Lista de Exercícios 2

Tamanho: px
Começar a partir da página:

Download "Lista de Exercícios 2"

Transcrição

1 PONTIFÍCI UNIVERSIDDE CTÓLIC DO RIO GRNDE DO SUL FCULDDE DE ENGENHRI ENGENHRI MECÂNIC 4444W- SISTEMS ROBOTIZDOS Prf. Felipe Kühne Lita e Exeríi. Determine parâmetr DH rbô eféri abaix, e epi ereva órgã terminal m relaçã a itema a rigem. O rbô pui trê grau e liberae. Dua junta ã rtativa e uma é primátia. Terem entã m variávei a junta, e, repetivamente,, e. primeira parte exeríi nite em eterminar eix a junta, que erã z, z e z. pó, efinim itema e renaa a bae, u eja, a rigem O, (livre elha, even apena etar lalizaa bre eix e rtaçã a junta, u eja, z ) eix x e y. x é livre e a únia retriçã é mem er perpeniular a z e ua rigem er em O. Pem agra eterminar a rigen O e O, atravé a repreentaçã e DH. Cm z e z e ruzam, O é efinia n pnt e intereçã ete i eix. O é efinia a mema frma. O próxim pa é efinir eix x e x. x é efini m nrmal a plan frma pel eix z e z. ireçã preia er perpeniular a z e também ruzar mem (niçõe DH e DH). O enti e x é livre. x é efini a mema maneira. pó i, efinim itema órgã terminal. rigem O é mumente efinia imetriamente n entr órgã terminal. z é nrmalmente efinia n enti e aprximaçã órgã terminal, que ignifia em z er paralel, u iniente, m z. x é livre, a nã er pela retriçõe aa pr DH e DH.

2 términ ete preiment, efinem-e eix y, y e y, a fim e e mpletar um itema e renaa triimeninal, nfrme regra a mã ireita, para aa junta rbô e para órgã terminal. Tem entã t itema e renaa manipular, nfrme figura abaix: gra pem efinir parâmetr DH. Relembran: a i : itânia, a lng e x i, e O i à intereçã entre z i- e z i, e z i- e z i e ruzarem; u a itânia mai urta entre z i- e z i, e ete frem paralel u nã planare. α i : ângul, em trn e x i, e z i- a z i. i : itânia, a lng e z i-, e O i- à intereçã entre z i- e x i. i : ângul, em trn e z i-, e x i- a x i. Tem entã que: i a i α i i i -9 * 9 * * O parâmetr m um ateri a la repreentam a variávei a junta. Entã, a piçã e rientaçã órgã terminal, erit m relaçã a itema a rigem rbô, erã efinia pela nfiguraçã rbô nfrme eta trê variávei. e ã fix e epenem a gemetria rbô. gra pem apliar ete valre à matrize e tranfrmaçã hmgênea e aa junta. im:

3 Oberve a ntaçã uaa: (ϕ) ϕ e in(ϕ) ϕ. matriz e tranfrmaçã ttal é aa pr H : + + H Para alular a piçã órgã terminal, nierem eguinte valre para a variávei a junta:, 9, m, umim também que m 4,. Cnieran que a eriçã entr órgã terminal, m relaçã a itema, é [ ] T p. Subtituin valre na matriz e tranfrmaçã H, tem:,4,4,,4,4, p H p Lg, a eriçã órgã terminal m relaçã a itema a bae é:,4,4, p.

4 . Da rbô ilínri abaix, enntre parâmetr DH e também a matriz e tranfrmaçã hmgênea que repreenta a luçã prblema a inemátia ireta.. Calule a matriz e tranfrmaçã hmgênea ttal a aiinar-e, a itema e renaa exeríi anterir, um punh eféri m mtra na figura abaix. 4

5 4. Para rbô planar e trê grau e liberae abaix, Determine parâmetr DH; Explique ignifia e aa um parâmetr enntra (pr exempl, é nul pr que a rigem itema O é iniente m pnt ne z e x e intereinam); Determine a piçã órgã terminal para eguinte parâmetr: a a a 4m,, e 45 ; Enntre, atravé e relaçõe trignmétria, a piçã órgã terminal e mpare m a luçã enntraa atravé a inemátia ireta. 5. Determine parâmetr DH e a matriz e tranfrmaçã hmgênea ttal para rbô arteian e trê grau e liberae, m mtra na figura abaix. 5

