Lista de Exercícios 3 - Cinemática Inversa

Tamanho: px
Começar a partir da página:

Download "Lista de Exercícios 3 - Cinemática Inversa"

Transcrição

1 PONTIFÍCIA UNIVESIDADE CATÓLICA DO IO GANDE DO SUL FACULDADE DE ENGENHAIA ENGENHAIA DE CONTOLE E AUTOMAÇÃO - SISTEMAS OBOTIZADOS Prof. Felie Kühne Lita e Exeríio - Cinemátia Invera. Determine o entro o nho e m manilaor e ei gra e liberae, aa a matriz e inemátia ireta H e o arâmetro abaixo: 77,87, H,,,87, mm. Conierano qe o manilaor a qetão anterior oi m nho efério na a trê última jnta e abeno qe a trê rimeira jnta oem ânglo orreonente à eginte matriz e rotação:, alle a inemátia invera e orientação.. Motre qe a matriz e rotação e m nho efério reme-e a qano.. Daa a matriz e tranformação homogênea e m manilaor e ei gra e liberae e a matriz e rotação ara a inemátia invera e oição abaixo, etermine a olção ara a inemátia invera e orientação: H,7,7,7,7 77,

2 . O eenho abaixo rereenta m manilaor efério om a a trê rimeira jnta. Areente a eqaçõe qe efinem a inemátia invera e oição ara ete robô.. Conierano qe o manilaor o exeríio anterior oi o eginte arâmetro e Denavit- Hartenberg e a eginte oorenaa ara o entro o nho, etermine a variávei a jnta ara a inemátia invera e oição. i a i α i i i / * / * * -/ * / * * 7 7. Para o memo manilaor o exeríio, oniere agora m nho efério anexao ao e oro, formano m manilaor e GDL. Para a variávei a jnta enontraa no exeríio anterior, alle a inemátia invera e orientação, aa a eginte matriz e tranformação homogênea total: H,97,,,97 8

3 8. O eenho abaixo rereenta m manilaor artilao jo último itema e oorenaa loalizae no entro e m nho efério ( O. Determine a exreõe ara a inemátia invera e oição ete robô. 9. Para o manilaor o exeríio anterior, etermine o entro o nho, aa a eginte matriz e tranformação homogênea e o arâmetro :,,,,,,87, 7,9 H,,7,7 998,7 mm. Para o manilaor o exeríio 8, alle a inemátia invera e oição, ao o eginte arâmetro ontrtivo o robô (graneza em milímetro: a a 77 a 7. Areente a eqaçõe ara a inemátia invera e oição ara o manilaor SCAA a figra abaixo, abeno qe a variávei a jnta ão, e, e o entro o nho é [ x y z ] T.

4 . Para o eginte manilaor efério, areente elo meno ma olção oível ara a inemátia invera e oição e orientação. i a i α i i i / * / * * -/ * / * H,, 9,79,78 878, *

5 UMA BEVE EXPLICAÇÃO SOBE AS FUNÇÕES ATAN E ATAN: A fnção trigonométria artan ( y x é a fnção invera e tan ( y x, o tan ( y x ooto e x é o ateto ajaente e m triânglo retânglo formao or. Uma otra forma e erever eta fnção é atravé o eno e oeno: ( α ( α in in α tan ( α o α artan o α, one y é o ateto Se o nmeraor e o enominaor ão oitivo, o ânglo α enontra-e no rimeiro qarante; e o nmeraor é negativo e o enominaor é oitivo, α enontra-e no egno qarante; e ambo nmeraor e enominaor ão oitivo, α enontra-e no tereiro qarante; or fim, e o nmeraor é oitivo e o enominaor é negativo, α enontra-e no qarto qarante. No ao e ambo nmeraor e enominaor erem negativo, teremo qe: in α artan o ( α ( α in artan o ( α α O eja, o ânglo na realiae enontra-e no qarto qarante, ma eta informação é eria qano o állo o aro-tangente. O ânglo allao eta forma etá inorreto. A fnção atan leva em onieração então o inai o oi argmento, oloano o reltao no qarante orreto. Por exemlo, o oi állo abaixo tilizam argmento - ara o nmeraor e - ara o enominaor. Fia óbvio qe o reltao orreto aena é obtio ao ar a fnção atan. α artan artan o α artan o (, Poemo organizar o valore a fnção atan a eginte forma, onforme o qarante o ânglo: artan ( y, x x > x <, y x <, y < x, y > x, y < x, y artan artan artan ( y x ( y x ( y x inefinio

6 ESPOSTAS. 77,87,, 77,87,,,87, 77 k. Como, oe-e iolar a matriz e rotação o nho efério:. Definiremo também a matriz U, qe orreone generiamente a. Aim: U :,87,,,87,87,,,87 T om U A matriz e rotação ara m nho efério é efinia ela inemátia ireta ete omonente:. Uma matriz e rotação é ita ortonormal, já qe a linha e olna eta matriz oem mólo nitário. Aim, e ±, o elemento,, e erão iferente e zero.

