2 Equações do Sistema
|
|
|
- Ana Carolina Farinha da Mota
- 8 Há anos
- Visualizações:
Transcrição
1 2 Equações do Sistema Este capítulo irá apresentar as equações usadas no estudo, mostrando passo a passo como foi feita a modelagem desse sistema. Uma maneira fácil de entender seu funcionamento é pensá-lo como um manipulador de 2 graus de liberdade (figura 2.1), onde a haste é o primeiro, e o disco giratório o segundo (e.g. Spong et al). Figura 2.1 Convenções para o modelo matemático do sistema Por conveniência, escolheu-se os eixos da seguinte forma: - O plano xy está paralelo ao solo. - O eixo z na figura está perpendicular a x e y, paralelo e em sentido contrário ao da aceleração gravitacional. O movimento de rotação da haste em torno do eixo z ocorre por ação de força ou momento sobre a haste. No presente caso o torque que o atuador montado sobre a haste exerce sobre o disco, age por reação em sentido oposto sobre a haste, colocando-a em rotação em torno do seu outro extremo, em torno de qualquer eixo perpendicular ao plano.
2 29 Assumindo que disco é homogêneo, esbelto e axissimétrico, seu centro de massa coincide com o eixo de rotação, podemos deduzir pelas Leis de Newton/Euler as equações de movimento. Observe-se que o movimento absoluto do disco é obtido somando-se sua rotação medida em relação à haste q 2 com a rotação da haste q 1. O torque aplicado pelo motor acelerará a inércia do disco I 2 como q1 q2. Como a trajetória deste disco está vinculada a uma geometria circular, sobre seu centro passam a aparecer esforços oriundos de sua aceleração, decompostas em tangencial e centrípeta (Lei de Newton). As reações a estas componentes da aceleração atuam sobre a extremidade da haste. A reação à força tangencial provoca um momento negativo em relação à outra extremidade da haste (rotulada como ponto fixo) no valor m l q, ao qual se adiciona a reação ao torque do motor que acelerará o conjunto dos dois corpos para uma rotação em torno do ponto fixo na outra extremidade da haste resultando q 1. Os momentos de inércia dos dois corpos devem ser transportados para este ponto fixo. Resulta pela Lei de Euler para os dois corpos: (2.1) (2.2) é o ângulo de pendulo, é o ângulo do disco, em relação ao pêndulo, é o torque que o motor aplica sobre o disco, a massa da haste, a massa do disco, o comprimento da haste, do eixo de rotação até o motor com o disco, o centro de gravidade de que, devido ao peso do motor será deslocado do centro da haste, o momento de inércia da haste, calculada em relação ao seu centro: = (2.3)
3 30 o momento de inércia do disco, calculado em relação ao seu centro: = (2.4) com: Usando a figura 2.2 para ajudar a visualizar a decomposição, e também (2.5) (2.6) (2.7) (2.8) Figura Decomposição de forças e acelerações do sistema E juntando as equações (2.1), (2.2) tem-se finalmente:
4 31 (2.9) Inclui-se ainda a equação de um motor DC, que vai realizar o torque necessário para a haste se movimentar: (2.10) é o torque do motor, é a corrente elétrica, é uma constante que depende de cada motor DC. Vale lembrar que em motores com redução essa constante é menor. Juntando as equações 2.9 e 2.10, encontramos: (2.11) O termo constante e negativo é explicado pelo controle ser realizado utilizando a reação ao torque no motor como peça fundamental para o movimento da haste. Com essa equação pode-se fazer o controle do sistema pela corrente, entretanto, como no mundo real é bem mais difícil controlar a corrente do que a tensão, só será testado no modelo real o controle por tensão. Para tal, é preciso ter uma equação com a qual se obtenha a tensão em função da corrente. Considera-se que o motor é DC (ou CC, ou de corrente contínua), de imã permanente e controlado pela tensão, de acordo com o esquema da figura 2.3: Figura 2.3 Esquema de um motor DC
