Hipóteses do Modelo de Regressão Linear Clássico

Tamanho: px
Começar a partir da página:

Download "Hipóteses do Modelo de Regressão Linear Clássico"

Transcrição

1 Uversdade Federal da Baha Facldade de Cêcas coômcas Departameto de cooma CO 66 Itrodção à coometra Hpóteses do Modelo de Regressão Lear Clássco Gerváso F. Satos

2 Propredades dos estmadores de MQO As estmatvas de j, com base a amostra de j e j, podem ser tlzadas para fezer aálses o ferêcas sobre a popalção Um estmador de j precsa ter algmas propredades estatístcas j desejáves: Não vesado fcete varâca míma Cosstete As hpóteses do modelo de regressão lear clássco garatem qe essas propredades sejam matdas A volação de algma das hpótese acarretará a perda de algmas dessas propredades Neste caso, procedmetos o métodos alteratvos ao MQO podem ser aplcadas para qe as propredades sejam matdas

3 Propredades estatístcas dos estmadores de MQO Não vesado j j fcete varâca míma Var j Var qalqer k j Cosstete p lm j j

4 Hpóteses do MRLC Dado o modelo: = + + HRLC: Leardade os parâmetros: = + + HRLC: Amostragem aleatóra observações de {, : =,,.., } HRLC3: Méda codcoal zero / =

5 Hpóteses do MRLC Dado o modelo: = + + HRLC4: Varâca Amostral a varável depedete a amostra, as varáves, =,..., ão são todas gas a ma mesma costate, logo vara a poplação Se HRLC-HRLC4 -> estmadores ão vesados HRLC5: Homocedastcdade: stem observações de {, : =,,.., } HRLC6: Normaldade O erro poplacoal é depedete das varáves eplcatvas e ~N,

6 Hpótese do MRLC Dado o modelo: = + + HRLC: Leardade os parâmetros: = + + Fções leares os parâmetros = + + = e{ + } = = Qadrátca poecal Cúbca Cobb-Doglas = e Cobb-Doglas Y = A[δK - + -δl - ] -/ ão lear CS

7 Hpótese do MRLC Dado o modelo: = + + HRLC: Amostragem aleatóra observações de {, : =,,.., }, e são varáves aleatóras em algs casos a aleatoredade da amostra é volada e métodos alteratvos de estmaçao correção precsam ser aplcados

8 Hpótese 3 do MRLC Dado o modelo: = + + HRLC3: Méda codcoal zero / = esta hpótese permte qe os estmadores sejam ão vesados é cosderado fo em amostras repetdas....scolhe-se valores amostras para cada varável, qe podem, clsve, ser repetdos. Dados esses valores de, escolhe-se ma amostra de. O processo reslta em ma amostra aleatóra de. Utlzado os mesmos valores de são fados, obtém-se ma otra amostra de.e assm por date

9 Hpótese 4 do MRLC Dado o modelo: = + + HRLC4: Varâca Amostral a varável depedete a amostra, as varáves, =,..., ão são todas gas a ma mesma costate, logo vara a poplação...se ão varar o estmador j ão poderá ser calclado

10 em termos de coefcetes poplacoas e dos erros d j

11 Teorema: estêca de vés em MQO Sob as hpóteses a 4:. d d d d? j j / = =

12 Teorema: estêca de vés em MQO Sob as hpóteses a 4: e Como?

13 emplo. feto de m programa goverametal de mereda escolar sobre a porcetagem de alos do prmero ao do eso médo aprovados em m eame de matemátca MAP93.RAW. Códgo Stata mate = + prgalm +. reg mate prgalm Sorce SS df MS Nmber of obs = 38 F, 379 = Model Prob > F =. Resdal R-sqared =.475 Adj R-sqared =.453 Total Root MS = 9.47 mate Coef. Std. rr. t P> t [95% Cof. Iterval] prgalm cos Sal ão esperado para o parâmetro e provável correlação etre o termo de erro e a varável prgalm Qe otros fatores afetam a aprovação o eame de matemátca? Pese!

