2 Descrição do Sistema
|
|
|
- Giovanni Assunção de Almeida
- 8 Há anos
- Visualizações:
Transcrição
1 31 2 Descrição do Sistema O giroscópio mecânico foi largamente utilizado como um instrumento de navegação em navios e aviões [34]. A tecnologia mecânica vem aos poucos sendo substituída por dispositivos ópticos ou micro-eletromecânicos, porém continua vital em certas aplicações estratégicas que exigem grande precisão e confiabilidade ou grande robustez. O conceito físico que viabiliza este instrumento vem da Lei de Euler para a rotação: se não atua um momento sobre um corpo, sua quantidade de movimento angular não varia. Havendo a possibilidade de isolar a rotação de um corpo (rotor do movimento da estrutura que o carrega, essa estrutura passa a se mover em torno do rotor, que devido à invariância da quantidade de movimento angular é inercial. A conexão entre a estrutura suporte e o rotor livre é uma suspensão cardânica. O isolamento todavia é relativo uma vez que na suspensão há ligação de amortecimento e da inércia dos quadros cardânicos. Existem vários tipos de giroscópios mecânicos que podem descrever fenômenos de rotação. Figura 2.1: Giroscópio de Magnus (Phywe.com Um giroscópio didático é o Giroscópio de Magnus (Magnus, 1965 [24], fabricado pela empresa Phywe (Figura 2.1. Além de reproduzir muitas das propriedades intrínsecas à operação de um giroscópio também é um instrumento
2 32 particularmente adequado para estudar comportamentos do movimento sem restrição de um corpo no espaço quando se despreza a influencia dos quadros cardânicos. Seus momentos de inércia podem ser alterados de forma que a posição de equilíbrio seja estável ou instável. A dinâmica do giroscópio de Magnus será estudada neste trabalho. A Figura 2.1 mostra uma foto comercial do instrumento. O giroscópio de Magnus é composto por três corpos, Fig Utilizou-se a teoria de rotações seqüenciais para descrever a dinâmica do sistema com ângulos cardânicos, cada rotação elementar corresponde ao deslocamento de um dos corpos, o ângulo α acompanha o quadro externo, o ângulo β para o quadro interno em relação ao quadro externo e γ representa o ângulo de rotação do rotor em relação ao quadro interno. Neste movimento, considera-se apenas a rotação do sistema, visto que o seu centro é fixado pela suspensão. As três coordenadas generalizadas para estudar o problema são os três ângulos cardânicos. Rotor Quadro interno Quadro Externo Figura 2.2: Corpos que compõem o Giroscópio O quadro externo é fabricado de forma robusta porém em material leve, procurando reduzir ao máximo o seu momento de inércia em relação ao único eixo em torno do qual ele pode girar. O quadro interno é mais complexo, pois as
3 33 duas rotações possíveis devem resultar em momentos de inércia mínimos, e ao mesmo tempo ter uma resistência elevada às deformações conseqüentes dos esforços que são transmitidos pelo rotor. O rotor possui um eixo de simetria (e s, conforme se pode verificar na Fig. 2.2, mas uma variação na distribuição de massa pode fazê-lo perder a axissimetria, sem que se remova o centro de gravidade do eixo de simetria. Uma particularidade deste dispositivo é a possibilidade de acrescentar massas nas extremidades do rotor, o que vai alterar muito os momentos de inércia diametrais, sem variar muito os momentos de inércia polares. Isto permitirá estudar rotores achatados (discos, como Fig. 2.1 ou corpos alongados (feito cilindros. Os mancais são todos de elevada precisão e baixo atrito. Para definir as rotações seqüenciais é necessário trabalhar com quatro sistemas de coordenadas (SR, um SR no espaço (fixo e os outros em cada componente do giroscópio (em movimento. F ( x, y, z α ( x Q ( x, y, z β ( y R ( x, y, z γ ( z S ( x, y, z (2.1 Na Tabela 2.1 mostram-se os momentos de inércia de cada corpo, onde: o quadro externo é acompanhado pelo SR(Q, o quadro interno é acompanhado pelo SR(R e o corpo C ou Rotor é acompanhado pelo SR(S. Em seguida, todos os momentos de inércia são normalizados com respeito ao principal momento de inércia do Rotor (I 3 >I 1 >I 2, introduzindo-se: µ 1 =I 1 /I 3 e µ 2 =I 2 /I 3, e nos quadros: µ p =I p /I 3, µ d = Id /I 3 e µ x =I x /I 3, onde (p polar, d diametral do quadro interno, x eixo alinhado com os mancais que suportam o quadro externo. Não se apresentam outros momentos de inércia pois não são necessários na modelagem. Tabela. 2.1 Propriedades físicas dos Corpos, componentes do Giroscópio. As propriedades físicas foram obtidas tomando as medidas geométricas do Giroscópio que se encontra no laboratório da PUC-Rio (LABVIB, aproximando