7 No ao ete exeríio, temo qe (, 87 o. Aim, omo o in, oe-e izer qe in( ±. Aina, tan( in( (, o eja, artan( in( ( Então: ± artan ± artan o,87,87 ± ±, artan,87 Aim, temo a oívei olçõe ara. Analiano o otro elemento e e vai infleniar também no valore e e ara, teremo valore iferente ara e.. o, vemo qe o valor. O eja, eeneno e qal olção eolhermo eolveno e tan ara in o artan in oitivo, tem-e qe: ( in( ( in( in o ( (, artan tan ( in in artan in( in( ( in( o( ( in( in( ( o( o( artan, Agora, e onierarmo a olção ara in( negativo, temo qe: tan ( in o ( in( ( in( ( o( ( in( ( in( in( ( in( o( tan ( in in ( in( in( ( in( o( ( in( in( ( o( o( artan artan, artan artan, 7

8 8 Logo, temo oi onjnto e ânglo qe atifazem a olção a inemátia invera e orientação: in oitivo: in negativo:. Como, o e in e a matriz e rotação é ortonormal (o mólo a linha e olna é nitário, temo qe:. Utilizano a eginte ientiae trigonométria: in o in in o o in in o o vemo qe a matriz e torna:, one o e in.. U :,7,7,7,7,7,7,7,7 T A matriz e rotação ara m nho efério é efinia ela inemátia ireta ete omonente:.

9 Nota-e qe, nete ao, o(. Como a matriz é ortogonal e oi linha e olna om mólo nitário, o elemento,, e erão nlo (e o(, in(. Sbtitinoe ete valore na matriz aima, tem-e qe:. Utilizano a eginte ientiae trigonométria: o o ( o( in( in( o( ( in( in( o( in( vemo qe a matriz e torna:, o in. Por ete motivo, não é oível o állo o ânglo e inivialmente, ma aena a oma ele. one ( e ( O ignifiao fíio ito é e imle entenimento, vito qe m ânglo na jnta e gra imlia em o eixo z e z etarem alinhao, omo na figra ao lao. Aim, o efeito em termo e rotação em torno e z e z é o memo. Analiano e e, temo qe: tan ( in o ( ( No ao ete exeríio, artan artan,7,7 Aim, qalqer ombinação e valore e forma qe é ma olção vália. 9

10 A olção omleta ara a inemátia invera e orientação é, então:. Oberve a efiniçõe o itema e oorenaa e o arâmetro e Denavit-Hartenberg. Ito é eenial na eterminação a eqaçõe. Seno [ ] T a oorenaa o entro o nho, tem-e: y artan, artan e x r one: e z r x y x. y z, r. o 9 o 9 7mm. 7. A matriz e rotação o nho efério é allaa om, qe ara ete exeríio é,,97,97, Note qe nete ao a matriz e rotação oi o termo om o exeríio, o formato e rez-e a:, então, o, o o. De aoro Aim, aena a oma oe er eterminaa. artan o 7 8. eota omitia.

11 9. k,, 7,9, 998,7,7, 77,9 9,7 o o o.,,, o, o, o.. r x y r a a o a a : D in ± D ± artan D D y φ α φ artg x a in α artg a a o z

12 ,, artan artan r,9 7,78 artan artan y x 878, 7,78,9, 878,,78 9,79,, 878,,78 9,79 k,, r. Com, e, temo qe a matriz e rotação orreonente à trê rimeira variávei a jnta é:,,,,,,,,,,

13 Teno, oemo reolver a inemátia invera e orientação. U artan artan artan artan ± ± ± ± ± eolveno e ara in oitivo: artan artan artan artan Agora, e onierarmo a olção ara in negativo: artan artan artan artan Temo então a olçõe oívei, eeneno o valor e :

Lista de Exercícios 2

Lista de Exercícios 2 PONTIFÍCI UNIVERSIDDE CTÓLIC DO RIO GRNDE DO SUL FCULDDE DE ENGENHRI ENGENHRI MECÂNIC 4444W- SISTEMS ROBOTIZDOS Prf. Felipe Kühne Lita e Exeríi. Determine parâmetr DH rbô eféri abaix, e epi ereva órgã

Leia mais

Um sistema pode ser dito estável, se entradas limitadas (finitas) geram saídas limitadas.

