap.12: Rotação de um Corpo Rígido Do professor para o aluno ajudando na avaliação de compreensão do capítulo. Fundamental que o aluno tenha lido o capítulo. Introdução: Produto vetorial Ilustração da

Leia mais

Universidade Federal Rural do Semi Árido UFERSA Pro Reitoria de Graduação PROGRAD Disciplina: Física II Professora: Subênia Medeiros

Universidade Federal Rural do Semi Árido UFERSA Pro Reitoria de Graduação PROGRAD Disciplina: Física II Professora: Subênia Medeiros Universidade Federal Rural do Semi Árido UFERSA Pro Reitoria de Graduação PROGRAD Disciplina: Física II Professora: Subênia Medeiros Movimento Periódico O movimento é um dos fenômenos mais fundamentais

Leia mais

Matriz de Avaliação de Matemática

Matriz de Avaliação de Matemática Matriz de Avaliação de Matemática A prova de matemática do TRLQ (Teste de Raciocínio Lógico Quantitativo) tem por objetivo avaliar o preparo das pessoas que a realizam para cursar programas de ensino que

Leia mais

Este trabalho foi licenciado com a Licença Creative Commons Atribuição - NãoComercial - SemDerivados 3.0 Não Adaptada

Este trabalho foi licenciado com a Licença Creative Commons Atribuição - NãoComercial - SemDerivados 3.0 Não Adaptada 1. Introdução Definição: Parábola é o lugar geométrico dos pontos do plano cujas distâncias entre uma reta fixa, chamada de reta diretriz, e a um ponto fixo situado fora desta reta, chamado de foco da

Leia mais

Momentos de Inércia de Superfícies

Momentos de Inércia de Superfícies PUC Goiás Curso: Engenharia Civil Disciplina: Mecânica dos Sólidos Corpo Docente: Geisa Pires Turma:----------- Plano de Aula Data: ------/--------/---------- Leitura obrigatória Mecânica Vetorial para

Leia mais

Desenho e Projeto de Tubulação Industrial Nível II

Desenho e Projeto de Tubulação Industrial Nível II Desenho e Projeto de Tubulação Industrial Nível II Módulo I Aula 02 EQUAÇÕES Pense no seguinte problema: Uma mulher de 25 anos é casada com um homem 5 anos mais velho que ela. Qual é a soma das idades

Leia mais

Exponencial de uma matriz

Exponencial de uma matriz Exponencial de uma matriz Ulysses Sodré Londrina-PR, 21 de Agosto de 2001; Arquivo: expa.tex Conteúdo 1 Introdução à exponencial de uma matriz 2 2 Polinômio característico, autovalores e autovetores 2

Leia mais

Exercícios resolvidos sobre Teoremas de Probabilidade

Exercícios resolvidos sobre Teoremas de Probabilidade Exercícios resolvidos sobre Teoremas de Probabilidade Aqui você tem mais uma oportunidade de estudar os teoremas da probabilidade, por meio de um conjunto de exercícios resolvidos. Observe como as propriedades

Leia mais

ADL A Representação Geral no Espaço de Estados

ADL A Representação Geral no Espaço de Estados ADL14 3.3 A Representação Geral no Espaço de Estados definições Combinação linear: Uma combinação linear de n variáveis, x i, para r = 1 a n, é dada pela seguinte soma: (3.17) onde cada K i é uma constante.

Leia mais

MOVIMENTO OSCILATÓRIO

MOVIMENTO OSCILATÓRIO MOVIMENTO OSCILATÓRIO 1.0 Noções da Teoria da Elasticidade A tensão é o quociente da força sobre a área aplicada (N/m²): As tensões normais são tensões cuja força é perpendicular à área. São as tensões

Leia mais

Estrutura Eletrônica dos átomos

Estrutura Eletrônica dos átomos Estrutura Eletrônica dos átomos 3- Os espectros de emissão dos gases Como a equação de Rydberg poderia ser explicada? Os estados de energia do átomo de hidrogênio Se n f é menor que n i, o e- move-se para

Leia mais

AS ONDAS ESTACIONÁRIAS

AS ONDAS ESTACIONÁRIAS AS ONDAS ESTACIONÁRIAS Comportamento de um elétron em um átomo: semelhante ao de uma onda estacionária tridimensional. Onda estacionária: não se movimenta em uma única direção (ao contrário de uma onda