14 Hpótese 5 do MRLC Dado o modelo: = + + HRLC5: Homocedastcdade ssa hpótese mplca qe o método MQO teha certas propredades de efcêca a partr do sposto de qe a varâca do termo de erro é costate. Var/ = [ /] [/ ] Var/ = / Var/ = = é a varâca ão codcoal de e também é chamada de varâca do erro. é o erro padrão. Se for grade, sgfca qe a dstrbção dos fatores ão observáves qe afetam é dspersa

15 Hpótese 5 do MRLC Se a Var/ = f/ o termo de erro é cosderado heterocedástco varâca ão costate Ftted vales.: fção cosmo depededo da reda

16 Hpótese 5 do MRLC Varâca dos estmadores de MQO Var Var Var qe Sedo d Var Var d Var d Var Var d Var d

17 Hpótese 5 do MRLC Varâca dos estmadores de MQO Var Var Aálse Qado maor a varâca do erro, maor a varâca do estmador Qato maor a varação a varável eplcatva, meor a varâca do estmador

18 stmatva da varâca do erro, mas ão cohecemos Uma alteratv a sera : Mas Restrções:, Logo, m estmador é vesado, e SQR stmador ão vesadode SQR SQR. pos : ão vsesado de precsa satsfazer sera m termos de méda poplacoal m termos de méda Amostral das restrções só restaram gl ercíco Demostrar o teorema.3 stmação ão-vesada de.

19 stmação ão-vesada da Var e ep Sbsttdo por stmador da varâcadoerro : SQR rropadrã odaregressão PR : stmador davarâcadoestmador : Var rropadrã odoestmador : ep.. O mesmo vale para o estmador de

20 Nota: regressão pela orgem para solvedo CPO e seg a satsfazer precsa Dervado SQR soma e seg a mzar deve MQO método O ~ ~ ~ ~ ~ ~ : Re : t : t m

Econometria: 3 - Regressão Múltipla

Econometria: 3 - Regressão Múltipla Ecoometra: 3 - Regressão Múltpla Prof. Marcelo C. Mederos [email protected] Prof. Marco A.F.H. Cavalcat [email protected] Potfíca Uversdade Católca do Ro de Jaero PUC-Ro Sumáro O modelo de regressão

Leia mais

REGRESSÃO LINEAR 05/10/2016 REPRESENTAÇAO MATRICIAL. Y i = X 1i + 2 X 2i k X ni + i Y = X + INTRODUÇÃO SIMPLES MÚLTIPLA

REGRESSÃO LINEAR 05/10/2016 REPRESENTAÇAO MATRICIAL. Y i = X 1i + 2 X 2i k X ni + i Y = X + INTRODUÇÃO SIMPLES MÚLTIPLA REGRESSÃO LINEAR CUIABÁ, MT 6/ INTRODUÇÃO Relação dos valores da varável depedete (varável resposta) aos valores de regressoras ou exógeas). SIMPLES MÚLTIPLA (varáves depedetes,... =,,, K=,,, k em que:

Leia mais

Distribuições Amostrais. Estatística. 8 - Distribuições Amostrais UNESP FEG DPD

Distribuições Amostrais. Estatística. 8 - Distribuições Amostrais UNESP FEG DPD Dstrbuções Amostras Estatístca 8 - Dstrbuções Amostras 08- Dstrbuções Amostras Dstrbução Amostral de Objetvo: Estudar a dstrbução da população costtuída de todos os valores que se pode obter para, em fução

Leia mais

Modelo de Regressão Simples

Modelo de Regressão Simples Modelo de Regressão Smples Hstora Hstóra Termo regressão fo troduzdo por Fracs Galto (8-9). Estudo sobre altura de pas e flhos. Karl Pearso coletou mas de ml regstros e verfcou a le de regressão uversal

Leia mais

Heterocedasticidade. Prof. José Francisco Moreira Pessanha

Heterocedasticidade. Prof. José Francisco Moreira Pessanha Heterocedastcdade Prof. José Fracsco Morera Pessaha [email protected] Hpóteses do modelo de regressão lear múltpla H : Relação lear etre a varável depedete (Y) e as varáves depedetes () Notação

Leia mais

Em muitas situações duas ou mais variáveis estão relacionadas e surge então a necessidade de determinar a natureza deste relacionamento.