Um sistema pode ser dito estável, se entradas limitadas (finitas) geram saídas limitadas. Etabilidade Uma araterítia importte para o itema de ontrole é qe ele eja etável. Sem ela qalqer otra araterítia, omo a de m bom deempenho, não faz entido. Para itema lineare, a araterítia de etabilidade

Leia mais

Breve apontamento sobre enrolamentos e campos em sistemas trifásicos

Breve apontamento sobre enrolamentos e campos em sistemas trifásicos Breve aontamento obre enrolamento e camo em itema trifáico. Introdução Nete documento areentam-e o fundamento da criação do camo girante da máquina eléctrica rotativa. Ete aunto é tratado de forma muito

Leia mais

Introdução. Cinemática inversa Dificuldades. Introdução Cinemática inversa. Cinemática inversa Existência de soluções

Introdução. Cinemática inversa Dificuldades. Introdução Cinemática inversa. Cinemática inversa Existência de soluções 4/6/6 Introdução {Ferramenta} Introdução à Robótia Prof. Dougla G. Maharet [email protected]??? {Bae} Introdução à Robótia - Introdução Como alular o valore da variávei de junta que produzirão a

Leia mais

Integrais de Funções Trigonométricas. Integrais de Funções Trigonométricas

Integrais de Funções Trigonométricas. Integrais de Funções Trigonométricas UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I. As seis integrais

Leia mais

CIRCUITOS ELÉTRICOS APLICAÇÕES DAS EQUAÇÕES DIFERENCIAIS DA FORMA. Prof. Flávio A. M. Cipparrone. Escola Politécnica da USP

CIRCUITOS ELÉTRICOS APLICAÇÕES DAS EQUAÇÕES DIFERENCIAIS DA FORMA. Prof. Flávio A. M. Cipparrone. Escola Politécnica da USP IRUITOS ELÉTRIOS APLIAÇÕES DAS EQUAÇÕES DIFERENIAIS DA FORMA x t x t x t x ( t) s Prof. Flávio A. M. iarrone Escola Politécnica a USP Teoria Para resolver a equação iferencial x ( t) x( t) x( t) xs( t),

Leia mais

CURSO DE ENGENHARIA ELÉTRICA ELETRÔNICA DE POTÊNCIA. Exp. 2

CURSO DE ENGENHARIA ELÉTRICA ELETRÔNICA DE POTÊNCIA. Exp. 2 r od la ort no C UNESDADE DE MOG DAS CUZES - ENGENHAA EÉCA Prof. Joé oberto Marque CUSO DE ENGENHAA EÉCA EEÔNCA DE POÊNCA Ex. ONE CHAEADA PWM ABAXADOA BUCK Objetivo: O objetivo deta exeriência é demontrar

Leia mais

PROJETO E CONSTRUÇÃO DE ESTRADAS

PROJETO E CONSTRUÇÃO DE ESTRADAS 19 PROJETO E CONSTRUÇÃO DE ESTRADAS PROJETO GEOMÉTRICO DE VIAS 3 - CURVAS HORIZONTAIS COM TRANSIÇÃO 3.1 - INTRODUÇÃO A deontinuidade da urvatura que exite no onto de aagem da tangente ara a irular (onto

Leia mais

4 DIAGRAMAS TENSÃO DEFORMAÇÃO DE CÁLCULO - ELU 4.1 DIAGRAMA TENSÃO DEFORMAÇÃO DO CONCRETO

4 DIAGRAMAS TENSÃO DEFORMAÇÃO DE CÁLCULO - ELU 4.1 DIAGRAMA TENSÃO DEFORMAÇÃO DO CONCRETO 4 DIAGAMAS TENSÃO DEFOMAÇÃO DE CÁLCULO - ELU 4.1 DIAGAMA TENSÃO DEFOMAÇÃO DO CONCETO Conforme vito na Figura 1.3b, o iagrama tenão eformação o onreto variam e aoro om ua reitênia. A ABNT NB 6118 ignora