Leia mais

Progressões aritméticas

Progressões aritméticas A UUL AL A Progressões aritméticas Quando escrevemos qualquer quantidade de números, um após o outro, temos o que chamamos de seqüência. As seqüências são, freqüentemente, resultado da observação de um

Leia mais

Eletrostática: Capacitância e Dielétricos

Eletrostática: Capacitância e Dielétricos Secretaria de Educação Profissional e Tecnológica Instituto Federal de Santa Catarina Campus São José Área de Telecomunicações ELM20704 Eletromagnetismo Professor: Bruno Fontana da Silva 2014-2 Eletrostática:

Leia mais

PROFMAT Exame de Qualificação Gabarito

PROFMAT Exame de Qualificação Gabarito PROFMAT Exame de Qualificação 2012-1 Gabarito 1. (10pts) Um corpo está contido num ambiente de temperatura constante. Decorrido o tempo (em minutos), seja a diferença entre a temperatura do corpo e do

Leia mais

[ ] EXEMPLOS: Muitas vezes precisamos montar uma Matriz a partir de uma lei geral. Analise os exemplos a seguir:

[ ] EXEMPLOS: Muitas vezes precisamos montar uma Matriz a partir de uma lei geral. Analise os exemplos a seguir: MATRIZES CONCEITO: Um conjunto de elementos algébricos dispostos em uma tabela retangular com linhas e colunas é uma Matriz. A seguir, vemos um exemplo de Matriz de 3 linhas e 4 colunas, e que representaremos

Leia mais

Representação de Fourier para Sinais 1

Representação de Fourier para Sinais 1 Representação de Fourier para Sinais A representação de Fourier para sinais é realizada através da soma ponderada de funções senoidais complexas. Se este sinal for aplicado a um sistema LTI, a saída do

Leia mais

QUÍMICA I. Teoria atômica Capítulo 6. Aula 2

QUÍMICA I. Teoria atômica Capítulo 6. Aula 2 QUÍMICA I Teoria atômica Capítulo 6 Aula 2 Natureza ondulatória da luz A teoria atômica moderna surgiu a partir de estudos sobre a interação da radiação com a matéria. A radiação eletromagnética se movimenta

Leia mais

Escola Secundária de Casquilhos FQA11 - APSA1 - Unidade 1- Correção

Escola Secundária de Casquilhos FQA11 - APSA1 - Unidade 1- Correção Escola Secundária de Casquilhos FQA11 - APSA1 - Unidade 1- Correção / GRUPO I (Exame 2013-2ª Fase) 1. (B) 2. 3. 3.1. Para que a intensidade média da radiação solar seja 1,3 x 10 3 Wm -2 é necessário que

Leia mais

LISTA DE EXERCÍCIOS Nº 2

LISTA DE EXERCÍCIOS Nº 2 LISTA DE EXERCÍCIOS Nº 2 Questões 1) A Figura 1a apresenta o retrato de uma onda propagante ao longo do sentido positivo do eixo x em uma corda sob tensão. Quatro elementos da corda são designados por

Leia mais

Matemática A Extensivo V. 3

Matemática A Extensivo V. 3 Extensivo V. Exercícios 01) 01. Falso. Substitua a e b por e, respectivamente. ( + ) = + 9+ 16 = 7 = 7 = 7 (falso) Como a equação já não vale para esses números, não vale para todos os reais. 0. Verdadeiro.

Leia mais

A seguir, uma demonstração do livro. Para adquirir a versão completa em papel, acesse:

A seguir, uma demonstração do livro. Para adquirir a versão completa em papel, acesse: A seguir, uma demonstração do livro. Para adquirir a versão completa em papel, acesse: www.pagina10.com.br Fundamentos de Matemática Superior - BINÔMIO DE NEWTON Estes resultados foram escritos com expoentes

Leia mais

Recorrências - Parte I

Recorrências - Parte I Polos Olímpicos de Treinamento Curso de Álgebra - Nível Prof. Marcelo Mendes Aula 4 Recorrências - Parte I Na aula anterior, vimos alguns exemplos de sequências. Em alguns deles, os termos são dados em

Leia mais

... Onde usar os conhecimentos os sobre s?...