Em muitas situações duas ou mais variáveis estão relacionadas e surge então a necessidade de determinar a natureza deste relacionamento. Prof. Lorí Val, Dr. [email protected] http://www.pucrs.r/famat/val/ Em mutas stuações duas ou mas varáves estão relacoadas e surge etão a ecessdade de determar a atureza deste relacoameto. A aálse de regressão

Leia mais

Modelos de regressão linear: abordagem clássica

Modelos de regressão linear: abordagem clássica Modelos de regressão lear: abordagem clássca Prof. Marcelo Rubes [email protected] Depto. Estatístca Aálse de Regressão Objetvo: Determar uma fução matemátca que descreva a relação etre uma varável cotíua

Leia mais

ANÁLISE DE REGRESSÃO E CORRELAÇÃO

ANÁLISE DE REGRESSÃO E CORRELAÇÃO ANÁLISE DE REGRESSÃO E CORRELAÇÃO Quado se cosderam oservações de ou mas varáves surge um poto ovo: O estudo das relações porvetura estetes etre as varáves. A aálse de regressão e correlação compreedem

Leia mais

Econometria: 4 - Regressão Múltipla em Notação Matricial

Econometria: 4 - Regressão Múltipla em Notação Matricial Ecoometra: 4 - Regressão últpla em Notação atrcal Prof. arcelo C. ederos [email protected] Prof. arco A.F.H. Cavalcat [email protected] Potfíca Uversdade Católca do Ro de Jaero PUC-Ro Sumáro O modelo

Leia mais

Macroeconometria Aula 3 Revisão de estatística e teste de hipótese

Macroeconometria Aula 3 Revisão de estatística e teste de hipótese Macroecoometra 008. Aula 3 Revsão de estatístca e teste de hpótese 3.5. Estmação No estudo das probabldades, o objetvo é calcular a probabldade de evetos préespecfcados. De agora em date o objetvo muda.

Leia mais

3 Metodologia de Avaliação da Relação entre o Custo Operacional e o Preço do Óleo

3 Metodologia de Avaliação da Relação entre o Custo Operacional e o Preço do Óleo 3 Metodologa de Avalação da Relação entre o Custo Operaconal e o Preço do Óleo Este capítulo tem como objetvo apresentar a metodologa que será empregada nesta pesqusa para avalar a dependênca entre duas

Leia mais

Prof. Lorí Viali, Dr. PUCRS FAMAT: Departamento de Estatística Prof. Lorí Viali, Dr. PUCRS FAMAT: Departamento de Estatística

Prof. Lorí Viali, Dr. PUCRS FAMAT: Departamento de Estatística Prof. Lorí Viali, Dr. PUCRS FAMAT: Departamento de Estatística Prof. Lorí Val, Dr. http://www.pucrs.br/famat/val/ [email protected] Prof. Lorí Val, Dr. PUCRS FAMAT: Departameto de Estatístca Prof. Lorí Val, Dr. PUCRS FAMAT: Departameto de Estatístca Obetvos A Aálse de

Leia mais

7 Análise de covariância (ANCOVA)

7 Análise de covariância (ANCOVA) Plejameto de Expermetos II - Adlso dos Ajos 74 7 Aálse de covarâca (ANCOVA) 7.1 Itrodução Em algus expermetos, pode ser muto dfícl e até mpossível obter udades expermetas semelhtes. Por exemplo, pode-se

Leia mais

Estatística - exestatmeddisper.doc 25/02/09

Estatística - exestatmeddisper.doc 25/02/09 Estatístca - exestatmeddsper.doc 5/0/09 Meddas de Dspersão Itrodução ão meddas estatístcas utlzadas para avalar o grau de varabldade, ou dspersão, dos valores em toro da méda. ervem para medr a represetatvdade

Leia mais

Professor Mauricio Lutz REGRESSÃO LINEAR SIMPLES. Vamos, então, calcular os valores dos parâmetros a e b com a ajuda das formulas: ö ; ø.