Leia mais

O E. Se Q distasse 3,2 km de O, quais

O E. Se Q distasse 3,2 km de O, quais Esola Seunária om 3º ilo D. Dinis º Ano e Matemátia A Tema I Geometria no Plano e no Espaço II Tarefa nº 4 O Círulo Trigonométrio. Num eran e raar o raio OP faz 5 om O E e a istânia e P à origem representa,8

Leia mais

Introdução à Robótica Industrial p. 1/23

Introdução à Robótica Industrial p. 1/23 Introdução à Robótica Industrial Adriano A. G. Siqueira Aula 4 Introdução à Robótica Industrial p. 1/23 Cinemática Direta Dado: variáveis das juntas (ângulos ou deslocamentos) Procurado: posição e orientação

Leia mais

ÁLGEBRA LINEAR. Espaços Vetoriais Euclidianos, Produto Interno. Prof. Susie C. Keller

ÁLGEBRA LINEAR. Espaços Vetoriais Euclidianos, Produto Interno. Prof. Susie C. Keller ÁLGEBRA LINEAR Espaços Vetoriais Eclidianos, Prodto Interno Prof. Ssie C. Keller Prodto Interno Prodto interno no espaço etorial V é ma fnção de V V em IR qe a todo par de etores (, ) V V associa m número

Leia mais

Exercício Resolvido Cinemática direta para o manipulador Stanford

Exercício Resolvido Cinemática direta para o manipulador Stanford PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO GRANDE DO SUL FACULDADE DE ENGENHARIA 44646-04 SISTEMAS ROBOTIZADOS (Eng. Controle e Automação) Prof. Felipe Kühne Exercício Resolvido Cinemática direta para o manipulador

Leia mais

ESTABILIDADE Método critério de Routh-Hurwitz Casos Especiais

ESTABILIDADE Método critério de Routh-Hurwitz Casos Especiais Departamento de Engenharia Qímica e de Petróleo UFF Diciplina: TEQ- CONTROLE DE PROCESSOS cto ESTABILIDADE Método critério de Roth-Hrwitz Cao Epeciai Prof a Ninoka Bojorge ESTABILIDADE MALHA FECHADA Regiõe

Leia mais

Laboratório de Sistemas e Sinais Equações Diferenciais

Laboratório de Sistemas e Sinais Equações Diferenciais Laboratório e Sitema e Sinai Equaçõe Diferenciai Luí Cala e Oliveira Abril 2009 O objectivo ete trabalho e laboratório é o e realizar experiência com moelo e itema em tempo contínuo ecrito por equaçõe

Leia mais

A notação utilizada na teoria das filas é variada mas, em geral, as seguintes são comuns:

A notação utilizada na teoria das filas é variada mas, em geral, as seguintes são comuns: A notação utilizada na teoria da fila é variada ma, em geral, a eguinte ão comun: λ número médio de cliente que entram no itema or unidade de temo; µ número médio de cliente atendido (que aem do itema)

Leia mais

Tensão Induzida por Fluxo Magnético Transformador

Tensão Induzida por Fluxo Magnético Transformador defi deartamento de fíica Laboratório de Fíica www.defi.ie.i.t Tenão Induzida or Fluxo Magnético Tranformador Intituto Suerior de Engenharia do Porto- Deartamento de Fíica Rua Dr. António Bernardino de

Leia mais

Cálculo Vetorial. Geometria Analítica e Álgebra Linear - MA Aula 04 - Vetores. Profa Dra Emília Marques Depto de Matemática

Cálculo Vetorial. Geometria Analítica e Álgebra Linear - MA Aula 04 - Vetores. Profa Dra Emília Marques Depto de Matemática Cálclo Vetorial Estdaremos neste tópico as grandezas etoriais, sas operações, propriedades e aplicações. Este estdo se jstifica pelo fato de, na natreza, se apresentarem 2 tipo de grandezas, as escalares

Leia mais

Capítulo 6 INTRODUÇÃO À CONVECÇÃO

Capítulo 6 INTRODUÇÃO À CONVECÇÃO Caítlo 6 INRODÇÃO À CONVECÇÃO A tranferência de calor or conecção ocorre qando eite o contato entre m ólido e m flido em moimento: conite na combinação da condção com a adecção (tranferência de calor deido