6 6. Cniere rbô SCR abaix ne a junta, e 4 ã rtativa, a junta é primátia (enti vertial e elament) e eix a junta e 4 ã iniente. Determine parâmetr DH, a matriz que repreenta a equaçõe a inemátia ireta e explique pr que exitem parâmetr a i iferente e zer. 6

Lista de Exercícios 3 - Cinemática Inversa

Lista de Exercícios 3 - Cinemática Inversa PONTIFÍCIA UNIVESIDADE CATÓLICA DO IO GANDE DO SUL FACULDADE DE ENGENHAIA ENGENHAIA DE CONTOLE E AUTOMAÇÃO - SISTEMAS OBOTIZADOS Prof. Felie Kühne Lita e Exeríio - Cinemátia Invera. Determine o entro o

Leia mais

ELETRÔNICA DE POTÊNCIA

ELETRÔNICA DE POTÊNCIA MEAHEURO.COM.BR Prf. Jé Rbert Marque V.1. ELERÔNCA DE POÊNCA EXERCÍCO REOLVDO OBRE REFCADORE NÃO CONROLADO COM CARGA RL E FCEM 1Q) Da circuit abaix, cnieran i ieal, eterminar : a) O ângul e cnuçã i b)

Leia mais

O diagrama em blocos contém vários itens na sua representação. São estes: Seta - É usada para representar o sentido do fluxo de sinal.

O diagrama em blocos contém vários itens na sua representação. São estes: Seta - É usada para representar o sentido do fluxo de sinal. Dagrama de Blc Verfcand mdel para tema cmplex, pde-e ntar que ele ã reultante de ubtema u element, cada qual cm ua funçã de tranferênca. O dagrama em blc pdem er uad para repreentar cada um dete ubtema,

Leia mais

5. DIAGRAMA EM BLOCOS

5. DIAGRAMA EM BLOCOS Stema de Cntrle 5. DIAGRAMA EM BLOCOS Verfcand mdel para tema cmplex, pde-e ntar que ele ã reultante de ubtema u element, cada qual cm ua funçã de tranferênca. O dagrama em blc pdem er uad para repreentar

Leia mais

TIPO DE PROVA: A. Questão 1. Questão 2. Questão 4. Questão 3. alternativa A. alternativa B. alternativa C

TIPO DE PROVA: A. Questão 1. Questão 2. Questão 4. Questão 3. alternativa A. alternativa B. alternativa C Questã TIPO DE PROVA: A de dias decrrids para que a temperatura vlte a ser igual àquela d iníci das bservações é: A ser dividid pr 5, númer 4758 + 8a 5847 deixa rest. Um pssível valr d algarism a, das

Leia mais

SEM QUEBRAR AS TAÇAS!! *

SEM QUEBRAR AS TAÇAS!! * SEM QUEBRAR AS TAÇAS!! * ernand Lang da Silveira Intitut de íica URGS Prt Alegre RS Reum Uma ripa de madeira, apiada bre dua taça, pde er partida, em quebrar a taça, cm uma frte pancada. A demntraçã dete

Leia mais

Geração de calor em sólidos

Geração de calor em sólidos 3/09/06 ranferência de calr Geraçã de calr em ólid º. emetre, 06 Geraçã de calr em ólid Divera aplicaçõe prática de tranferência de calr envlvem a cnverã de aluma frma de eneria em eneria térmica n mei.

Leia mais

Introdução. Cinemática inversa Dificuldades. Introdução Cinemática inversa. Cinemática inversa Existência de soluções

Introdução. Cinemática inversa Dificuldades. Introdução Cinemática inversa. Cinemática inversa Existência de soluções 4/6/6 Introdução {Ferramenta} Introdução à Robótia Prof. Dougla G. Maharet [email protected]??? {Bae} Introdução à Robótia - Introdução Como alular o valore da variávei de junta que produzirão a

Leia mais

Testes Acelerados de Confiabilidade

Testes Acelerados de Confiabilidade Tete Acelerad de Cnfiabilidade Definiçã: Tete Acelerad de Cnfiabilidade cnitem na expiçã de cmpnente/itema a carga de tre uficiente para reduzir eu temp-médi-até-falha (MTTF) à nívei aceitávei. O engenheir(a),

Leia mais

Sistemas de coordenadas tridimensionais. Translação e rotação de sistemas. Prof. Dr. Carlos Aurélio Nadal. Translação e rotação de sistemas