4 34 o material de construção de cada componente, e com ajuda de um software CAD 3D de modelagem solida (Solid Edge obtém-se os momentos de inércia com boa aproximação. Na Figura 2.3 observa-se uma vista do giroscópio na configuração de pendulo invertido, obtido alterando-se a posição do quadro externo que na Fig. 2.1 era vertical, para horizontal e acrescentando-se uma massa em uma das extremidades do eixo de simetria do rotor. Figura 2.3: Giroscópio no laboratório (PUC-Rio MEC-LabVib Se fosse possível negligenciar tanto a inércia dos quadros quanto o atrito entre os componentes, teríamos o comportamento do rotor como se fosse de um corpo livre no espaço, visto que nas equações não se incluem o efeito gravidade e a resistência do ar já que o enfoque tem a ver com uma possível visualização de movimento no espaço exterior. Parte-se portanto de um corpo (rotor que pode ser achatado ou alongado e que não necessariamente apresenta axissimetria e procurase ferramentas que ajudem na visualização dos fenômenos que atuam na rotação deste corpo. Este corpo gira sem perturbação no espaço quando ocorre um impacto sobre ele. Figura 2.4: Corpo no espaço.
5 35 A estabilidade do movimento tem a ver com a configuração inercial do corpo. Se a configuração é: I 3 >I 1 >I 2 o corpo é achatado e, mantendo os mesmos eixos, se a configuração é: I 1 >I 2 >I 3 o corpo é alongado. Depois da perturbação, dependendo da magnitude, o corpo pode permanecer oscilando em torno da mesma posição de equilíbrio isto é, permanece na mesma bacia de atração (movimento estável ou pode mudar para outras bacias de atração e neste caso o movimento seria instável [25] Visualização do movimento O Software "OpenGL" é utilizado neste trabalho para visualizar a dinâmica do giroscópio: neste programa os elementos (ou corpos que compõem o giroscópio são montados de forma tal que o sistema completo se encontra dentro de um ambiente virtual, como é mostrado na Fig Este programa processa os resultados numéricos obtidos da simulação das equações de movimento usando Matlab, e os mostra em uma mídia gráfica. Os dados importados por "OpenGL" são: o tempo, o valor dos ângulos cardânicos, as coordenadas do vetor quantidade de movimento angular, as coordenadas do vetor velocidade angular, e a energia cinética do sistema. Figura 2.5: Giroscópio representado pelo programa OpenGL Na Figura 2.5 podem ser observadas duas linhas que representam as direções da velocidade angular (amarelo e da quantidade de movimento angular (vermelha. O eixo de simetria do rotor é fácil de identificar, porém como ele pode passar para o outro lado (muda de bacia de atração em uma ponta usa-se cor verde e na outra vermelha.
6 36 O valor numérico da energia cinética de cada elemento que compõe o giroscópio é representado na parte esquerda da tela. Essas energias são normalizadas, variam entre zero e um, sendo que o valor unitário correspondente à energia inicial do giroscópio, um instante depois de impactado. Acompanhando a variação da energia cinética do quadro cardânico externo, do quadro interno e do rotor ao longo de algum tempo, podemos observar um intercâmbio de energia entre os componentes do sistema: este processo é uma característica relevante quando não há amortecimento. Neste caso, a energia permanece constante, o movimento inicia-se com toda a energia no rotor e a seguir começa a viajar através dos corpos do sistema. Esta é uma informação importante no estudo do problema. A interface gráfica ajuda muito na observação do movimento, na identificação das bacias de atração em torno de pontos singulares; movimentos permanentes podem ser acompanhados com facilidade, como por exemplo, ao estudar os cones de precessão de Poinsot [4]. Pode-se alterar a quantidade de frames/segundo, resultando na reprodução de um movimento mais lento ou acelerado. O valor de frames/segundo é definido pelo número de resultados obtidos no MATLAB e pode ser arbitrariamente escolhido para uma melhor visualização.
TÍTULO: TESTE DE CONTROLADOR PARA UM ROBÔ DE EQUILÍBRIO DINÂMICO CATEGORIA: CONCLUÍDO ÁREA: CIÊNCIAS EXATAS E DA TERRA. SUBÁREA: Engenharias
TÍTULO: TESTE DE CONTROLADOR PARA UM ROBÔ DE EQUILÍBRIO DINÂMICO CATEGORIA: CONCLUÍDO ÁREA: CIÊNCIAS EXATAS E DA TERRA SUBÁREA: Engenharias INSTITUIÇÃO(ÕES): CENTRO UNIVERSITÁRIO DO NORTE PAULISTA - UNORP
FEP Física para Engenharia II. Prova P1 - Gabarito
FEP2196 - Física para Engenharia II Prova P1 - Gabarito 1. Um cilindro de massa M e raio R rola sem deslizar no interior de um cilindro de raio 2R mantido fixo. O cilindro menor é solto a partir do repouso
CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA I ROTAÇÃO. Prof.
CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA I ROTAÇÃO Prof. Bruno Farias Introdução Neste capítulo vamos aprender: Como descrever a rotação
Mini_Lista11: Rotação de Corpos Rígidos: Eixo Fixo
Mini_Lista11: Rotação de Corpos Rígidos: Eixo Fixo Lembrete 11.1 Em equações rotacionais, deve usar ângulos expressos em radianos. Lembrete 11.2 Na resolução de problemas de rotação, deve especificar um
Cap.12: Rotação de um Corpo Rígido
Cap.12: Rotação de um Corpo Rígido Do professor para o aluno ajudando na avaliação de compreensão do capítulo. Fundamental que o aluno tenha lido o capítulo. Introdução: Produto vetorial Ilustração da
Universidade Federal do Rio de Janeiro Instituto de Física Lista de Revisão Física 1. prof. Daniel Kroff e Daniela Szilard 17 de abril de 2015
Universidade Federal do Rio de Janeiro Instituto de Física Lista de Revisão Física 1 prof. Daniel Kroff e Daniela Szilard 17 de abril de 2015 1. Uma partícula move-se em linha reta, partindo do repouso
CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA I ROTAÇÃO. Prof.
CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA I ROTAÇÃO Prof. Bruno Farias Introdução Neste capítulo vamos aprender: Como descrever a rotação
Cada questão objetiva vale 0,7 ponto
Instituto de Física Segunda Prova de Física I 2017/1 Nas questões em que for necessário, considere que: todos os fios e molas são ideais; os fios permanecem esticados durante todo o tempo; a resistência
Profº Carlos Alberto
Rotação Disciplina: Mecânica Básica Professor: Carlos Alberto Objetivos de aprendizagem Ao estudar este capítulo você aprenderá: Como descrever a rotação de um corpo rígido em termos da coordenada angular,
11 Cinemática de partículas 605
SUMÁRIO 11 Cinemática de partículas 605 11.1 Introdução à dinâmica 606 Movimento retilíneo de partículas 607 11.2 Posição, velocidade e aceleração 607 11.3 Determinação do movimento de uma partícula 611
ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO. Departamento de Engenharia Mecânica
ESCA PITÉCNICA DA UNIVERSIDADE DE SÃ PAU Avenida Professor Mello Moraes, nº 31. cep 558-9, São Paulo, SP. Telefone: (xx11) 391 5337 Fax: (xx11) 3813 188 MECÂNICA II - PME 3 Primeira Prova de abril de 17
Prof. Dr. Ronaldo Rodrigues Pelá. 12 de março de 2013
GIROSCÓPIO Mecânica II (FIS-26) Prof. Dr. Ronaldo Rodrigues Pelá IEFF-ITA 12 de março de 2013 Roteiro 1 2 Roteiro 1 2 Dinâmica F (ext) = M a CM τ (ext) = d L dt L = M r CM v CM + L CM τ (ext) CM = d L
Theory Portugues BR (Brazil) Por favor, leia as instruções gerais contidas no envelope separado antes de iniciar este problema.
Q1-1 Dois problemas de Mecânica (10 pontos) Por favor, leia as instruções gerais contidas no envelope separado antes de iniciar este problema. Parte A. O disco escondido (3.5 pontos) Considere um cilindro
Lista 10: Dinâmica das Rotações NOME:
Lista 10: Dinâmica das Rotações NOME: Turma: Prof. : Matrícula: Importante: i. Nas cinco páginas seguintes contém problemas para serem resolvidos e entregues. ii. Ler os enunciados com atenção. iii. Responder
Parte 2 - PF de Física I NOME: DRE Teste 1
Parte 2 - PF de Física I - 2016-2 NOME: DRE Teste 1 Nota Q1 Assinatura: Questão discursiva [4,0 pontos] Uma esfera homogênea de massa M e raio R parte do repouso e rola sem deslizar sobre uma rampa que
Física 1. 3 a prova 09/12/2017. Atenção: Leia as recomendações antes de fazer a prova.