Leia mais

ROBÓTICA. Equacionamento da Cinemática Direta de Robôs

ROBÓTICA. Equacionamento da Cinemática Direta de Robôs ROBÓTICA Equacionamento da Cinemática Direta de Robôs Prof. Dr. Carlo Pece Depto. de Eletrotécnica UTFPR Transparências adaptadas de material fornecido pelo prof. Winderson E. dos Santos UTFPR 1 Cinemática

Leia mais

LIMITES. Para iniciarmos o estudo de limites, analisemos os seguintes exemplos de sucessões numéricas:

LIMITES. Para iniciarmos o estudo de limites, analisemos os seguintes exemplos de sucessões numéricas: LIMITES O esenvolvimento o cálculo foi estimulao por ois problemas geométricos: achar as áreas e regiões planas e as retas tangentes à curva. Esses problemas requerem um processo e limite para sua solução.

Leia mais

f (x) Antiderivadas de f (x) ; 3 8x ; 8

f (x) Antiderivadas de f (x) ; 3 8x ; 8 INTEGRAIS Definição: Uma fnção F é ma antierivaa e f em m intervalo I se F' ) f ) para too em I Chamaremos tamém F ) ma antierivaa e f ) eterminação e F, o F ), é chamao ANTIDIFERENCIAÇÃO O processo e

Leia mais

02. Resolva o sistema de equações, onde x R. x x (1 3 1) Solução: Faça 3x + 1 = y 2, daí: 03. Resolva o sistema de equações, onde x R e y R.

02. Resolva o sistema de equações, onde x R. x x (1 3 1) Solução: Faça 3x + 1 = y 2, daí: 03. Resolva o sistema de equações, onde x R e y R. 7 ATEÁTICA Prov Diuriv. Sej um mtriz rel. Defin um função n qul element mtriz e elo pr poição eguinte no entio horário, ej, e,impli que ( f. Enontre to mtrize imétri rei n qul = (. Sej um mtriz form e

Leia mais

Cálculo Diferencial e Integral II. Lista 8 - Exercícios/ Resumo da Teoria

Cálculo Diferencial e Integral II. Lista 8 - Exercícios/ Resumo da Teoria Cálculo Diferencial e Integral II Lita 8 - Exercício/ Reumo da Teoria Derivada Direcionai Definição Derivada Direcional. A derivada da função f x, no ponto P x, na direção do veror u u 1, u é o número

Leia mais

Modelo Cinemático Inverso. Prof. Walter Fetter Lages 16 de setembro de 2007

Modelo Cinemático Inverso. Prof. Walter Fetter Lages 16 de setembro de 2007 Universidade Federal do Rio Grande do Sul Escola de Engenharia Departamento de Engenharia Elétrica Programa de Pós-Graduação em Engenharia Elétrica ELE00070-Tópicos Especiais em Controle e Automação I

Leia mais

Apresenta-se em primeiro lugar um resumo da simbologia adoptada na formulação do método dos elementos finitos.

Apresenta-se em primeiro lugar um resumo da simbologia adoptada na formulação do método dos elementos finitos. CAPÍUO 4 EEMEOS FIIOS UIDIMESIOAIS Ante e epor o métoo o elemento finito (MEF) e m moo pliável meio ontíno biimenioni e triimenioni, preent-e om lgm etlhe o o niimenionl. Qno pen e onier m imenão, o métoo

Leia mais

III- FLEXÃO SIMPLES 1- EQUAÇÕES DE COMPATIBILIDADE DE DEFORMAÇÃO

III- FLEXÃO SIMPLES 1- EQUAÇÕES DE COMPATIBILIDADE DE DEFORMAÇÃO III- FLEXÃO SIMPLES - EQUAÇÕES DE COMPATIBILIDADE DE DEFORMAÇÃO A eormaçõe na lexão imple correponem ao omínio, 3 e 4. O valore e x que limitam ete omínio poem er obtio acilmente a equaçõe e compatibiliae

Leia mais

( AB ) é o segmento orientado com origem em A e extremidade em B.