Professor Mauricio Lutz REGRESSÃO LINEAR SIMPLES. Vamos, então, calcular os valores dos parâmetros a e b com a ajuda das formulas: ö ; ø. Professor Maurco Lutz 1 EGESSÃO LINEA SIMPLES A correlação lear é uma correlação etre duas varáves, cujo gráfco aproma-se de uma lha. O gráfco cartesao que represeta essa lha é deomado dagrama de dspersão.

Leia mais

Parte 3 - Regressão linear simples

Parte 3 - Regressão linear simples Parte 3 - Regressão lear smples Defção do modelo Modelo de regressão empregado para eplcar a relação lear etre duas varáves (ajuste de uma reta). O modelo de regressão lear smples pode ser epresso a forma:

Leia mais

Análise de Regressão. Profa Alcione Miranda dos Santos Departamento de Saúde Pública UFMA

Análise de Regressão. Profa Alcione Miranda dos Santos Departamento de Saúde Pública UFMA Análse de Regressão Profa Alcone Mranda dos Santos Departamento de Saúde Públca UFMA Introdução Uma das preocupações estatístcas ao analsar dados, é a de crar modelos que explctem estruturas do fenômeno

Leia mais

MOQ-14 PROJETO E ANÁLISE DE EXPERIMENTOS LISTA DE EXERCÍCIOS 1 REGRESSÃO LINEAR SIMPLES

MOQ-14 PROJETO E ANÁLISE DE EXPERIMENTOS LISTA DE EXERCÍCIOS 1 REGRESSÃO LINEAR SIMPLES MOQ-14 PROJETO E ANÁLISE DE EXPERIMENTOS LISTA DE EXERCÍCIOS 1 REGRESSÃO LINEAR SIMPLES 1. Obtenha os estmadores dos coefcentes lnear e angular de um modelo de regressão lnear smples utlzando o método

Leia mais

Econometria II. Painel (1ª Diferenças, Efeitos Fixos e escolha entre estimadores de painel)

Econometria II. Painel (1ª Diferenças, Efeitos Fixos e escolha entre estimadores de painel) Eco montora Leandro Anazawa Econometra II Este não é um resumo extensvo. O ntuto deste resumo é de servr como gua para os seus estudos. Procure desenvolver as contas e passos apresentados em sala de aula.

Leia mais

Regressão Múltipla. Parte I: Modelo Geral e Estimação

Regressão Múltipla. Parte I: Modelo Geral e Estimação Regressão Múltpla Parte I: Modelo Geral e Estmação Regressão lnear múltpla Exemplos: Num estudo sobre a produtvdade de trabalhadores ( em aeronave, navos) o pesqusador deseja controlar o número desses

Leia mais

Inferência Estatística e Aplicações I. Edson Zangiacomi Martinez Departamento de Medicina Social FMRP/USP

Inferência Estatística e Aplicações I. Edson Zangiacomi Martinez Departamento de Medicina Social FMRP/USP Iferêca Estatístca e Aplcações I Edso Zagacom Martez Departameto de Medca Socal FMRP/USP [email protected] Rotero Parte I Escola frequetsta Defções: parâmetros, estmatvas Dstrbuções de probabldade Estmação

Leia mais

1. Quantidade de dinheiro doado para caridade: muitas pessoas não fazem este tipo de doação. Uma parcela expressiva dos

1. Quantidade de dinheiro doado para caridade: muitas pessoas não fazem este tipo de doação. Uma parcela expressiva dos Tópcos em Econometra I Ala /7/23 Modelo Tobt para solção de canto Eemplos Solções de canto. Qantdade de dnhero doado para cardade: mtas pessoas não fazem este tpo de doação. Uma parcela epressva dos dados

Leia mais

Construção e Análise de Gráficos

Construção e Análise de Gráficos Costrução e Aálse de Gráfcos Por que fazer gráfcos? Facldade de vsualzação de cojutos de dados Faclta a terpretação de dados Exemplos: Egehara Físca Ecooma Bologa Estatístca Y(udade y) 5 15 1 5 Tabela

Leia mais

Estudo das relações entre peso e altura de estudantes de estatística através da análise de regressão simples.