Física 1 3 a prova 09/12/2017 Atenção: Leia as recomendações antes de fazer a prova. 1- Assine seu nome de forma LEGÍVEL na folha do cartão de respostas. 2- Leia os enunciados com atenção. 3- Analise a
Mecânica e Ondas. Docentes da disciplina: João Seixas e Mario J. Pinheiro MeMEC Departmento de Física e Instituto de Plasma e Fusão Nuclear,
Mecânica e Ondas Série 5 Docentes da disciplina: João Seixas e Mario J. Pinheiro MeMEC Departmento de Física e Instituto de Plasma e Fusão Nuclear, Instituto Superior Técnico, Av. & 1049-001 Lisboa, Portugal
Física I. Dinâmica de Corpos Rígidos Lista de Exercícios
Física I Dinâmica de Corpos Rígidos Lista de Exercícios 1. Campo de Velocidades e Centro Instantâneo de Rotação Dados os itens abaixo, responda ao que se pede: a. O disco abaixo está preso a uma articulação
Segundo Exercício de Modelagem e Simulação Computacional Maio 2012 EMSC#2 - MECÂNICA B PME 2200
Segundo Exercício de Modelagem e Simulação Computacional Maio 01 EMSC# - MECÂNICA B PME 00 1. ENUNCIADO DO PROBLEMA Um planador (vide Fig. 1) se aproxima da pista do aeroporto para pouso com ângulo de
Terceira Lista de Exercício de Dinâmica e Controle de Veículos Espaciais
Terceira Lista de Exercício de Dinâmica e Controle de Veículos Espaciais Questão 1 Considerando os momentos de inércia de um corpo no sistema de eixos principais de inércia com origem no centro de massa
Lista 9 : Dinâmica Rotacional
Lista 9 : Dinâmica Rotacional NOME: Matrícula: Turma: Prof. : Importante: i. Nas cinco páginas seguintes contém problemas para se resolver e entregar. ii. Ler os enunciados com atenção. iii. Responder
Aluno Data Curso / Turma Professor
Apostila Modelagem e Simulação de Sistemas Dinâmicos Aluno Data Curso / Turma Professor 24/10/09 Engenharia Industrial Mecânica / 2006-1 MODELAGEM MATEMÁTICA DE SISTEMAS DINÂMICOS Everton Farina, Eng.º
Parte 2 - P2 de Física I NOME: DRE Teste 1
Parte 2 - P2 de Física I - 2017-1 NOME: DRE Teste 1 Nota Q1 Questão 1 - [3,7 ponto] Um carretel é composto por um cilindro interno de raio r = R/2 e massa M, enrolado por um fio ideal, com 2 discos idênticos,
FIS-15 Mecânica I. Ronaldo Rodrigues Pela
FIS-15 Mecânica I Ronaldo Rodrigues Pela Objetivos Movimento relativo Ênfase em rotação Referenciais Inerciais Não-inerciais Forças de inércia Forças de Einstein Resumo Supondo que A só tem mov. de translação,
Parte 2 - PF de Física I NOME: DRE Teste 1
Parte 2 - PF de Física I - 2017-1 NOME: DRE Teste 1 Nota Q1 Questão 1 - [2,5 ponto] Um astronauta está ligado a uma nave no espaço através de uma corda de 120 m de comprimento, que está completamente estendida
Série IV - Momento Angular (Resoluções Sucintas)
Mecânica e Ondas, 0 Semestre 006-007, LEIC Série IV - Momento Angular (Resoluções Sucintas) 1. O momento angular duma partícula em relação à origem é dado por: L = r p a) Uma vez que no movimento uniforme
II. MODELAGEM MATEMÁTICA (cont.)
INSTITUTO TECNOLÓGICO DE AERONÁUTICA DIVISÃO DE ENGENHARIA MECÂNICA MP-272: CONTROLE E NAVEGAÇÃO DE MULTICÓPTEROS II. MODELAGEM MATEMÁTICA (cont.) Prof. Davi Antônio dos Santos ([email protected]) Departamento
Mecânica II - FFI0111: Lista #3
Mecânica II - FFI0111: Lista #3 Fazer até 11/04/2011 L.A.Ferreira ; Seg.Qua. 10:10 11:50 Estagiário: Gabriel Luchini 1 Problema 1 A equação de Newton é de segunda ordem no tempo. Você aprendeu que, para
LISTA DE EXERCÍCIOS 1
LISTA DE EXERCÍCIOS Esta lista trata de vários conceitos associados ao movimento harmônico simples (MHS). Tais conceitos são abordados no capítulo 3 do livro-texto: Moysés Nussenzveig, Curso de Física
MECÂNICA GERAL Apostila 3 : Rotação do Corpo Rígido. Professor Renan
MECÂNICA GERAL Apostila 3 : Rotação do Corpo Rígido Professor Renan 1 Centro de massa Um corpo extenso pode ser considerado um sistema de partículas, cada uma com sua massa. A resultante total das massas
EN ESTABILIDADE E CONTRoLE DE AERONAVES II - MOVIMENTO LONGITUDINAL DO AVIÃO. Maria Cecília Zanardi Fernando Madeira
EN 3205 - ESTABILIDADE E CONTRoLE DE AERONAVES II - MOVIMENTO LONGITUDINAL DO AVIÃO Maria Cecília Zanardi Fernando Madeira Estabilidade e Controle de Aeronaves II - MOVIMENTO LONGITUDINAL DO AVIÃO REFERENCIAS:
Theory Portuguese (Portugal) Antes de iniciar este problema, leia cuidadosamente as Instruções Gerais que pode encontrar noutro envelope.