Sistemas de coordenadas tridimensionais. Translação e rotação de sistemas. Prof. Dr. Carlos Aurélio Nadal. Translação e rotação de sistemas Sistemas de crdenadas tridimensinais Prf. Dr. Carls Auréli Nadal X Translaçã de um sistema de crdenadas Y X Translaçã de um sistema de crdenadas X Y Y X Translaçã de um sistema de crdenadas X Y Y X Translaçã

Leia mais

Sistemas de coordenadas tridimensionais. Translação e rotação de sistemas. Prof. Dr. Carlos Aurélio Nadal. Translação e rotação de sistemas

Sistemas de coordenadas tridimensionais. Translação e rotação de sistemas. Prof. Dr. Carlos Aurélio Nadal. Translação e rotação de sistemas Sistemas de crdenadas tridimensinais Prf. Dr. Carls Auréli Nadal X Translaçã de um sistema de crdenadas Y X Translaçã de um sistema de crdenadas X Y Y X Translaçã de um sistema de crdenadas X Y Y X Translaçã

Leia mais

SUPERFÍCIE E CURVA. F(x, y, z) = 0

SUPERFÍCIE E CURVA. F(x, y, z) = 0 SUPERFÍIE E URVA SUPERFÍIE E URVA As superfícies sã estudadas numa área chamada de Gemetria Diferencial, desta frma nã se dispõe até nível da Gemetria Analítica de base matemática para estabelecer cnceit

Leia mais

1ª Avaliação. 2) Qual dos gráficos seguintes representa uma função de

1ª Avaliação. 2) Qual dos gráficos seguintes representa uma função de 1ª Avaliaçã 1) Seja f ( ) uma funçã cuj dmíni é cnjunt ds númers naturais e que asscia a td natural par valr zer e a td natural ímpar dbr d valr Determine valr de (a) f ( 3) e (b) + S, send f ( 4 ) * S

Leia mais

Resistência dos Materiais SUMÁRIO 1. TENSÕES DE CISALHAMENTO... 1 1.1 DIMENSIONAMENTO... 2 1.2 EXEMPLOS... 2

Resistência dos Materiais SUMÁRIO 1. TENSÕES DE CISALHAMENTO... 1 1.1 DIMENSIONAMENTO... 2 1.2 EXEMPLOS... 2 Reitência do Materiai SUMÁRIO 1. TESÕES DE CISLHMETO... 1 1.1 DIMESIOMETO... 1. EXEMPLOS... Cialhamento 0 Prof. Joé Carlo Morilla Reitência do Materiai 1. Tenõe de Cialhamento Quando dua força cortante

Leia mais

TIPO DE PROVA: A. Questão 1. Questão 3. Questão 2. Questão 4. alternativa E. alternativa A. ver comentário. alternativa E

TIPO DE PROVA: A. Questão 1. Questão 3. Questão 2. Questão 4. alternativa E. alternativa A. ver comentário. alternativa E Questã TIPO DE PROVA: A N primeir semestre deste an, a prduçã de uma fábrica de aparelhs celulares aumentu, mês a mês, de uma quantidade fixa. Em janeir, fram prduzidas 8 000 unidades e em junh, 78 000.

Leia mais

RESISTÊNCIA DOS MATERIAIS

RESISTÊNCIA DOS MATERIAIS ereira Ediçã CAPÍULO RESISÊNCIA DOS MAERIAIS Ferdinand P. Beer E. Russell hnstn, r. rçã em Seções Cirulares Capítul 3 rçã em Seções Cirulares 3.1 Intrduçã 3. Análise Preliminar das ensões 3.3 Defrmações

Leia mais

8 Equações de Estado

8 Equações de Estado J. A. M. Felippe de Souza 8 Equaçõe de Etado 8 Equaçõe de Etado 8. Repreentação por Variávei de Etado Exemplo 4 Exemplo 8. 4 Exemplo 8. 6 Exemplo 8. 6 Exemplo 8.4 8 Matriz na forma companheira Exemplo

Leia mais

DIFRAÇÃO DE BRAGG USANDO MICROONDAS (RELATÓRIO / EXPERIÊNCIA

DIFRAÇÃO DE BRAGG USANDO MICROONDAS (RELATÓRIO / EXPERIÊNCIA UNIVERSIDADE FEDERAL DA BAHIA INSTITUTO DE FÍSICA DEPARTAMENTO DE FÍSICA DO ESTADO SÓLIDO FIS 124 - FÍSICA GERAL E EXPERIMENTAL IV / LABORATÓRIO PROF.: Jsé Fernan Turma: Teórica/ Prática T: P: 13 Data:

Leia mais

v =? a =? E para o ângulo: ( v ) 37,5 37,5i Cinemática de uma Partícula Cap Exercícios v v Velocidade (a t )A (a t )B (a n )A (a n )B

v =? a =? E para o ângulo: ( v ) 37,5 37,5i Cinemática de uma Partícula Cap Exercícios v v Velocidade (a t )A (a t )B (a n )A (a n )B Prblema 1.3 MECÂNIC - DINÂMIC Cinemáica de uma Parícula Cap. 1 - Eercíci O carr e e mem numa pia circular. Num dad inane, em uma elcidade de 9 pé/ e ea elcidade eá crecend a uma aa de 15 pé/², enquan,

Leia mais

Função Inversa. Função Inversa. Exemplos: f(x) = y. Notemos que f: A B é sobrejetora se, e somente se, Im(f) = B. f é sobrejetora Im( f ) = B

Função Inversa. Função Inversa. Exemplos: f(x) = y. Notemos que f: A B é sobrejetora se, e somente se, Im(f) = B. f é sobrejetora Im( f ) = B UNIVERSIDDE DO ESTDO DE MTO GROSSO CMPUS UNIVERSITÁRIO DE SINOP FCULDDE DE CIÊNCIS EXTS E TECNOLÓGICS CURSO DE ENGENHRI CIVIL DISCIPLIN: FUNDMENTOS DE MTEMÁTIC Funçã Inversa. Funçã sbrejetra Ntems que

Leia mais

PONTIFÍCIA UNIVERSIDADE CATÓLICA DE GOIÁS

PONTIFÍCIA UNIVERSIDADE CATÓLICA DE GOIÁS PONTIFÍI UNIERSIDDE TÓLI DE GOIÁS DEPRTMENTO DE MTEMÁTI E FÍSI Prfessres: Edsn az e Renat Medeirs EXERÍIOS NOT DE UL II Giânia - 014 E X E R Í I OS: NOTS DE UL 1. Na figura abaix, quand um elétrn se deslca

Leia mais

UFSC. Matemática (Amarela) 21) Resposta: 14. Comentário e resolução. 01. Incorreta. Como 1 rd 57 o, então 10 rd 570 o. f(x) = sen x.

UFSC. Matemática (Amarela) 21) Resposta: 14. Comentário e resolução. 01. Incorreta. Como 1 rd 57 o, então 10 rd 570 o. f(x) = sen x. UFSC Matemática (Amarela) ) Respsta: 4 Cmentári e resluçã 0. Incrreta. Cm rd 7, entã 0 rd 70. f(x) = sen x f(0) = sen (0) f(0) = sen (70 ) f(0) = sen (0 ) f(0) < 0 0. Crreta. Gráfics de f(x) = x e g(x)

Leia mais

Mais problemas resolvidos! Atrito e força centrípeta:

Mais problemas resolvidos! Atrito e força centrípeta: Mais prblemas reslvids! Atrit e frça centrípeta: Prblema 04. a figura a lad, um prc brincalhã escrrega em uma ο rampa cm uma inclinaçã de 35 e leva dbr d temp que levaria se nã huvesse atrit. Qual é ceficiente

Leia mais

CÁLCULO I. Aula n o 02: Funções. Denir função e conhecer os seus elementos; Listar as principais funções e seus grácos.

CÁLCULO I. Aula n o 02: Funções. Denir função e conhecer os seus elementos; Listar as principais funções e seus grácos. CÁLCULO I Prf. Marcs Diniz Prf. André Almeida Prf. Edilsn Neri Júnir Prf. Emersn Veiga Prf. Tiag Celh Aula n 02: Funções. Objetivs da Aula Denir funçã e cnhecer s seus elements; Recnhecer grác de uma funçã;

Leia mais

Teste para Amostras Dependentes (teste t pareado)

Teste para Amostras Dependentes (teste t pareado) Tete e Hipótee para ua populaçõe Tete para Amotra Depenente (tete t pareao) Um tete t poe er uao para tetar a iferença e ua méia a população quano uma amotra é elecionaa aleatoriamente e caa população.