5 32 é a tensão aplicada no motor, é a corrente no motor, é a resistencia da armadura, é a indutância da armadura, é a força contra eletromotriz que resiste ao movimento de rotação do motor, é a velocidade angular do disco no motor. Pela Lei de Kichhoff, pode ser tirada a equação: (2.12) A força contra eletromotriz, é dada por: (2.13) Considerando que no sistema a velocidade do rotor será, a derivada no tempo de tem-se uma equação diferencial de primeira ordem para a tensão em função da corrente: (2.14) Finalmente substituindo os valores da corrente da equação 2.11 na equação 2.14, tem-se a equação geral do sistema, controlado por tensão: ( ) (2.15) Por esta equação é possível controlar a aceleração do rotor em função da tensão aplicada no motor. É interessante ver que a tensão não vai só depender da
6 33 aceleração, mas também da velocidade da haste, e do tranco ( jerk derivada da aceleração). Para modelar o atrito viscoso, optou-se por um modelo que depende linearmente da velocidade: (2.16) (2.17) é a perda de torque referente ao mancal da base com a haste, é a perda de torque referente ao motor, é a constante de atrito viscoso referente ao mancal da base com a haste, é a constante de atrito viscoso referente ao motor. Entretanto, observando seus valores bem pequenos (da ordem de ) resolveu-se não utilizá-los no modelo matemático, para simplificar ao máximo o mesmo, mas seu valor está contabilizado no capitulo 4 para modelagens futuras. Finalmente no atrito seco o problema pode se tornar bem mais complexo. Muitos autores o desprezam, e outros fazem uso do modelo de atrito de Coulomb. No presente estudo ele será desprezado, pois o trabalho visa um controle que possa se adequar às imperfeições do sistema, passando por cima de pequenas considerações da modelagem.
O pêndulo simples é constituído por uma partícula de massa
AULA 42 APLICAÇÕES DO MOVIMENTO HARMÔNICO SIMPLES OBJETIVOS: APLICAR A TEORIA DO MOVIMENTO HARMÔNICO SIMPLES A PÊNDULOS 42.1 PÊNDULO SIMPLES: O pêndulo simples é constituído por uma partícula de massa
SISTEMAS ROBOTIZADOS CAPÍTULO 7 CONTROLE INDEPENDENTE DAS JUNTAS
SISTEMAS ROBOTIZADOS CAPÍTULO 7 CONTROLE INDEPENDENTE DAS JUNTAS Leitura Sugerida: Spong, (Seções 7.1-7.3) 1 Capítulo 7 Motivação Discutiremos neste capítulo uma estratégia de controle denominada CONTROLE
Capítulo 5. Torção Pearson Prentice Hall. Todos os direitos reservados.
Capítulo 5 Torção slide 1 Deformação por torção de um eixo circular Torque é um momento que tende a torcer um elemento em torno de seu eixo longitudinal. Se o ângulo de rotação for pequeno, o comprimento
MOVIMENTO OSCILATÓRIO
MOVIMENTO OSCILATÓRIO 1.0 Noções da Teoria da Elasticidade A tensão é o quociente da força sobre a área aplicada (N/m²): As tensões normais são tensões cuja força é perpendicular à área. São as tensões
CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA I EQUILÍBRIO. Prof.
CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA I EQUILÍBRIO Prof. Bruno Farias Introdução Neste capítulo vamos aprender: As condições que
Sistemas de Controle (CON) Modelagem de Sistemas de Rotação e Eletromecânicos
Universidade do Estado de Santa Catarina UDESC Centro de Ciências Tecnológicas CCT Departamento de Engenharia Mecânica DEM Sistemas de Controle (CON) Modelagem de Sistemas de Rotação e Eletromecânicos
Parte 2 - PF de Física I NOME: DRE Teste 1