Q1-1 Dois Problemas de Mecânica Antes de iniciar este problema, leia cuidadosamente as Instruções Gerais que pode encontrar noutro envelope. Parte A. O Disco Escondido (3,5 pontos) Considere um cilindro
Física 1. Resumo e Exercícios P1
Física 1 Resumo e Exercícios P1 Fórmulas e Resumo Teórico Parte 1 Derivada de polinômios - Considerando um polinômio P x = ax %, temos: d P x = anx%() dx Integral de polinômios - Considerando um polinômio
Dinâmica rotacional
1 oteiro elaborado com base na documentação que acompanha o conjunto por: Otavio A.T. Dias IFT-S & Elias da Silva UC-S Tópicos elacionados Momento de inércia, torque, momento angular, precessão, nutação.
Parte 2 - P3 de Física I NOME: DRE Gabarito Teste 1. Assinatura:
Parte - P3 de Física I - 018-1 NOME: DRE Gabarito Teste 1 Assinatura: Questão 1 - [,7 pontos] Uma barra de comprimento L e massa M pode girar livremente, sob a ação da gravidade, em torno de um eixo que
Física I Prova 2 20/02/2016
Física I Prova 2 20/02/2016 NOME MATRÍCULA TURMA PROF. Lembrete: A prova consta de 3 questões discursivas (que deverão ter respostas justificadas, desenvolvidas e demonstradas matematicamente) e 10 questões
Universidade de São Paulo. Instituto de Física. FEP112 - FÍSICA II para o Instituto Oceanográfico 1º Semestre de 2009
Universidade de São Paulo Instituto de Física FEP11 - FÍSICA II para o Instituto Oceanográfico 1º Semestre de 9 Primeira Lista de Exercícios Oscilações 1) Duas molas idênticas, cada uma de constante, estão
Halliday & Resnick Fundamentos de Física
Halliday & Resnick Fundamentos de Física Mecânica Volume 1 www.grupogen.com.br http://gen-io.grupogen.com.br O GEN Grupo Editorial Nacional reúne as editoras Guanabara Koogan, Santos, Roca, AC Farmacêutica,
8. Uma conta de massa m, enfiada num aro vertical fixo de raio r, no qual desliza sem atrito, desloca-se em torno do ponto mais baixo.
. Para um sistema massa-mola na horizontal, sem atrito, escreva a segunda lei de Newton e a resolva, encontrando a função x(t) correspondente à solução geral do problema. (c) Esboce um gráfico para as
2.7 Empuxo e Estabilidade
.7 Empuxo e Estabilidade Como a componente horizontal do empuxo resultante E H será nula, então o empuxo resultante será igual à componente vertical E V. Suponha um corpo ABCD totalmente mergulhado em
LISTA DE EXERCÍCIOS - MOVIMENTO HARMÔNICO SIMPLES (MHS) (versão 2014/2)
LISTA DE EXERCÍCIOS - MOVIMENTO HARMÔNICO SIMPLES (MHS) (versão 2014/2) A CINEMÁTICA NO MHS 1.1.- (HALLIDAY, 4ª EDIÇÃO, CAP. 14, 1E) Um objeto sujeito a um movimento harmônico simples leva 0,25 s para
Mecânica 1. Resumo e Exercícios P3
Mecânica 1 Resumo e Exercícios P3 Conceitos 1. Dinâmica do Ponto 2. Dinâmica do Corpo Rígido 1. Dinâmica do Ponto a. Quantidade de Movimento Linear Vetorial Instantânea Q = m v b. Quantidade de Movimento
Física 1 VS 16/12/2017. Atenção: Leia as recomendações antes de fazer a prova.
Física 1 VS 16/12/2017 Atenção: Leia as recomendações antes de fazer a prova. 1- Assine seu nome de forma LEGÍVEL na folha do cartão de respostas. 2- Leia os enunciados com atenção. 3- Analise sua resposta.