... Onde usar os conhecimentos os sobre s?... Manual de IV Matemática SEQÜÊNCIA OU SUCESSÃO Por que aprender Progr ogressõe ssões? s?... O estudo das Progressões é uma ferramenta que nos ajuda a entender fenômenos e fatos do cotidiano, desde situações

Leia mais

Aula 18 Cilindros quádricos e identificação de quádricas

Aula 18 Cilindros quádricos e identificação de quádricas MÓDULO 2 - AULA 18 Aula 18 Cilindros quádricos e identificação de quádricas Objetivos Estudar os cilindros quádricos, analisando suas seções planas paralelas aos planos coordenados e estabelecendo suas

Leia mais

O FERROMAGNETISMO E RELAÇÕES DE FRONTEIRA NO CAMPO MAGNÉTICO

O FERROMAGNETISMO E RELAÇÕES DE FRONTEIRA NO CAMPO MAGNÉTICO 9 8 O FERROMAGNETISMO E RELAÇÕES DE FRONTEIRA NO CAMPO MAGNÉTICO Alguns tipos de materiais, como por exemplo o ferro, o níquel e o cobalto, apresentam a propriedade de que seus momentos magnéticos se alinham

Leia mais

Pontifícia Universidade Católica do Rio de Janeiro / PUC-Rio Departamento de Engenharia Mecânica. ENG1705 Dinâmica de Corpos Rígidos.

Pontifícia Universidade Católica do Rio de Janeiro / PUC-Rio Departamento de Engenharia Mecânica. ENG1705 Dinâmica de Corpos Rígidos. Pontifícia Universidade Católica do Rio de Janeiro / PUC-Rio Departamento de Engenharia Mecânica ENG1705 Dinâmica de Corpos Rígidos (Período: 2016.1) Notas de Aula Capítulo 1: VETORES Ivan Menezes ivan@puc-rio.br

Leia mais

f = 1MHz ε rms = 10V C = 220pF V Lrms = 39,1V V Crms = 30,0V V Rrms = 4,15V

f = 1MHz ε rms = 10V C = 220pF V Lrms = 39,1V V Crms = 30,0V V Rrms = 4,15V 1 Circuito RLC série Quando adicionamos uma resistência ao circuito LC série, como mostrado no diagrama ao lado, o comportamento do circuito é similar ao comportamento do circuito LC sem a resistência,

Leia mais

Funções de várias variáveis

Funções de várias variáveis GOVERNO FEDERAL MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL DO VALE DO SÃO FRANCISCO CÂMPUS JUAZEIRO/BA COLEG. DE ENG. ELÉTRICA PROF. PEDRO MACÁRIO DE MOURA CÁLCULO II 2015.2 Funções de várias variáveis

Leia mais

Espelhos esféricos. Calota esférica

Espelhos esféricos. Calota esférica Espelhos esféricos Espelhos esféricos são espelhos que resultam do corte de uma esfera formando o que se chama de calota esférica.nesses espelhos, uma das superfícies da calota é espelhada, produzindo

Leia mais

energia extraída do objeto é trabalho negativo. O trabalho possui a mesma unidade que energia e é uma grandeza escalar.

energia extraída do objeto é trabalho negativo. O trabalho possui a mesma unidade que energia e é uma grandeza escalar. !!"#$#!"%&' OBS: Esta nota de aula foi elaborada com intuito de auxiliar os alunos com o conteúdo da disciplina. Entretanto, sua utilização não substitui o livro 1 texto adotado. ( ) A energia cinética

Leia mais

UNESP - Faculdade de Engenharia de Guaratinguetá 1

UNESP - Faculdade de Engenharia de Guaratinguetá 1 ANÁLISE GRÁFICA UNESP - Faculdade de Engenharia de Guaratinguetá 0.. Introdução Neste capítulo abordaremos princípios de gráficos lineares e logarítmicos e seu uso em análise de dados. Esta análise possibilitará

Leia mais

MATEMÁTICA Prof.: Alexsandro de Sousa

MATEMÁTICA Prof.: Alexsandro de Sousa E. E. DONA ANTÔNIA VALADARES MATEMÁTICA Prof.: Alexsandro de Sousa Introdução ao conceito de funções FERNANDO FAVORETTO/CID A ideia de função no cotidiano Relação entre duas grandezas Quantidade de pães