Parte - PF de Física I - 017-1 NOME: DRE Teste 1 Nota Q1 Questão 1 - [,7 ponto] Dois corpos de massas m 1 = m e m = m se deslocam em uma mesa horizontal sem atrito. Inicialmente possuem velocidades de
Determinação dos Parâmetros do Motor de Corrente Contínua
Laboratório de Máquinas Elétricas: Alunos: Professor: Leonardo Salas Maldonado Determinação dos Parâmetros do Motor de Corrente Contínua Objetivo: Ensaiar o motor de corrente contínua em vazio; Determinar
Mecânica I (FIS-14) Prof. Dr. Ronaldo Rodrigues Pelá Sala 2602A-1 Ramal 5785
Mecânica I (FIS-14) Prof. Dr. Ronaldo Rodrigues Pelá Sala 2602A-1 Ramal 5785 [email protected] www.ief.ita.br/~rrpela Onde estamos? Nosso roteiro ao longo deste capítulo A equação do movimento Equação do movimento
Apresentação Outras Coordenadas... 39
Sumário Apresentação... 15 1. Referenciais e Coordenadas Cartesianas... 17 1.1 Introdução... 17 1.2 O Espaço Físico... 18 1.3 Tempo... 19 1.3.1 Mas o Tempo é Finito ou Infinito?... 21 1.3.2 Pode-se Viajar
Cada questão objetiva vale 0,7 ponto
Instituto de Física Segunda Prova de Física I 2017/1 Nas questões em que for necessário, considere que: todos os fios e molas são ideais; os fios permanecem esticados durante todo o tempo; a resistência
O Sistema Massa-Mola
O Sistema Massa-Mola 1 O sistema massa mola, como vimos, é um exemplo de sistema oscilante que descreve um MHS. Como sabemos (aplicando a Segunda Lei de Newton) temos que F = ma Como sabemos, no caso massa-mola
Força. Aceleração (sai ou volta para o repouso) Força. Vetor. Aumenta ou diminui a velocidade; Muda de direção. Acelerar 1kg de massa a 1m/s 2 (N)
Força Empurrão ou puxão; Força é algo que acelera ou deforma alguma coisa; A força exercida por um objeto sobre o outro é correspondida por outra igual em magnitude, mas no sentido oposto, que é exercida
QUESTÕES DISCURSIVAS
QUESTÕES DISCURSIVAS Questão 1. (3 pontos) Numa mesa horizontal sem atrito, dois corpos, de massas 2m e m, ambos com a mesma rapidez v, colidem no ponto O conforme a figura. A rapidez final do corpo de
Exemplo. T 1 2g = -2a T 2 g = a. τ = I.α. T 1 T 2 g = - 3a a g = - 3a 4a = g a = g/4. τ = (T 1 T 2 )R. T 1 T 2 = Ma/2 T 1 T 2 = a.
Exercícios Petrobras 2008 eng. de petróleo Dois corpos de massa m 1 = 2 kg e m 2 = 1 kg estão fixados às pontas de uma corda com massa e elasticidade desprezíveis, a qual passa por uma polia presa ao
FEP Física Geral e Experimental para Engenharia I
FEP195 - Física Geral e Experimental para Engenharia I Prova P3 - Gabarito 1. Três partículas de massa m estão presas em uma haste fina e rígida de massa desprezível e comprimento l. O conjunto assim formado
Parte 2 - PF de Física I NOME: DRE Teste 1
Parte 2 - PF de Física I - 2017-1 NOME: DRE Teste 1 Nota Q1 Questão 1 - [2,5 ponto] Um astronauta está ligado a uma nave no espaço através de uma corda de 120 m de comprimento, que está completamente estendida
Mecânica I (FIS-14) Prof. Dr. Ronaldo Rodrigues Pelá Sala 2602A-1 Ramal 5785
Mecânica I (FIS-14) Prof. Dr. Ronaldo Rodrigues Pelá Sala 2602A-1 Ramal 5785 [email protected] www.ief.ita.br/~rrpela Onde estamos? Nosso roteiro ao longo deste capítulo A equação do movimento Equação do movimento
2ª Avaliação - Controle Automático II (CTR 03) Prof. Accacio
Data de Entrega do relatório e apresentação do trabalho: 06/05/2017 Pontuação da atividade: 30pts Objetivo - Projetar um Controlador para o sistema de estudo (sorteado) através dos Métodos do Lugar das
1ā lista de exercícios de Sistemas de Controle II