Considerando a variação temporal do momento angular de um corpo rígido que gira ao redor de um eixo fixo, temos:
Segunda Lei de Newton para Rotações Considerando a variação temporal do momento angular de um corpo rígido que gira ao redor de um eixo fixo, temos: L t = I ω t e como L/ t = τ EXT e ω/ t = α, em que α
Mecânismos A06. Prof. Nilton Ferruzzi. Prof. Nilton Ferruzzi 1
Mecânismos A06 Prof. Nilton Ferruzzi Prof. Nilton Ferruzzi 1 Definição de Vibração Mecânica: É qualquer movimento que se repete, regular ou irregularmente, depois de um intervalo de tempo. O movimento
FEP Física Geral e Experimental para Engenharia I
FEP195 - Física Geral e Experimental para Engenharia I Prova P3 - Gabarito 1. Três partículas de massa m estão presas em uma haste fina e rígida de massa desprezível e comprimento l. O conjunto assim formado
Física 1. 2 a prova 03/06/2017. Atenção: Leia as recomendações antes de fazer a prova.
Física 1 2 a prova 03/06/2017 Atenção: Leia as recomendações antes de fazer a prova. 1- Assine seu nome de forma LEGÍVEL na folha do cartão de respostas. 2- Leia os enunciados com atenção. 3- Analise sua
Física 1. 2 a prova 03/06/2017. Atenção: Leia as recomendações antes de fazer a prova.
Física 1 2 a prova 03/06/2017 Atenção: Leia as recomendações antes de fazer a prova. 1- Assine seu nome de forma LEGÍVEL na folha do cartão de respostas. 2- Leia os enunciados com atenção. 3- Analise sua
Capítulo 10. Rotação. Copyright 2014 John Wiley & Sons, Inc. All rights reserved.
Capítulo 10 Rotação Copyright 10-1 Variáveis Rotacionais Agora estudaremos o movimento de rotação Aplicam-se as mesmas leis Mas precisamos de novas variáveis para expressá-las o o Torque Inércia rotacional
Mecânica I (FIS-14) Prof. Dr. Ronaldo Rodrigues Pelá Sala 2602A-1 Ramal 5785
Mecânica I (FIS-14) Prof. Dr. Ronaldo Rodrigues Pelá Sala 2602A-1 Ramal 5785 [email protected] www.ief.ita.br/~rrpela Onde estamos? Nosso roteiro ao longo deste capítulo A equação do movimento Equação do movimento
Parte 2 - PF de Física I NOME: DRE Teste 1
Parte - PF de Física I - 017-1 NOME: DRE Teste 1 Nota Q1 Questão 1 - [,7 ponto] Dois corpos de massas m 1 = m e m = m se deslocam em uma mesa horizontal sem atrito. Inicialmente possuem velocidades de
Capítulo 11 Rotações e Momento Angular
Capítulo 11 Rotações e Momento Angular Corpo Rígido Um corpo rígido é um corpo ideal indeformável de tal forma que a distância entre 2 pontos quaisquer do corpo não muda nunca. Um corpo rígido pode realizar
Notas de aula resumo de mecânica. Prof. Robinson RESUMO DE MECÂNICA
RESUMO DE MECÂNICA Ano 2014 1 1. DINÂMICA DE UMA PARTÍCULA 1.1. O referencial inercial. O referencial inercial é um sistema de referência que está em repouso ou movimento retilíneo uniforme ao espaço absoluto.
CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA I EQUILÍBRIO. Prof.
CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA I EQUILÍBRIO Prof. Bruno Farias Introdução Neste capítulo vamos aprender: As condições que
Física 1. 2 a prova 02/07/2016. Atenção: Leia as recomendações antes de fazer a prova.
Física 1 2 a prova 02/07/2016 Atenção: Leia as recomendações antes de fazer a prova. 1- Assine seu nome de forma LEGÍVEL na folha do cartão de respostas. 2- Leia os enunciados com atenção. 3- Analise sua
ESPAÇO PARA RESPOSTA COM DESENVOLVIMENTO
Parte 2 - P2 de Física I - 2016-2 NOME: DRE Teste 1 Nota Q1 Assinatura: Questão 1 - [2,4 ponto] Dois blocos se deslocam em linha reta sobre uma mesa horizontal sem atrito. O bloco A, de massa m, tem velocidade
d) [1,0 pt.] Determine a velocidade v(t) do segundo corpo, depois do choque, em relação à origem O do sistema de coordenadas mostrado na figura.