Estudo das relações entre peso e altura de estudantes de estatística através da análise de regressão simples. Estudo das relações etre peso e altura de estudates de estatístca através da aálse de regressão smples. Waessa Luaa de Brto COSTA 1, Adraa de Souza COSTA 1. Tago Almeda de OLIVEIRA 1 1 Departameto de Estatístca,

Leia mais

É o grau de associação entre duas ou mais variáveis. Pode ser: correlacional ou. experimental.

É o grau de associação entre duas ou mais variáveis. Pode ser: correlacional ou. experimental. É o grau de assocação etre duas ou mas varáves. Pode ser: correlacoal ou Prof. Lorí Val, Dr. [email protected] http://www.mat.ufrgs.r/~val/ expermetal. Numa relação expermetal os valores de uma das varáves

Leia mais

Análise de Regressão

Análise de Regressão Análse de Regressão método estatístco que utlza relação entre duas ou mas varáves de modo que uma varável pode ser estmada (ou predta) a partr da outra ou das outras Neter, J. et al. Appled Lnear Statstcal

Leia mais

Cap. 5. Testes de Hipóteses

Cap. 5. Testes de Hipóteses Cap. 5. Testes de Hpóteses Neste capítulo será estudado o segudo problema da ferêca estatístca: o teste de hpóteses. Um teste de hpóteses cosste em verfcar, a partr das observações de uma amostra, se uma

Leia mais

Gabarito da Lista de Exercícios de Econometria I

Gabarito da Lista de Exercícios de Econometria I Gabarto da sta de Exercícos de Econometra I Professor: Rogéro lva Mattos Montor: eonardo enrque A. lva Questão Y X y x xy x ŷ ˆ ˆ y ŷ (Y - Y ) (X - X ) (Ŷ - Y ) 360 00-76 -00 35.00 40.000 36-4 30.976 3076

Leia mais

x n = n ESTATÍSTICA STICA DESCRITIVA Conjunto de dados: Organização; Amostra ou Resumo; Apresentação. População

x n = n ESTATÍSTICA STICA DESCRITIVA Conjunto de dados: Organização; Amostra ou Resumo; Apresentação. População ESTATÍSTICA STICA DESCRITIVA Prof. Lorí Val, Dr. [email protected] http://.ufrgs.br/~val/ Orgazação; Resumo; Apresetação. Cojuto de dados: Amostra ou População Um cojuto de dados é resumdo de acordo com

Leia mais

5. Funções teste. L 2 ( )= {u :? ; Borel mensurável com u 2 dx < 8 }

5. Funções teste. L 2 ( )= {u :? ; Borel mensurável com u 2 dx < 8 } 5. Fções teste Até agora estvemos tratado tesvamete com a tegração. Uma cosa qe temos vsto é qe, cosderado espaços das, podemos pesar as fções como fcoas. Vamos rever brevemete esta déa. osdere a bola

Leia mais

HIDROLOGIA E RECURSOS HÍDRICOS. Análise estatística aplicada à hidrologia

HIDROLOGIA E RECURSOS HÍDRICOS. Análise estatística aplicada à hidrologia Aálse estatístca aplcada à hdrologa. Séres hdrológcas oções complemetares HIDROLOGIA E RECURSOS HÍDRICOS Aálse estatístca aplcada à hdrologa O Egehero HIDRÁULICO Echerá? Que população pode abastecer e