Leia mais

Halliday & Resnick Fundamentos de Física

Halliday & Resnick Fundamentos de Física Halliday & Resnick Fundaments de Física Mecânica Vlume 1 www.grupgen.cm.br http://gen-i.grupgen.cm.br O GEN Grup Editrial Nacinal reúne as editras Guanabara Kgan, Sants, Rca, AC Farmacêutica, LTC, Frense,

Leia mais

Números Complexos, Conversão de Formas e Operações Matemáticas

Números Complexos, Conversão de Formas e Operações Matemáticas Institut Federal de Educaçã, iência e Tecnlgia de Santa atarina Departament Acadêmic de Eletrônica Retificadres Númers mplexs, nversã de Frmas e Operações Matemáticas Prf. lóvis Antôni Petry. Flrianóplis,

Leia mais

Notas de aula prática de Mecânica dos Solos II (parte 13)

Notas de aula prática de Mecânica dos Solos II (parte 13) Ntas de aula prática de Mecânica ds Sls II (parte ) Héli Marcs Fernandes Viana Cnteúd da aula prática xercíci relacinad a cálcul d empux ativ pel métd de Rankine, qual é causad pr um sl granular (u arens)

Leia mais

Halliday & Resnick Fundamentos de Física

Halliday & Resnick Fundamentos de Física Halliday & Resnick Fundaments de Física Mecânica Vlume 1 www.grupgen.cm.br http://gen-i.grupgen.cm.br O GEN Grup Editrial Nacinal reúne as editras Guanabara Kgan, Sants, Rca, AC Farmacêutica, LTC, Frense,

Leia mais

L = R AULA 8 - TRIGONOMETRIA TRIGONOMETRIA NA CIRCUNFERÊNCIA TRIÂNGULO RETÂNGULO. sen. cos a b. sen. cos a tg b tg. sen cos 90 sen cos 1 tg tg.

L = R AULA 8 - TRIGONOMETRIA TRIGONOMETRIA NA CIRCUNFERÊNCIA TRIÂNGULO RETÂNGULO. sen. cos a b. sen. cos a tg b tg. sen cos 90 sen cos 1 tg tg. AULA 8 - TRIGONOMETRIA TRIÂNGULO RETÂNGULO TRIGONOMETRIA NA CIRCUNFERÊNCIA COMO MEDIR UM ARCO CATETO OPOSTO sen HIPOTENUSA. cs tg CATETO ADJACENTE HIPOTENUSA CATETO OPOSTO CATETO ADJACENTE Medir um arc

Leia mais

4 Extensão do modelo de Misme e Fimbel para a determinação da distribuição cumulativa da atenuação diferencial entre dois enlaces convergentes

4 Extensão do modelo de Misme e Fimbel para a determinação da distribuição cumulativa da atenuação diferencial entre dois enlaces convergentes 4 Extensã d mdel de Misme e Fimbel ra a determinaçã da distribuiçã cumulativa da atenuaçã diferencial entre dis enlaces cnvergentes 4.. Distribuiçã cumulativa cnjunta das atenuações ns dis enlaces cnvergentes

Leia mais

Mecânica e Ondas Prof. Pedro Abreu Prof. Mário Pinheiro. Série 4. Semana: 13/3 a 17/3 de 2017 Ler Serway, Capt.4 e 5 (ver Fénix) arctg 13.5 ] Fig.

Mecânica e Ondas Prof. Pedro Abreu Prof. Mário Pinheiro. Série 4. Semana: 13/3 a 17/3 de 2017 Ler Serway, Capt.4 e 5 (ver Fénix) arctg 13.5 ] Fig. LEAN MEMec Mecânica e Ondas Prf. Pedr Abreu Prf. Mári Pinheir Série 4 Semana: 13/3 a 17/3 de 017 Ler Serway, Capt.4 e 5 (ver Fénix) 1 Aceleraçã centrípeta: Uma viatura arranca d sinal stp cm aceleraçã

Leia mais

Breve apontamento sobre enrolamentos e campos em sistemas trifásicos

Breve apontamento sobre enrolamentos e campos em sistemas trifásicos Breve aontamento obre enrolamento e camo em itema trifáico. Introdução Nete documento areentam-e o fundamento da criação do camo girante da máquina eléctrica rotativa. Ete aunto é tratado de forma muito

Leia mais

Cálculo Diferencial e Integral II. Lista 8 - Exercícios/ Resumo da Teoria

Cálculo Diferencial e Integral II. Lista 8 - Exercícios/ Resumo da Teoria Cálculo Diferencial e Integral II Lita 8 - Exercício/ Reumo da Teoria Derivada Direcionai Definição Derivada Direcional. A derivada da função f x, no ponto P x, na direção do veror u u 1, u é o número