ā lista de exercícios de Sistemas de Controle II Obtenha uma representação em espaço de estados para o sistema da figura R(s) + E(s) s + z U(s) K Y (s) s + p s(s + a) Figura : Diagrama de blocos do exercício
REPRESENTAÇÃO DE SISTEMAS DINÂMICOS NA FORMA DO ESPAÇO DOS ESTADOS
REPRESENTAÇÃO DE SISTEMAS DINÂMICOS NA FORMA DO ESPAÇO DOS ESTADOS. Espaço dos estados Representação da dinâmica de um sistema de ordem n usando n equações diferenciais de primeira ordem. Sistema é escrito
Modelagem e simulação de um motor CC simples usando solidthinking Activate
Modelagem e simulação de um motor CC simples usando solidthinking Activate Motor CC simples A velocidade de rotação do rotor de um motor CC é controlada pela aplicação de uma tensão contínua V ao enrolamento
Física I Prova 2 20/02/2016
Física I Prova 2 20/02/2016 NOME MATRÍCULA TURMA PROF. Lembrete: A prova consta de 3 questões discursivas (que deverão ter respostas justificadas, desenvolvidas e demonstradas matematicamente) e 10 questões
Capítulo 11 Rotações e Momento Angular
Capítulo 11 Rotações e Momento Angular Corpo Rígido Um corpo rígido é um corpo ideal indeformável de tal forma que a distância entre 2 pontos quaisquer do corpo não muda nunca. Um corpo rígido pode realizar
Conceitos Fundamentais de Mecânica
LEB 332 - Mecânica e Máquinas Motoras Prof. J. P. Molin Conceitos Fundamentais de Mecânica Objetivo da aula Rever conceitos da Física, em especial da Mecânica, já conhecidos de todos, e que serão necessários
a) (2 valores) Mostre que o módulo da velocidade de um satélite numa órbita circular em torno da Terra é dado por:
Mestrado Integrado em Engenharia Biomédica Licenciatura em Engenharia Geológica e de Minas Licenciatura em Matemática Aplicada e Computação Mecânica e Ondas 1º Ano -2º Semestre 2º Exame 30/06/2016 8:00h
RELATÓRIO DE PRÁTICA EXPERIMENTAL FIS Física Experimental II OS PÊNDULOS SIMPLES E FÍSICO
UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL INSTITUTO DE FÍSICA RELATÓRIO DE PRÁTICA EXPERIMENTAL FIS01260 - Física Experimental II OS PÊNDULOS SIMPLES E FÍSICO Porto Alegre, 09 de Abril de 2015. Nome: Vítor
UNIFEI - UNIVERSIDADE FEDERAL DE ITAJUBÁ
UNIFEI - UNIVERSIDADE FEDERAL DE ITAJUBÁ PROVA DE CÁLCULO e 2 PROVA DE TRANSFERÊNCIA INTERNA, EXTERNA E PARA PORTADOR DE DIPLOMA DE CURSO SUPERIOR - 6//26 CANDIDATO: CURSO PRETENDIDO: OBSERVAÇÕES:. Prova
UNIVERSIDADE CATÓLICA DE GOIÁS
01 NOTA DE AULA 0 UNIVERSIDADE CATÓLICA DE GOIÁS DEPARTAMENTO DE MATEMÁTICA E FÍSICA Disciplina: FÍSICA GERAL E EXPERIMENTAL I (MAF 01) Coordenador: PROF. EDSON VAZ CAPÍTULOS: 05 e 06 CAPÍTULO 5 FORÇA
Sistemas de Controle 1
Pontifícia Universidade Católica de Goiás Escola de Engenharia Sistemas de Controle 1 Cap2 - Modelagem no Domínio de Frequência Prof. Dr. Marcos Lajovic Carneiro Sistemas de Controle 1 Prof. Dr. Marcos
Física I Prova 3 7/06/2014
Nota Física I Prova 3 7/06/2014 NOME MATRÍCULA TURMA PROF. Lembrete: A prova consta de 2 questões discursivas (que deverão ter respostas justificadas, desenvolvidas e demonstradas matematicamente) e 12
Notas de aula resumo de mecânica. Prof. Robinson RESUMO DE MECÂNICA
RESUMO DE MECÂNICA Ano 2014 1 1. DINÂMICA DE UMA PARTÍCULA 1.1. O referencial inercial. O referencial inercial é um sistema de referência que está em repouso ou movimento retilíneo uniforme ao espaço absoluto.
Aluno Data Curso / Turma Professor
Apostila Modelagem e Simulação de Sistemas Dinâmicos Aluno Data Curso / Turma Professor 24/10/09 Engenharia Industrial Mecânica / 2006-1 MODELAGEM MATEMÁTICA DE SISTEMAS DINÂMICOS Everton Farina, Eng.º
Resumo P1 Mecflu. Princípio da aderência completa: o fluido junto a uma superfície possui a mesma velocidade que a superfície.