( AB ) é o segmento orientado com origem em A e extremidade em B. FUNDÇÃO EDUIONL UNIFID MPOGRNDENSE (FEU) FULDDES INTEGRDS MPO-GRNDENSES (FI) OORDENÇÃO DE MTEMÁTI Estrada da aroba, 685, ampo-grande/rj - Tel: 3408-8450 Sites: www.fec.br, www.sites.google.com/site/feumat

Leia mais

8 Equações de Estado

8 Equações de Estado J. A. M. Felippe de Souza 8 Equaçõe de Etado 8 Equaçõe de Etado 8. Repreentação por Variávei de Etado Exemplo 4 Exemplo 8. 4 Exemplo 8. 6 Exemplo 8. 6 Exemplo 8.4 8 Matriz na forma companheira Exemplo

Leia mais

Derivadas de Funções Trigonométricas. Derivadas de Funções Trigonométricas ( ) ( ) ( ) [ x

Derivadas de Funções Trigonométricas. Derivadas de Funções Trigonométricas ( ) ( ) ( ) [ x UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Derivaas e Fnções

Leia mais

Modelagem Cinemática de Robôs Industriais. Prof. Assoc. Mário Luiz Tronco

Modelagem Cinemática de Robôs Industriais. Prof. Assoc. Mário Luiz Tronco Modelagem Cinemática de Robôs Industriais Prof. Assoc. Mário Luiz Tronco Mário Prof. Mário Luiz Tronco Luiz Tronco Transformação direta de coordenadas θ 1 θ 2... θ N Variáveis de junta Variáveis cartesianas

Leia mais

a prova de Matemática da FUVEST 2ª fase

a prova de Matemática da FUVEST 2ª fase a prova e Matemática a FUVEST ª fase - 00 Matemática QUESTÃO 0 QUESTÃO 0 A iferença entre ois números inteiros positivos é 0. Ao multiplicar um pelo outro, um estuante cometeu um engano, teno iminuío em

Leia mais

Intervalo de Confiança para a Variância de uma População Distribuída Normalmente. Pode-se mostrar matematicamente que a variância amostral,

Intervalo de Confiança para a Variância de uma População Distribuída Normalmente. Pode-se mostrar matematicamente que a variância amostral, Etatítica II Antonio Roque Aula 8 Intervalo de Confiança para a Variância de uma População Ditribuída Normalmente Pode-e motrar matematicamente que a variância amotral, ( x x) n é um etimador não envieado

Leia mais

Análise de Sensibilidade. Fernando Nogueira Análise de Sensibilidade 1

Análise de Sensibilidade. Fernando Nogueira Análise de Sensibilidade 1 Análise de Sensibilidade Fernando Nogeira Análise de Sensibilidade Consiste em esqisar a estabilidade da solção em vista de ossíveis variações dos arâmetros a ij, b i e c j tilizados na Programação Linear,

Leia mais

Estudo Físico dos Gases

Estudo Físico dos Gases Estuo Físico os Gases eoria Cinética os Gases Gás é um estao a matéria; as partículas neste estao estão em movimento aleatório e caótico; São compressíveis; Os gases ocupam too o volume o recipiente e,

Leia mais

MOVIMENTOS VERTICAIS NO VÁCUO

MOVIMENTOS VERTICAIS NO VÁCUO Diciplina de Fíica Aplicada A 1/ Curo de Tecnólogo em Getão Ambiental Profeora M. Valéria Epíndola Lea MOVIMENTOS VERTICAIS NO VÁCUO Agora etudaremo o movimento na direção verticai e etaremo deprezando

Leia mais

Modelagem Cinemática de Robôs Industriais. Prof. Assoc. Mário Luiz Tronco

Modelagem Cinemática de Robôs Industriais. Prof. Assoc. Mário Luiz Tronco Modelagem Cinemática de Robôs Industriais Prof. Assoc. Mário Luiz Tronco Transformação direta de coordenadas 1 2... N Variáveis de junta Variáveis cartesianas Transformação inversa de coordenadas Transformação

Leia mais

Eletromagnetismo II 1 o Semestre de 2007 Noturno - Prof. Alvaro Vannucci. i ω

Eletromagnetismo II 1 o Semestre de 2007 Noturno - Prof. Alvaro Vannucci. i ω Eletromagetimo II 1 o Semetre de 7 Noturo - Prof. Alvaro Vaui 8 a aula 3/mar/7 i ω Na última aula vimo: Oda laa: t ik (oeradore Da equaçõe de Maxwell, oiderado a amlitude do amo, úmero omlexo: i( K uˆ

Leia mais

Escola Secundária com 3ºCEB de Lousada

Escola Secundária com 3ºCEB de Lousada Esola eunária om ºCEB e Lousaa Fiha e Trabalho e Matemátia o º ano Assunto: oluções a fiha e preparação para o teste interméio. Rifas P( Que a Rita tem e ganhar o prémio) b. P( Que o Anré tem e ganhar