Leia mais

XXXI Olimpíada Brasileira de Matemática GABARITO Segunda Fase

XXXI Olimpíada Brasileira de Matemática GABARITO Segunda Fase XXXI Olimpíada Braileira de Matemática GBRITO Segunda Fae Soluçõe Nível Segunda Fae Parte PRTE Na parte erão atribuído ponto para cada repota correta e a pontuação máxima para ea parte erá 0 NENHUM PONTO

Leia mais

I, determine a matriz inversa de A. Como A 3 3 A = 2 I; fatorando o membro esquerdo dessa igualdade por A, temos a expressão

I, determine a matriz inversa de A. Como A 3 3 A = 2 I; fatorando o membro esquerdo dessa igualdade por A, temos a expressão VTB 008 ª ETAPA Sluçã Cmentada da Prva de Matemática 0 Em uma turma de aluns que estudam Gemetria, há 00 aluns Dentre estes, 0% fram aprvads pr média e s demais ficaram em recuperaçã Dentre s que ficaram

Leia mais

Estudo do circuito RL

Estudo do circuito RL Departament de Fíica da Faculdade de Ciência da Univeridade de Liba Fíica Experimental (Engenharia Infrmática) Trabalh 3 Mediçã de tenõe e crrente (AC) Cnceit: impedância, fae e funçã de tranferência Etud

Leia mais

MATEMÁTICA. Capítulo 1 LIVRO 1. I. Introdução à Geometria II. Ângulo III. Paralelismo. Páginas: 145 à 156

MATEMÁTICA. Capítulo 1 LIVRO 1. I. Introdução à Geometria II. Ângulo III. Paralelismo. Páginas: 145 à 156 MATEMÁTICA LIVRO 1 Capítul 1 I. Intrduçã à Gemetria II. Ângul III. Paralelism Páginas: 145 à 156 I. Intrduçã a Estud da Gemetria Plana Regiã Plignal Cnvexa É uma regiã plignal que nã apresenta reentrâncias

Leia mais

Quantas equações existem?

Quantas equações existem? www2.jatai.ufg.br/oj/index.php/matematica Quanta equaçõe exitem? Rogério Céar do Santo Profeor da UnB - FUP [email protected] Reumo O trabalho conite em denir a altura de uma equação polinomial

Leia mais

Colégio Santa Dorotéia Área de Matemática Disciplina: Matemática Ano: 8º - Ensino Fundamental Professores: Rose Mary, Weslei e Wuledson

Colégio Santa Dorotéia Área de Matemática Disciplina: Matemática Ano: 8º - Ensino Fundamental Professores: Rose Mary, Weslei e Wuledson Caro(a) aluno(a), O momento de revião deve er vito como oportunidade de recontruir conhecimento neceário à continuação do proceo de aprendizagem. Naturalmente a realização dea atividade eigirá de você

Leia mais

MATEMÁTICA. Capítulo 1 LIVRO 1. I. Introdução àgeometria II. Ângulo III. Paralelismo. Páginas: 145 à156

MATEMÁTICA. Capítulo 1 LIVRO 1. I. Introdução àgeometria II. Ângulo III. Paralelismo. Páginas: 145 à156 MATEMÁTICA LIVRO 1 Capítul 1 I. Intrduçã àgemetria II. Ângul III. Paralelism Páginas: 145 à156 I. Intrduçã a Estud da Gemetria Plana Regiã Plignal Cnvexa É uma regiã plignal que nã apresenta reentrâncias

Leia mais

PROPOSTA DE RESOLUÇÃO DO EXAME DE MATEMÁTICA APLICADA ÀS CIÊNCIAS SOCIAIS (PROVA 835) ªFASE

PROPOSTA DE RESOLUÇÃO DO EXAME DE MATEMÁTICA APLICADA ÀS CIÊNCIAS SOCIAIS (PROVA 835) ªFASE PROPOSTA DE RESOLUÇÃO DO EXAME DE MATEMÁTICA APLICADA ÀS CIÊNCIAS SOCIAIS (PROVA 835) 013 ªFASE 1. 1.1. Aplicando o método de Hondt, o quociente calculado ão o eguinte: Lita A B C D Número de voto 13 1035

Leia mais

4 DIAGRAMAS TENSÃO DEFORMAÇÃO DE CÁLCULO - ELU 4.1 DIAGRAMA TENSÃO DEFORMAÇÃO DO CONCRETO

4 DIAGRAMAS TENSÃO DEFORMAÇÃO DE CÁLCULO - ELU 4.1 DIAGRAMA TENSÃO DEFORMAÇÃO DO CONCRETO 4 DIAGAMAS TENSÃO DEFOMAÇÃO DE CÁLCULO - ELU 4.1 DIAGAMA TENSÃO DEFOMAÇÃO DO CONCETO Conforme vito na Figura 1.3b, o iagrama tenão eformação o onreto variam e aoro om ua reitênia. A ABNT NB 6118 ignora