Leia mais

(b) O limite o produto é o produto dos limites se o limite de cada fator do produto existe, ou seja, (c) O limite do quociente é o quociente dos limit

(b) O limite o produto é o produto dos limites se o limite de cada fator do produto existe, ou seja, (c) O limite do quociente é o quociente dos limit MATEMÁTICA I AULA 03: LIMITES DE FUNÇÃO, CÁLCULO DE LIMITES E CONTINUIDADES TÓPICO 02: CÁLCULO DE LIMITES Neste tópico serão estudadas as técnicas de cálculo de limites de funções algébricas, usando alguns

Leia mais

Os eixo x e y dividem a circunferência em quatro partes congruentes chamadas quadrantes, numeradas de 1 a 4 conforme figura abaixo:

Os eixo x e y dividem a circunferência em quatro partes congruentes chamadas quadrantes, numeradas de 1 a 4 conforme figura abaixo: Circunferência Trigonométrica É uma circunferência de raio unitário orientada de tal forma que o sentido positivo é o sentido anti-horário. Associamos a circunferência (ou ciclo) trigonométrico um sistema

Leia mais

O significado de γ e β

O significado de γ e β Teoria Quântica de Campos II 199 O significado de γ e β Vamos tentar entender γ e β, escrevendo-os em termos dos parâmetros da lagrangeana nua: Da definição de γ (eq 193.2) temos: ( eq. 199.1 ) mostra

Leia mais

UNIVERSIDADE FEDERAL DO ACRE

UNIVERSIDADE FEDERAL DO ACRE UNIVERSIDADE FEDERAL DO ACRE PRÓ-REITORIA DE GRADUAÇÃO EDITAL Nº 04/2016-PROGRAD PROVA ESCRITA ÁREA: FÍSICA GERAL Questão 1. (Valor 2,0) Um foguete modelo de 4,00 kg é lançado verticalmente para cima com

Leia mais

PROPORÇÕES GEOMÉTRICAS: SEMELHANÇA de FIGURAS

PROPORÇÕES GEOMÉTRICAS: SEMELHANÇA de FIGURAS 8. PROPORÇÕES GEOMÉTRICAS: SEMELHANÇA de FIGURAS 1). Ideia de figuras semelhantes 2). Semelhança de polígonos e triângulos 3). Razão de semelhança 4). Escalas 5). s e problemas 1). Ideia de figuras semelhantes

Leia mais

Sistemas e Sinais. Universidade Federal do Rio Grande do Sul Departamento de Engenharia Elétrica

Sistemas e Sinais. Universidade Federal do Rio Grande do Sul Departamento de Engenharia Elétrica Propriedades das Representações de Fourier Sinais periódicos de tempo contínuo ou discreto têm uma representação por série de Fourier, dada pela soma ponderada de senoides complexas com frequências múltiplas

Leia mais

OBMEP 2010 Soluções da prova da 2ª Fase Nível 1. Questão 1

OBMEP 2010 Soluções da prova da 2ª Fase Nível 1. Questão 1 1 Questão 1 a) O número-parada de 93 é 4, pois 93 9 3 = 27 2 7 = 14 1 4 = 4. b) Escrevendo 3 2 = 6 vemos que 32 3 2 = 6. Como 32 = 4 2 2 2, temos 4222 4 2 2 2 = 32 3 2 = 6 e assim o número-parada de 4222

Leia mais

SISTEMAS DE EQUAÇÕES LINEARES

SISTEMAS DE EQUAÇÕES LINEARES SISTEMAS DE EQUAÇÕES LINEARES Álgebra Linear e Geometria Analítica Prof. Aline Paliga 8.1 DEFINIÇÕES Equação linear é uma equação na forma: a1x 1 a2x2 a3x3... anxn b x1, x2, x3,..., xn a1, a2, a3,...,

Leia mais

Introdução à Neurociência Computacional (Graduação) Prof. Antônio Roque Aula 6

Introdução à Neurociência Computacional (Graduação) Prof. Antônio Roque Aula 6 Variações do modelo integra-e-dispara Nesta aula vamos apresentar algumas variações do modelo LIF visto na aula passada. Modelo integra-e-dispara com adaptação Estudos in vitro mostram que muitos tipos

Leia mais

Introdução. Perturbação no primeiro dominó. Perturbação se propaga de um ponto a outro.