Leia mais

Modelagem Cinemática de Robôs Industriais. Prof. Assoc. Mário Luiz Tronco

Modelagem Cinemática de Robôs Industriais. Prof. Assoc. Mário Luiz Tronco Modelagem Cinemática de Robôs Industriais Prof. Assoc. Mário Luiz Tronco Transformação direta de coordenadas 1 2... N Variáveis de junta Variáveis cartesianas Transformação inversa de coordenadas Transformação

Leia mais

O valor máximo da tensão tangencial de cisalhamento é obtido no ponto onde o momento estático é máximo, isto é, na linha neutra.

O valor máximo da tensão tangencial de cisalhamento é obtido no ponto onde o momento estático é máximo, isto é, na linha neutra. I - CISALHAMENTO 1 - ESTADO DE TENSÃO 1.1 - GENERALIDADES No capítulo anteriore, analiou-e o comportamento e viga e concreto armao ubmetia a olicitaçõe normai. A tenõe interna reultante o efeito e flexão

Leia mais

Cap. 4. Deformação 1. Deslocamento 2. Gradiente de deslocamento 2.1 Translação, rotação e deformação da vizinhança elementar

Cap. 4. Deformação 1. Deslocamento 2. Gradiente de deslocamento 2.1 Translação, rotação e deformação da vizinhança elementar Cap. 4. Deformação. Delocamento. Gradiente de delocamento. ranlação, rotação e deformação da iinhança elementar. Significado fíico da rotação pra 3. enor de deformação de Lagrange 4. enor da peqena deformaçõe

Leia mais

MÉTODOS DE INTEGRAÇÃO

MÉTODOS DE INTEGRAÇÃO ÁLULO DIFERENIL E INTEGRL MÉTODOS DE INTEGRÇÃO Nem todas as integrais são imediatas segndo o formlário dado, porém algns métodos simples ajdam a obter as primitivas das fnções qe não têm integração imediata.

Leia mais

CALIBRAÇÃO DO GASÔMETRO SECO POR MEIO DE GASÔMETRO SECO DE REFERÊNCIA (PADRÃO)

CALIBRAÇÃO DO GASÔMETRO SECO POR MEIO DE GASÔMETRO SECO DE REFERÊNCIA (PADRÃO) ENERGÉTICA IND.E COM. LTDA. Ra Gravataí, 99 Rocha CEP 20975-030 Rio de Janeiro RJ CNPJ 29.341.583/0001-04 IE 82.846.190 Fone: (0xx21) 3797-9800; Fax: (0xx21) 3797-9830 www.energetica.ind.r CALIBRAÇÃO DO

Leia mais

Condução de calor numa barra semi-infinita

Condução de calor numa barra semi-infinita Univeridade de São Paulo Ecola de Engenharia de Lorena Departamento de Engenharia de Materiai Condução de calor numa barra emi-infinita Prof. Luiz T. F. Eleno Ecola de Engenharia de Lorena da Univeridade

Leia mais

CÁLCULO I. 1 Regras de Derivação. Objetivos da Aula. Aula n o 12: Regras de Derivação. Apresentar e aplicar as regras operacionais de derivação;

CÁLCULO I. 1 Regras de Derivação. Objetivos da Aula. Aula n o 12: Regras de Derivação. Apresentar e aplicar as regras operacionais de derivação; CÁLCULO I Prof. Marcos Diniz Prof. Anré Almeia Prof. Eilson Neri Júnior Prof. Emerson Veiga Prof. Tiago Coelho Aula n o : Regras e Derivação Objetivos a Aula Apresentar e aplicar as regras operacionais

Leia mais

PROVA de FÍSICA MÓDULO II do PISM ( ) QUESTÕES OBJETIVAS. 09. Leia, com atenção:

PROVA de FÍSICA MÓDULO II do PISM ( ) QUESTÕES OBJETIVAS. 09. Leia, com atenção: PROVA e FÍSIA MÓDUO II o PISM (2004-2006) QUESTÕES OBJETIVAS 09. eia, com atenção: Use, se necessário: Aceleração gravitacional g = 0 m/s 2 Densiae a água = 000 kg/m alor latente e vaporização a água =

Leia mais

v y quando a carga passa pela posição x 0, em m / s, são: Quando na posição A, q fica sujeita a uma força eletrostática de módulo F exercida por Q.

v y quando a carga passa pela posição x 0, em m / s, são: Quando na posição A, q fica sujeita a uma força eletrostática de módulo F exercida por Q. 1. (Ufrg 015) Em uma aula e Fíica, foram utilizaa ua efera metálica iêntica, X e Y : X etá upena por um fio iolante na forma e um pênulo e Y fica obre um uporte iolante, conforme repreentao na figura abaixo.