1) Uma barra delgada homogênea de comprimento L e massa M está inicialmente em repouso como mostra a figura. Preso a uma de suas extremidades há um objeto de massa m e dimensões desprezíveis. Um segundo
Apresentação Outras Coordenadas... 39
Sumário Apresentação... 15 1. Referenciais e Coordenadas Cartesianas... 17 1.1 Introdução... 17 1.2 O Espaço Físico... 18 1.3 Tempo... 19 1.3.1 Mas o Tempo é Finito ou Infinito?... 21 1.3.2 Pode-se Viajar
Sensores de Aceleração
Sensores de Aceleração Sensores de aceleração (acelerômetros e giroscópios) são componentes do tipo inercial que fornecem um sinal elétrico proporcional à aceleração do sistema. São transdutores que convertem
Mecânica I (FIS-14) Prof. Dr. Ronaldo Rodrigues Pelá Sala 2602A-1 Ramal 5785
Mecânica I (FIS-14) Prof. Dr. Ronaldo Rodrigues Pelá Sala 2602A-1 Ramal 5785 [email protected] www.ief.ita.br/~rrpela Onde estamos? Nosso roteiro ao longo deste capítulo A equação do movimento Equação do movimento
Física I para a Escola Politécnica ( ) - P3 (24/06/2016) [16A7]
Física I para a Escola Politécnica (330) - P3 (/0/0) [A] NUSP: 0 0 0 0 0 0 0 3 3 3 3 3 3 3 8 8 8 8 8 8 8 9 9 9 9 9 9 9 Instruções: preencha completamente os círculos com os dígitos do seu número USP (um
SUMÁRIO. 1 Preparando o Cenário para o Estudo da Dinâmica Cinemática da Partícula... 29
SUMÁRIO 1 Preparando o Cenário para o Estudo da Dinâmica... 1 1.1 Uma Breve História da Dinâmica...1 Isaac Newton (1643-1727)... 3 Leonhard Euler (1707-1783)... 6 1.2 Conceitos Fundamentais...8 Espaço
Roteiro elaborado com base na documentação que acompanha o conjunto por: Otávio A.T. Dias IFT-SP, Elias da Silva e Osvaldo Guimaraes - PUC-SP
1 Roteiro elaborado com base na documentação que acompanha o conjunto por: Otávio A.T. Dias IFT-S, Elias da Silva e Osvaldo Guimaraes - UC-S Este conjunto explora os dispositivos usados para se obter orientação
Física para Zootecnia
Física para Zootecnia Rotação - I 10.2 As Variáveis da Rotação Um corpo rígido é um corpo que gira com todas as partes ligadas entre si e sem mudar de forma. Um eixo fixo é um eixo de rotação cuja posição
Mecânica Geral 2012/13
Mecânica Geral 2012/13 MEFT Responsável: Eduardo V. Castro Departamento de Física, Instituto Superior Técnico Corpo Rígido C / Semana 04 15/03/2013 (Tensor de inércia e eixos principais, movimento do girocompasso,
2 Equações do Sistema
2 Equações do Sistema Este capítulo irá apresentar as equações usadas no estudo, mostrando passo a passo como foi feita a modelagem desse sistema. Uma maneira fácil de entender seu funcionamento é pensá-lo
Mecânica I (FIS-14) Prof. Dr. Ronaldo Rodrigues Pelá Sala 2602A-1 Ramal 5785
Mecânica I (FIS-14) Prof. Dr. Ronaldo Rodrigues Pelá Sala 2602A-1 Ramal 5785 [email protected] www.ief.ita.br/~rrpela Onde estamos? Nosso roteiro ao longo deste capítulo A equação do movimento Equação do movimento
Dinâmica. Prof.ª Betty Carvalho Rocha Gonçalves do Prado
Dinâmica Prof.ª Betty Carvalho Rocha Gonçalves do Prado [email protected] [email protected] CORPO RÍGIDO São corpos cuja dimensões não são desprezáveis Corpo rígido É um conceito limite ideal,
Física 1. 2 a prova 02/07/2016. Atenção: Leia as recomendações antes de fazer a prova.
Física 1 2 a prova 02/07/2016 Atenção: Leia as recomendações antes de fazer a prova. 1- Assine seu nome de forma LEGÍVEL na folha do cartão de respostas. 2- Leia os enunciados com atenção. 3- Analise sua
Força direção magnitude magnitude
Leis de Newton Sir Isaac Newton 1642 1727 Formulou as leis básicas da mecânica. Descobriu a Lei da Gravitação Universal. Inventou o cálculo Diferencial e Integral. Fez muitas observações sobre luz e óptica.