Introdução. Perturbação no primeiro dominó. Perturbação se propaga de um ponto a outro. Capitulo 16 Ondas I Introdução Perturbação no primeiro dominó. Perturbação se propaga de um ponto a outro. Ondas ondas é qualquer sinal (perturbação) que se transmite de um ponto a outro de um meio com

Leia mais

Resumo. Sinais e Sistemas Transformada de Laplace. Resposta ao Sinal Exponencial

Resumo. Sinais e Sistemas Transformada de Laplace. Resposta ao Sinal Exponencial Resumo Sinais e Sistemas Transformada de aplace uís Caldas de Oliveira lco@istutlpt Instituto Superior Técnico Definição da transformada de aplace Região de convergência Propriedades da transformada de

Leia mais

Capítulo 17 Ondas II. Neste capítulo vamos estudar ondas sonoras e concentrar-se nos seguintes tópicos:

Capítulo 17 Ondas II. Neste capítulo vamos estudar ondas sonoras e concentrar-se nos seguintes tópicos: Capítulo 17 Ondas II Neste capítulo vamos estudar ondas sonoras e concentrar-se nos seguintes tópicos: Velocidade de ondas sonoras Relação entre deslocamento e amplitude Interferência da onda de som Intensidade

Leia mais

Apresentar os conceitos fundamentais da termodinâmica estatística e como aplicá-los as propriedades termodinâmicas vista até então.

Apresentar os conceitos fundamentais da termodinâmica estatística e como aplicá-los as propriedades termodinâmicas vista até então. Introdução À Termodinâmica Estatística Aula 15 Meta Apresentar os conceitos fundamentais da termodinâmica estatística e como aplicá-los as propriedades termodinâmicas vista até então. Objetivos Ao final

Leia mais

Colisões Elásticas e Inelásticas

Colisões Elásticas e Inelásticas Colisões Elásticas e Inelásticas 1. Introdução Colisão é a interação entre dois ou mais corpos, com mútua troca de quantidade de movimento e energia. O choque entre bolas de bilhar é um exemplo, o movimento

Leia mais

Cálculo Diferencial e Integral I Faculdade de Engenharia, Arquiteturas e Urbanismo FEAU

Cálculo Diferencial e Integral I Faculdade de Engenharia, Arquiteturas e Urbanismo FEAU Cálculo Diferencial e Integral I Faculdade de Engenaria, Arquiteturas e Urbanismo FEAU Prof. Dr. Sergio Pilling Parte 1 - Limites Definição e propriedades; Obtendo limites; Limites laterais. 1) Introdução

Leia mais

Escola Secundária com 3º ciclo D. Dinis 10º Ano de Matemática A TEMA 2 Funções e Gráficos Generalidades. Funções polinomiais. Função módulo.

Escola Secundária com 3º ciclo D. Dinis 10º Ano de Matemática A TEMA 2 Funções e Gráficos Generalidades. Funções polinomiais. Função módulo. Escola Secundária com º ciclo D. Dinis 0º no de Matemática TEM Funções e Gráficos Generalidades. Funções polinomiais. Função módulo. Tarefa nº 5 FUNÇÕES LINERES E VRIÇÃO DE PRÂMETROS. Considere as seguintes

Leia mais

Alguns integrais úteis de funções exponenciais

Alguns integrais úteis de funções exponenciais Alguns integrais úteis de funções exponenciais Michael Fowler Mostrámos que a derivação da função exponencial simplesmente a multiplica por uma constante do expoente, isto é, dd dddd eeaaaa = aaee aaaa.