Leia mais

ISEP LEI AMATA - 1S. 2009/10 CÁLCULO DIFERENCIAL EM IR

ISEP LEI AMATA - 1S. 2009/10 CÁLCULO DIFERENCIAL EM IR ISEP LEI AMATA - S. 9/ CÁLCULO DIFERENCIAL EM IR Cálclo Dierencial em IR Derivaa e ma nção nm ponto Q Q As rectas PQ, PQ epq 3 são rectas secantes à crva. P Q 3 t A recta t é tangente à crva no ponto P.

Leia mais

ROBÓTICA DENAVIT- HARTENBERG. Prof a. Dra. GIOVANA TRIPOLONI TANGERINO Tecnologia em Automação Industrial

ROBÓTICA DENAVIT- HARTENBERG. Prof a. Dra. GIOVANA TRIPOLONI TANGERINO Tecnologia em Automação Industrial SP CAMPUS PIRACICABA ROBÓTICA Prof a. Dra. GIOVANA TRIPOLONI TANGERINO Tecnologia em Automação Industrial DENAVIT- HARTENBERG https://giovanatangerino.wordpress.com [email protected] [email protected]

Leia mais

2 Cargas Móveis, Linhas de Influência e Envoltórias de Esforços

2 Cargas Móveis, Linhas de Influência e Envoltórias de Esforços 2 Carga óvei, Linha de Influência e Envoltória de Eforço 21 Introdução Para o dimenionamento de qualquer etrutura é neceário conhecer o eforço máximo e mínimo que ela apreentará ao er ubmetida ao carregamento

Leia mais

D i s c i p l i n a : P e s q u i s a O p e r a c i o n a l I I T e o r i a d a s F i l a s - L i s t a d e E x e r c í c i o s : 0 5

D i s c i p l i n a : P e s q u i s a O p e r a c i o n a l I I T e o r i a d a s F i l a s - L i s t a d e E x e r c í c i o s : 0 5 Sitema M/M//GD/c/. Um erviço de engraxar aato em um aeroorto tem cinco cadeira e doi atendente. Um cliente que chega e encontra uma cadeira livre e o atendente ocuado enta e eera elo erviço. O cliente

Leia mais

Lista de Exercícios de Cálculo 3 Segunda Semana - 01/2016

Lista de Exercícios de Cálculo 3 Segunda Semana - 01/2016 Lista e Exercícios e Cálculo 3 Seguna Semana - 01/2016 Parte A 1. Se l tem equações paramétricas x = 5 3t, y = 2 + t, z = 1 + 9t, ache as equações paramétricas a reta que passa por P ( 6, 4, 3) e é paralela

Leia mais

Introdução às Medidas em Física a Aula. Nemitala Added Prédio novo do Linac, sala 204, r. 6824

Introdução às Medidas em Física a Aula. Nemitala Added Prédio novo do Linac, sala 204, r. 6824 Introução à Meia e Fíica 430015 4 a Aula Neitala Ae [email protected] Préio novo o Linac, ala 04, r. 684 Objetivo Experiência II eniae e Sólio Meia inireta Meia a eniae e ólio Noçõe e Etatítica Propagação

Leia mais

Aula 1- Distâncias Astronômicas

Aula 1- Distâncias Astronômicas Aula - Distâncias Astronômicas Área 2, Aula Alexei Machao Müller, Maria e Fátima Oliveira Saraiva & Kepler e Souza Oliveira Filho Ilustração e uma meição e istância a Terra (à ireita) à Lua (à esquera),

Leia mais

Física Atómica e Nuclear Capítulo 7. Átomos Multilelectrónicos.

Física Atómica e Nuclear Capítulo 7. Átomos Multilelectrónicos. 132 7.6. Acoplamento do Momento Angular. A informação dada atravé da ditribuição electrónica no átomo não é uficiente para decrever completamente o etado do átomo, uma vez que não explica como o momento

Leia mais