Resumo P1 Mecflu 1. VISCOSIDADE E TENSÃO DE CISALHAMENTO Princípio da aderência completa: o fluido junto a uma superfície possui a mesma velocidade que a superfície. Viscosidade: resistência de um fluido
Dinâmica. Prof.ª Betty Carvalho Rocha Gonçalves do Prado
Dinâmica Prof.ª Betty Carvalho Rocha Gonçalves do Prado [email protected] [email protected] CORPO RÍGIDO São corpos cuja dimensões não são desprezáveis Corpo rígido É um conceito limite ideal,
Física 1. 2 a prova 26/05/2018. Atenção: Leia as recomendações antes de fazer a prova.
Física 1 2 a prova 26/05/2018 Atenção: Leia as recomendações antes de fazer a prova. 1- Assine seu nome de forma LEGÍVEL na folha do cartão de respostas. 2- Leia os enunciados com atenção. 3- Analise sua
ESPAÇO PARA RESPOSTA COM DESENVOLVIMENTO
Parte 2 - P3 de Física I - 2018-1 NOME: DRE Teste 0 Assinatura: Questão 1 - [2,5 pontos] Um bloco de massamestá pendurado por um fio ideal que está enrolado em uma polia fixa, mas que pode girar em torno
FENÔMENOS OSCILATÓRIOS E TERMODINÂMICA
FENÔMENOS OSCILATÓRIOS E TERMODINÂMICA AULA 2 OSCILAÇÕES PROF.: KAIO DUTRA Movimento Harmônico Simples O movimento harmônico simples é um tipo básico de oscilação. Movimento Harmônico Simples Uma propriedade
Experiência 3 - Pêndulo
Roteiro de Física Experimental II 13 Experiência 3 - Pêndulo 1 - OBJEIVO O objetivo desta aula é discutir o movimento harmônico de um pêndulo físico e realizar um experimento sobre o mesmo Através de medidas
Parte 2 - P1 de Física I NOME: ABID LOHAN DA SILVA FERREIRA DOS SANTOS. DRE Teste 1
Assinatura: Nota Q1 Questão 1 - [1,5 ponto] Num laboratório, são lançados simultaneamente dois projéteis de dimensões desprezíveis. No instante t = 0 de lançamento, os projéteis ocupam as posições r 1
CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA I ROTAÇÃO. Prof.
CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA I ROTAÇÃO Prof. Bruno Farias Introdução Neste capítulo vamos aprender: Como descrever a rotação
1.1. Conceitos Pêndulo Planar
1 Introdução Atualmente, na área da robótica é bastante comum o estudo de sistemas pendulares, em especial os sistemas de pêndulos invertidos. Esse conceito é bem conhecido e derivado desta idéia, este
Prof. A.F.Guimarães Física 3 Questões 10
Questão 1 Numa região do espaço existe um campo magnético tal que é um vetor constante no espaço, porém variável no tempo. Coloca-se neste campo uma espira contida num plano que forma um ângulo com o vetor.
Parte 2 - P3 de Física I NOME: DRE Gabarito Teste 1. Assinatura:
Parte - P3 de Física I - 018-1 NOME: DRE Gabarito Teste 1 Assinatura: Questão 1 - [,7 pontos] Uma barra de comprimento L e massa M pode girar livremente, sob a ação da gravidade, em torno de um eixo que
ESPAÇO PARA RESPOSTA COM DESENVOLVIMENTO
Parte 2 - P2 de Física I - 2016-2 NOME: DRE Teste 1 Nota Q1 Assinatura: Questão 1 - [2,4 ponto] Dois pequenos discos (que podem ser considerados como partículas), de massas m e 2m, se deslocam sobre uma
Deslocamento, velocidade e aceleração angular. s r
Rotação Deslocamento, velocidade e aceleração angular s r s r O comprimento de uma circunferência é πr que corresponde um ângulo de π rad (uma revolução) ( rad) (deg ou graus) 180 Exemplo 0 60 3 rad Porque
Física III-A /2 Lista 8: Indução Eletromagnética
Física III-A - 2018/2 Lista 8: Indução Eletromagnética 1. (F) Um fio condutor retilíneo e infinito transporta uma corrente estacionária de intensidade I. Uma espira condutora quadrada é posicionada de
Instituto Politécnico de Tomar Escola Superior de Tecnologia de Tomar ÁREA INTERDEPARTAMENTAL DE FÍSICA
Engenharia Civil Exercícios de Física de Física Ficha 8 Corpo Rígido Capítulo 6 Ano lectivo 010-011 Conhecimentos e capacidades a adquirir pelo aluno Aplicação das leis fundamentais da dinâmica. Aplicação
FEP Física Geral e Experimental para Engenharia I
FEP2195 - Física Geral e Experimental para Engenharia I Prova Substitutiva - Gabarito 1. Dois blocos de massas 4, 00 kg e 8, 00 kg estão ligados por um fio e deslizam para baixo de um plano inclinado de
Física 1. 1 a prova 22/09/2018. Atenção: Leia as recomendações antes de fazer a prova.