Leia mais

segundo elemento, a diferença entre qualquer um deles e seu antecessor é igual a uma constante r que será

segundo elemento, a diferença entre qualquer um deles e seu antecessor é igual a uma constante r que será MATEMÁTICA ENSINO MÉDIO MÓDULO DE REFORÇO - EAD PROGRESSÕES Progressão Aritmética I) PROGRESSÃO ARITMÉTICA ( PA) Uma Progressão Aritmética é uma sequência de elementos (a 1, a 2, a 3,, a n-1, a n,, ) tal

Leia mais

INEQUAÇÕES : Conceito:

INEQUAÇÕES : Conceito: INEQUAÇÕES : Conceito: Toda inequação é uma desigualdade aberta, o que significa que ela contém ao menos uma incógnita Trabalharemos a seguir com inequações de º e de º graus com uma só incógnita, e para

Leia mais

6. Frações contínuas como as melhores aproximações de um número real

6. Frações contínuas como as melhores aproximações de um número real 6. Frações contínuas como as melhores aproximações de um número real Com um pouco de técnica matemática iremos calcular frações contínuas, ou seja, os numeradores e denominadores de através de fórmulas

Leia mais

FACULDADE PITÁGORAS DE LINHARES Prof. Esp. Thiago Magalhães

FACULDADE PITÁGORAS DE LINHARES Prof. Esp. Thiago Magalhães VETORES NO PLANO E NO ESPAÇO INTRODUÇÃO Cumpre de início, distinguir grandezas escalares das grandezas vetoriais. Grandezas escalares são aquelas que para sua perfeita caracterização basta informarmos

Leia mais

AV1 - MA UMA SOLUÇÃO. d b =. 3q 2 = 2p 2,

AV1 - MA UMA SOLUÇÃO. d b =. 3q 2 = 2p 2, AV1 - MA 11-01 Questão 1. Prove que se a, b, c e d são números racionais tais que a + b 3 = c + d 3 então a = c e b = d. A igualdade a + b 3 = c + d 3 implica que (a c) = (d b) 3. Suponha que tenhamos

Leia mais

RESISTÊNCIA DOS MATERIAIS

RESISTÊNCIA DOS MATERIAIS 2 RESISTÊNCIA DOS MATERIAIS Revisão de Matemática Faremos aqui uma pequena revisão de matemática necessária à nossa matéria, e sem a qual poderemos ter dificuldades em apreender os conceitos básicos e

Leia mais

Ajuste de mínimos quadrados

Ajuste de mínimos quadrados Capítulo 5 Ajuste de mínimos quadrados 5 Ajuste de mínimos quadrados polinomial No capítulo anterior estudamos como encontrar um polinômio de grau m que interpola um conjunto de n pontos {{x i, f i }}

Leia mais

Notas em Álgebra Linear

Notas em Álgebra Linear Notas em Álgebra Linear 1 Pedro Rafael Lopes Fernandes Definições básicas Uma equação linear, nas variáveis é uma equação que pode ser escrita na forma: onde e os coeficientes são números reais ou complexos,

Leia mais

Primeira Lista de Exercícios de Métodos Numéricos II Primeiro semestre de 2015

Primeira Lista de Exercícios de Métodos Numéricos II Primeiro semestre de 2015 Primeira Lista de Exercícios de Métodos Numéricos II Primeiro semestre de 015 Introdução Antes de apresentar a lista, introduzirei alguns problemas já vistos em sala de aula para orientar e facilitar a

Leia mais

Curso Satélite de. Matemática. Sessão n.º 4. Universidade Portucalense

Curso Satélite de. Matemática. Sessão n.º 4. Universidade Portucalense Curso Satélite de Matemática Sessão n.º 4 Universidade Portucalense Continuidade de uma função: Seja c um ponto pertencente ao domínio da função f. Dizemos que a função f é contínua em c quando lim f (

Leia mais

Medição. Os conceitos fundamentais da física são as grandezas que usamos para expressar as suas leis. Ex.: massa, comprimento, força, velocidade...

Medição. Os conceitos fundamentais da física são as grandezas que usamos para expressar as suas leis. Ex.: massa, comprimento, força, velocidade... Universidade Federal Rural do Semi Árido UFERSA Pro Reitoria de Graduação PROGRAD Disciplina: Mecânica Clássica Professora: Subênia Medeiros Medição Os conceitos fundamentais da física são as grandezas

Leia mais

Mudanças de Coordenadas em Sistemas de Cores

Mudanças de Coordenadas em Sistemas de Cores Mudanças de Coordenadas em Sistemas de Cores Bruno Teixeira Moreira e Emídio Augusto Arantes Macedo Ciência da Computação 1 o. Período Professor: Rodney Josué Biezuner Disciplina: Geometria Analítica e

Leia mais