Leia mais

COMPARAÇÃO DE CURVAS DE SOBREVIVÊNCIA

COMPARAÇÃO DE CURVAS DE SOBREVIVÊNCIA COMPARAÇÃO DE CURVAS DE SOBREVIVÊNCIA O prblema de cmparaçã de distribuições de sbrevivências surge cm freqüência em estuds de sbrevivência. Pr exempl, pde ser de interesse cmparar dis trataments para

Leia mais

Conversor elevador (boost):

Conversor elevador (boost): N cnversr bst, a tensã média de saída é mair que a tensã de entrada. Cnduçã cntínua Cnduçã descntínua Estudar capítul 3 d livr text: Cnversres CC-CC básics nã islads, Barbi,. 1 Estrutura básica iferentes

Leia mais

2 Cargas Móveis, Linhas de Influência e Envoltórias de Esforços

2 Cargas Móveis, Linhas de Influência e Envoltórias de Esforços 2 Carga óvei, Linha de Influência e Envoltória de Eforço 21 Introdução Para o dimenionamento de qualquer etrutura é neceário conhecer o eforço máximo e mínimo que ela apreentará ao er ubmetida ao carregamento

Leia mais

TIPO DE PROVA: A. Questão 1. Questão 3. Questão 4. Questão 2. alternativa B. alternativa A. alternativa D. alternativa C

TIPO DE PROVA: A. Questão 1. Questão 3. Questão 4. Questão 2. alternativa B. alternativa A. alternativa D. alternativa C Questã TIPO DE PROVA: A Ds n aluns de uma escla, 0% têm 0% de descnt na mensalidade e 0% têm 0% de descnt na mesma mensalidade. Cas equivalente a esses descnts fsse distribuíd igualmente para cada um ds

Leia mais

Em geometria, são usados símbolos e termos que devemos nos familiarizar:

Em geometria, são usados símbolos e termos que devemos nos familiarizar: IFS - ampus Sã Jsé Área de Refrigeraçã e ndicinament de r Prf. Gilsn ELEENTS E GEETRI Gemetria significa (em greg) medida de terra; ge = terra e metria = medida. nss redr estams cercads de frmas gemétricas,

Leia mais

Noções de dimensionamento das lajes de concreto

Noções de dimensionamento das lajes de concreto Noçõe e imenionamento a laje e onreto Metoologia báia para o imenionamento impliiao Eng. Wagner Queiroz Silva, D.S. UFAM Comportamento meânio a laje A laje trabalham unamentalmente à lexão Ação e momento

Leia mais

P U C R S PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO GRANDE DO SUL FACULDADE DE ENGENHARIA CURSO DE ENGENHARIA CIVIL CONCRETO ARMADO II FORÇA CORTANTE

P U C R S PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO GRANDE DO SUL FACULDADE DE ENGENHARIA CURSO DE ENGENHARIA CIVIL CONCRETO ARMADO II FORÇA CORTANTE P U C R S PONTIFÍCI UNIERSIDDE CTÓLIC DO RIO GRNDE DO SUL FCULDDE DE ENGENHRI CURSO DE ENGENHRI CIIL CONCRETO RMDO II FORÇ CORTNTE Pro. lmir Schäer PORTO LEGRE MRÇO DE 006 1 FORÇ CORTNTE 1- Notaçõe principai

Leia mais

Matemática B Extensivo V. 2

Matemática B Extensivo V. 2 Gabarit Matemática B Extensiv V. Reslva Aula Aula 7.0) a) sen 0 sen (60 0 ) 7.0) f(x) sen 0 b) cs 0 cs (80 0 ) c) cs 60 cssec 60 cssec 00 sen 00. d) sec 97 sec cs e) tg tg tg ( 80 ) Períd: p 6 Imagem:

Leia mais

Circuitos em CA Série, Paralelo e Misto

Circuitos em CA Série, Paralelo e Misto Institut Federal de Educaçã, Ciência e ecnlgia de Santa Catarina Departament Acadêmic de Eletrônica Retificadres Circuits em CA Série, Paralel e Mist Prf. Clóvis Antôni Petry. Flrianóplis, març de 2009.