Física 1 1 a prova 22/09/2018 Atenção: Leia as recomendações antes de fazer a prova. 1- Assine seu nome de forma LEGÍVEL na folha do cartão de respostas. 2- Leia os enunciados com atenção. 3- Analise sua
PROGRAMA DE NIVELAMENTO ITEC/PROEX - UFPA EQUIPE FÍSICA ELEMENTAR DISCIPLINA: FÍSICA ELEMENTAR CONTEÚDO: APLICAÇÕES DAS LEIS DE NEWTON
PROGRAMA DE NIVELAMENTO ITEC/PROEX - UFPA EQUIPE FÍSICA ELEMENTAR DISCIPLINA: FÍSICA ELEMENTAR CONTEÚDO: APLICAÇÕES DAS LEIS DE NEWTON Objetos em equilíbrio F = 0 (Partícula em Equilíbrio, Forma vetorial)
FORÇA e INTERAÇÕES. Forças de contacto Quando uma força envolve o contacto direto entre dois corpos
FORÇA e INTERAÇÕES Forças de contacto Quando uma força envolve o contacto direto entre dois corpos Forças de longo alcance Acuam mesmo quando os corpos não estão em contacto, como por exemplo as forças
Instituto de Física - UFRJ Física I - Segunda Chamada - 2/03/2016. (c) 12gL/7 (d) 12gL/11 (e) 24gL/7. Parte 1 - Múltipla escolha - 0,6 cada
Instituto de Física - UFRJ Física I - Segunda Chamada - 2/03/2016 Parte 1 - Múltipla escolha - 0,6 cada 1. Um avião move-se com velocidade horizontal constante v A de módulo 200 m/s. Ao passar sobre uma
Parte 2 - P2 de Física I NOME: DRE Teste 1
Parte 2 - P2 de Física I - 2017-1 NOME: DRE Teste 1 Nota Q1 Questão 1 - [3,7 ponto] Um carretel é composto por um cilindro interno de raio r = R/2 e massa M, enrolado por um fio ideal, com 2 discos idênticos,
MATEMÁTICA 1ª QUESTÃO. O valor do número real que satisfaz a equação =5 é. A) ln5. B) 3 ln5. C) 3+ln5. D) ln5 3. E) ln5 2ª QUESTÃO
MATEMÁTICA 1ª QUESTÃO O valor do número real que satisfaz a equação =5 é A) ln5 B) 3 ln5 C) 3+ln5 D) ln5 3 E) ln5 ª QUESTÃO O domínio da função real = 64 é o intervalo A) [,] B) [, C), D), E), 3ª QUESTÃO
Exercícios complementares - Física
- Física Exercícios Conteúdo Habilidade 1, 2 e 3 Grandezas físicas e unidades de medidas 4 Aceleração média 5 Força resultante 6 Gráficos do M.R.U. e M.R.U.V. 7 Leis de Newton 8, 9 10 e 11 Trabalho e energia
USANDO O MODELLUS. Aula 3
USANDO O MODELLUS Aula 3 A evolução temporal é dada pela solução numérica de equações diferenciais. Exemplo: Movimento Retilíneo Uniforme Exemplo: Movimento Retilíneo Uniformemente variado As derivadas
ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO. Departamento de Engenharia Mecânica
ESCA PITÉCNICA DA UNIVERSIDADE DE SÃ PAU Avenida Professor Mello Moraes, nº 31. cep 558-9, São Paulo, SP. Telefone: (xx11) 391 5337 Fax: (xx11) 3813 188 MECÂNICA II - PME 3 Primeira Prova de abril de 17
UERJ/DFNAE Física Geral - Lista /2
UERJ/DFNAE Física Geral - Lista 2-2018/2 1. Identifique as forças que atuam sobre os corpos indicados nas figuras. 2. Dois blocos de peso P, são mantidos em equilíbrio em um plano inclinado sem atrito,
CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA I ROTAÇÃO. Prof.
CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA I ROTAÇÃO Prof. Bruno Farias Introdução Neste capítulo vamos aprender: Como descrever a rotação
LISTA DE EXERCÍCIOS Nº 10. 2) O que ocorre com o ioiô inicialmente estacionário da Figura 2 se este é excitado por uma força (a) F 2, (b)
LISTA DE EXERCÍCIOS Nº 10 Questões 1) Na Figura 1, 3 forças de mesma magnitude são aplicadas em uma partícula que encontra-se na origem do sistema de referência. Ordene as forças de acordo com as magnitudes
Dinâmica do Movimento de Rotação
www.engenhariafacil.net Resumo com exercícios resolvidos do assunto: Dinâmica do Movimento de Rotação (1)- TORQUE, CONSIDERAÇÕES INICIAIS: Já estudamos que a atuação de forças em um corpo altera o movimento
Mini_Lista11: Rotação de Corpos Rígidos: Eixo Fixo
Mini_Lista11: Rotação de Corpos Rígidos: Eixo Fixo Lembrete 11.1 Em equações rotacionais, deve usar ângulos expressos em radianos. Lembrete 11.2 Na resolução de problemas de rotação, deve especificar um
Mecânica 1. Resumo e Exercícios P3
Mecânica 1 Resumo e Exercícios P3 Conceitos 1. Dinâmica do Ponto 2. Dinâmica do Corpo Rígido 1. Dinâmica do Ponto a. Quantidade de Movimento Linear Vetorial Instantânea Q = m v b. Quantidade de Movimento
Resistência dos Materiais
Aula 7 Estudo de Torção, Ângulo de Torção Ângulo de Torção O projeto de um eixo depende de limitações na quantidade de rotação ou torção ocorrida quando o eixo é submetido ao torque, desse modo, o ângulo
Roteiro: Experimento 8: Rotações e Momento de Inércia
Universidade Federal de Santa Catarina - Câmpus Blumenau Física Experimental 1 Roteiro: Experimento 8: Rotações e Momento de Inércia Prof. Rafael L. Novak 1 Introdução Neste experimento, será estudado
3 Veículos Terrestres
3 Veículos Terrestres Por se tratar de uma das primeiras dissertações do Programa de metrologia com aplicação à área veicular, optou-se pela inclusão neste capítulo de conceitos básicos que serão utilizados
Controlador PID discreto
1 Capítulo 1 Controlador PID discreto 1.1 Objetivo O objetivo deste experimento é introduzir ao estudante as noções básicas de um controlador PID discreto para um motor de corrente contínua. 1.2 Modelo
Cap.12: Rotação de um Corpo Rígido
Cap.12: Rotação de um Corpo Rígido Do professor para o aluno ajudando na avaliação de compreensão do capítulo. Fundamental que o aluno tenha lido o capítulo. Introdução: Produto vetorial Ilustração da
F a superfície. R (b) Calcule o módulo da força de atrito e indique qual a direção e sentido da mesma,
Parte 2 - P de Física I - 2018-2 NOME: DRE Gabarito Assinatura: Questão 1 - [2,7 ponto] Um disco homogêneo de massam e raiorépuxado por um fio ideal, que está preso no centro do disco e faz um ângulo θ
Física I. Aula 05 Forças e Movimentos IV 2010/2011. Movimento Circular
Física I 2010/2011 Aula 05 Forças e Movimentos IV Movimento Circular Sumário Movimento circular Movimento circular uniforme Movimento relativo a uma dimensão Movimento relativo a duas dimensões Física
Capítulo 2. Modelagem no Domínio de Freqüência
Capítulo 2 Modelagem no Domínio de Freqüência Fig. 2.1 a. Representação em diagrama de blocos de um sistema; b. representação em diagrama de blocos de uma interconexão de subsistemas Entrada Entrada Sistema
Física 1. 2 a prova 02/07/2016. Atenção: Leia as recomendações antes de fazer a prova.