O pêndulo simples é constituído por uma partícula de massa
AULA 42 APLICAÇÕES DO MOVIMENTO HARMÔNICO SIMPLES OBJETIVOS: APLICAR A TEORIA DO MOVIMENTO HARMÔNICO SIMPLES A PÊNDULOS 42.1 PÊNDULO SIMPLES: O pêndulo simples é constituído por uma partícula de massa
Mecânica 1. Guia de Estudos P2
Mecânica 1 Guia de Estudos P2 Conceitos 1. Cinemática do Ponto Material 2. Cinemática dos Sólidos 1. Cinemática do Ponto Material a. Curvas Definição algébrica: A curva parametriza uma função de duas ou
I m k m r (3,5) 3000.(3) kg.m. Como d d d 3,697sen d
Capítulo 17 - Exercícios 17.65) Os passageiros, a gôndola e a estrutura de balanço ilustrados abaixo têm uma massa total de 50 Mg (ton.), com centro de massa em e raio de giração kb 3,5 m. Adicionalmente,
Laboratório de Física II para Engenharia. Prática 1 - EQUILÍBRIO DE FORÇAS. 1.Objetivos:
Prática 1 - EQUILÍBRIO DE FORÇAS 1.Objetivos: Determinar a resultante de forças, geometricamente e analiticamente, atuando num ponto em equilíbrio estático. 2.Introdução: A dinâmica estuda a causa do movimento
Múltipla escolha [0,5 cada]:
UNIVERSIDADE FEDERAL DO RIO DE JANEIRO - INSTITUTO DE FÍSICA P de Física I - EQN - 015- Prof.: Gabriel Bié Alves Versão: A Nas questões em que for necessário, considere que: todos os fios e molas são ideais;
3 Teoria do Método dos Elementos Discretos 3.1. Introdução
3 Teoria do Método dos Elementos Discretos 3.1. Introdução Muitos estudos têm sido reportados na literatura para entender a relação tensão deformação de um arranjo regular de esferas (3D) ou cilindros
ESPAÇO PARA RESPOSTA COM DESENVOLVIMENTO
Parte 2 - P3 de Física I - 2018-1 NOME: DRE Teste 0 Assinatura: Questão 1 - [2,5 pontos] Um bloco de massamestá pendurado por um fio ideal que está enrolado em uma polia fixa, mas que pode girar em torno
3 a prova de F 128 Diurno 30/06/2014
30/06/2014 Nome: RA: Turma: Esta prova contém 14 questões de múltipla escolha e 1 questão discursiva. Não esqueça de passar as respostas das questões de múltipla escolha para o cartão de respostas. Obs:
Lista 12: Rotação de corpos rígidos
Lista 12: Rotação de Corpos Rígidos Importante: i. Ler os enunciados com atenção. ii. Responder a questão de forma organizada, mostrando o seu raciocínio de forma coerente. iii. iv. Siga a estratégia para
Mecânica I (FIS-14) Prof. Dr. Ronaldo Rodrigues Pelá Sala 2602A-1 Ramal 5785
Mecânica I (FIS-14) Prof. Dr. Ronaldo Rodrigues Pelá Sala 2602A-1 Ramal 5785 [email protected] www.ief.ita.br/~rrpela Onde estamos? Nosso roteiro ao longo deste capítulo Cinemática retilínea: movimento contínuo
Questão Valor Grau Revisão
PUC-RIO CB-CTC G1 DE FIS 1033 Nome: GABARITO Turma: Matrícula: Questão Valor Grau Revisão 1ª 3,0 2ª 4,0 3ª 3,0 TOTAL Identidades trigonométricas: sen (2 ) = 2 sen ( ) cos ( ) As respostas sem justificativa
MESTRADO INTEGRADO EM ENG. INFORMÁTICA E COMPUTAÇÃO 2015/2016
MESTRADO INTEGRADO EM ENG. INFORMÁTICA E COMPUTAÇÃO 015/016 EIC0010 FÍSICA I 1o ANO, o SEMESTRE 1 de junho de 016 Nome: Duração horas. Prova com consulta de formulário e uso de computador. O formulário
DINÂMICA APLICADA. Livro Texto adotado: Dinâmica: Mecânica para Engenheiros R.C. Hibbeler.
DINÂMICA APLICADA Livro Texto adotado: Dinâmica: Mecânica para Engenheiros R.C. Hibbeler. Samuel Sander de Carvalho [email protected] Juiz de Fora MG Introdução: Objetivo: Desenvolver
MODELAGEM DE UM OSCILADOR NÃO LINEAR OBSERVADO NOS CURSOS DE FÍSICA BÁSICA.
MODELAGEM DE UM OSCILADOR NÃO LINEAR OBSERVADO NOS CURSOS DE FÍSICA BÁSICA. 1 IFBA, campus Salvador. e-mail: [email protected] 2 IFBA, campus Salvador. e-mail: [email protected] 3 IFBA, campus Salvador.