Leia mais

Controle de Processos

Controle de Processos CONCURSO PETROBRAS ENGENHEIRO(A) DE PROCESSAMENTO JÚNIOR ENGENHEIRO(A) JÚNIOR - ÁREA: PROCESSAMENTO Controle de Proceo Quetõe Reolvida QUESTÕES RETIRADAS DE PROVAS DA BANCA CESGRANRIO Produzido por Exata

Leia mais

Projeto do compensador PID no lugar das raízes

Projeto do compensador PID no lugar das raízes Projeto do compenador PID no lugar da raíze 0 Introdução DAELN - UTFPR - Controle I Paulo Roberto Brero de Campo Neta apotila erão etudado o projeto do compenadore PI, PD e PID atravé do lugar da raíze

Leia mais

Helio Marcos Fernandes Viana

Helio Marcos Fernandes Viana 1 UNtas de aulas de Estradas (parte 6) Heli Marcs Fernandes Viana UCnteúd da parte 6 Exercícis 1. ) Pede-se deterinar s eleents da curva circular hrizntal: T, D, E, 0, d, d, E(PC) e E(PT). Ainda, pede-se

Leia mais

Cartografia e Geoprocessamento Parte 2. Projeção Cartográfica

Cartografia e Geoprocessamento Parte 2. Projeção Cartográfica Cartgrafia e Geprcessament Parte 2 Prjeçã Cartgráfica Recapituland... Geide; Datum: Planimétrics e Altimétrics; Tpcêntrics e Gecêntrics. Data ficiais ds países; N Brasil: Córreg Alegre, SAD69 e SIRGAS

Leia mais

CAPÍTULO 10 TRANSLAÇÃO E ROTAÇÃO DE EIXOS

CAPÍTULO 10 TRANSLAÇÃO E ROTAÇÃO DE EIXOS CAPÍTULO 0 TRANSLAÇÃO E ROTAÇÃO DE EIXOS TRANSLAÇÃO DE EIXOS NO R Sejam O e O s eis primitivs, d Sistema Cartesian de Eis Crdenads cm rigem O(0,0). Sejam O e O s nvs eis crdenads cm rigem O (h,k), depis

Leia mais

P U C R S PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO GRANDE DO SUL FACULDADE DE ENGENHARIA CURSO DE ENGENHARIA CIVIL CONCRETO ARMADO II FLEXÃO SIMPLES

P U C R S PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO GRANDE DO SUL FACULDADE DE ENGENHARIA CURSO DE ENGENHARIA CIVIL CONCRETO ARMADO II FLEXÃO SIMPLES P U C S PONTIFÍCIA UNIVESIDADE CATÓLICA DO IO GANDE DO SUL FACULDADE DE ENGENHAIA CUSO DE ENGENHAIA CIVIL CONCETO AADO II FLEXÃO SIPLES Prof. Almir Shäffer POTO ALEGE AÇO DE 006 1 FLEXÃO SIPLES 1- Generaliae

Leia mais

Técnicas Econométricas para Avaliação de Impacto. Problemas de Contaminação na Validação Interna

Técnicas Econométricas para Avaliação de Impacto. Problemas de Contaminação na Validação Interna Técnica Econométrica para Avaliação e Impacto Problema e Contaminação na Valiação Interna Rafael Perez Riba Centro Internacional e Pobreza Braília, 18 e junho e 28 Introução Valiação Interna é quano um

Leia mais

Módulo III Movimento Uniforme (MU)

Módulo III Movimento Uniforme (MU) Módulo III Moimento Uniforme (MU) Em moimento retilíneo ou curilíneo em que a elocidade ecalar é mantida contante, diz-e que o móel etá em moimento uniforme. Nete cao, a elocidade ecalar intantânea erá

Leia mais

Confrontando Resultados Experimentais e de Simulação

Confrontando Resultados Experimentais e de Simulação Confrontando Reultado Experimentai e de Simulação Jorge A. W. Gut Departamento de Engenharia Química Ecola Politécnica da Univeridade de São Paulo E mail: [email protected] Um modelo de imulação é uma repreentação

Leia mais

A) O volume de cada bloco é igual à área da base multiplicada pela altura, isto é, 4 1

A) O volume de cada bloco é igual à área da base multiplicada pela altura, isto é, 4 1 OBMEP Nível 3 ª Fase Sluções QUESTÃO. Quincas Brba uniu quatr blcs retangulares de madeira, cada um cm 4 cm de cmpriment, cm de largura e cm de altura, frmand bjet mstrad na figura. A) Qual é vlume deste

Leia mais