Física 1 2 a prova 02/07/2016 Atenção: Leia as recomendações antes de fazer a prova. 1- Assine seu nome de forma LEGÍVEL na folha do cartão de respostas. 2- Leia os enunciados com atenção. 3- Analise sua
11 Cinemática de partículas 605
SUMÁRIO 11 Cinemática de partículas 605 11.1 Introdução à dinâmica 606 Movimento retilíneo de partículas 607 11.2 Posição, velocidade e aceleração 607 11.3 Determinação do movimento de uma partícula 611
Departamento de Física - ICE/UFJF Laboratório de Física II Pêndulos
Pêndulos Pêndulo 1 Pêndulo Simples e Pêndulo Físico 1 Objetivos Gerais: Determinar experimentalmente o período de oscilação de um pêndulo físico e de um pêndulo simples; Determinar experimentalmente o
Fís. Semana. Leonardo Gomes (Guilherme Brigagão)
Semana 8 Leonardo Gomes (Guilherme Brigagão) Este conteúdo pertence ao Descomplica. Está vedada a cópia ou a reprodução não autorizada previamente e por escrito. Todos os direitos reservados. CRONOGRAMA
Universidade Federal do Rio de Janeiro Instituto de Física Lista de Revisão Física 1. prof. Daniel Kroff e Daniela Szilard 17 de abril de 2015
Universidade Federal do Rio de Janeiro Instituto de Física Lista de Revisão Física 1 prof. Daniel Kroff e Daniela Szilard 17 de abril de 2015 1. Uma partícula move-se em linha reta, partindo do repouso
Terceira Lista de Exercício de Dinâmica e Controle de Veículos Espaciais
Terceira Lista de Exercício de Dinâmica e Controle de Veículos Espaciais Questão 1 Considerando os momentos de inércia de um corpo no sistema de eixos principais de inércia com origem no centro de massa
As variáveis de rotação
Capítulo 10 Rotação Neste capítulo vamos estudar o movimento de rotação de corpos rígidos sobre um eixo fixo. Para descrever esse tipo de movimento, vamos introduzir os seguintes conceitos novos: -Deslocamento
Profº Carlos Alberto
Rotação Disciplina: Mecânica Básica Professor: Carlos Alberto Objetivos de aprendizagem Ao estudar este capítulo você aprenderá: Como descrever a rotação de um corpo rígido em termos da coordenada angular,
Theory Portugues BR (Brazil) Por favor, leia as instruções gerais contidas no envelope separado antes de iniciar este problema.
Q1-1 Dois problemas de Mecânica (10 pontos) Por favor, leia as instruções gerais contidas no envelope separado antes de iniciar este problema. Parte A. O disco escondido (3.5 pontos) Considere um cilindro
Aula do cap. 10 Rotação
Aula do cap. 10 Rotação Conteúdo da 1ª Parte: Corpos rígidos em rotação; Variáveis angulares; Equações Cinemáticas para aceleração Angular constante; Relação entre Variáveis Lineares e Angulares; Referência:
Física 1. 2 a prova 02/07/2016. Atenção: Leia as recomendações antes de fazer a prova.
Física 1 2 a prova 02/07/2016 Atenção: Leia as recomendações antes de fazer a prova. 1- Assine seu nome de forma LEGÍVEL na folha do cartão de respostas. 2- Leia os enunciados com atenção. 3- Analise sua
Considerando a variação temporal do momento angular de um corpo rígido que gira ao redor de um eixo fixo, temos:
Segunda Lei de Newton para Rotações Considerando a variação temporal do momento angular de um corpo rígido que gira ao redor de um eixo fixo, temos: L t = I ω t e como L/ t = τ EXT e ω/ t = α, em que α
Prof. Dr. Ronaldo Rodrigues Pelá. 12 de março de 2013
GIROSCÓPIO Mecânica II (FIS-26) Prof. Dr. Ronaldo Rodrigues Pelá IEFF-ITA 12 de março de 2013 Roteiro 1 2 Roteiro 1 2 Dinâmica F (ext) = M a CM τ (ext) = d L dt L = M r CM v CM + L CM τ (ext) CM = d L
Lista 12: Rotação de corpos rígidos
Lista 12: Rotação de Corpos Rígidos Importante: i. Ler os enunciados com atenção. ii. Responder a questão de forma organizada, mostrando o seu raciocínio de forma coerente. iii. Siga a estratégia para