Leia mais

Estatística Descritiva. Medidas estatísticas: Localização, Dispersão

Estatística Descritiva. Medidas estatísticas: Localização, Dispersão Estatístca Descrtva Meddas estatístcas: Localzação, Dspersão Meddas estatístcas Localzação Dspersão Meddas estatístcas - localzação Méda artmétca Dados ão agrupados x x Dados dscretos agrupados x f r x

Leia mais

Estatística. 2 - Estatística Descritiva

Estatística. 2 - Estatística Descritiva Estatístca - Estatístca Descrtva UNESP FEG DPD Prof. Edgard - 0 0- ESTATÍSTICA DESCRITIVA Possblta descrever as Varáves: DESCRIÇÃO GRÁFICA MEDIDAS DE POSIÇÃO MEDIDAS DE DISPERSÃO MEDIDAS DE ASSIMETRIA

Leia mais

Contabilometria. Aula 8 Regressão Linear Simples

Contabilometria. Aula 8 Regressão Linear Simples Contalometra Aula 8 Regressão Lnear Smples Orgem hstórca do termo Regressão Le da Regressão Unversal de Galton 1885 Galton verfcou que, apesar da tendênca de que pas altos tvessem flhos altos e pas axos

Leia mais

MEDIDAS DE POSIÇÃO: X = soma dos valores observados. Onde: i 72 X = 12

MEDIDAS DE POSIÇÃO: X = soma dos valores observados. Onde: i 72 X = 12 MEDIDAS DE POSIÇÃO: São meddas que possbltam represetar resumdamete um cojuto de dados relatvos à observação de um determado feômeo, pos oretam quato à posção da dstrbução o exo dos, permtdo a comparação

Leia mais

Revisão de Estatística X = X n

Revisão de Estatística X = X n Revsão de Estatístca MÉDIA É medda de tedêca cetral mas comumete usada ara descrever resumdamete uma dstrbução de freqüêca. MÉDIA ARIMÉTICA SIMPLES São utlzados os valores do cojuto com esos guas. + +...

Leia mais

Associação entre duas variáveis quantitativas

Associação entre duas variáveis quantitativas Exemplo O departamento de RH de uma empresa deseja avalar a efcáca dos testes aplcados para a seleção de funconáros. Para tanto, fo sorteada uma amostra aleatóra de 50 funconáros que fazem parte da empresa

Leia mais

( ) ( IV ) n ( ) Escolha a alternativa correta: A. III, II, I, IV. B. II, III, I, IV. C. IV, III, I, II. D. IV, II, I, III. E. Nenhuma das anteriores.

( ) ( IV ) n ( ) Escolha a alternativa correta: A. III, II, I, IV. B. II, III, I, IV. C. IV, III, I, II. D. IV, II, I, III. E. Nenhuma das anteriores. Prova de Estatístca Epermetal Istruções geras. Esta prova é composta de 0 questões de múltpla escolha a respeto dos cocetos báscos de estatístca epermetal, baseada os lvros BANZATTO, A.D. e KRONKA, S.N.

Leia mais

O problema da superdispersão na análise de dados de contagens

O problema da superdispersão na análise de dados de contagens O problema da superdspersão na análse de dados de contagens 1 Uma das restrções mpostas pelas dstrbuções bnomal e Posson, aplcadas usualmente na análse de dados dscretos, é que o parâmetro de dspersão

Leia mais

É o grau de associação entre duas ou mais variáveis. Pode ser: correlacional ou experimental.

É o grau de associação entre duas ou mais variáveis. Pode ser: correlacional ou experimental. É o grau de assocação etre duas ou mas varáves. Pode ser: Prof. Lorí Val, Dr. [email protected] http://www.pucrs.br/famat/val www.pucrs.br/famat/val/ correlacoal ou expermetal. Numa relação expermetal os valores

Leia mais

Análise do Retorno da Educação na Região Norte em 2007: Um Estudo à Luz da Regressão Quantílica.

Análise do Retorno da Educação na Região Norte em 2007: Um Estudo à Luz da Regressão Quantílica. Análse do Retorno da Edcação na Regão Norte em 2007: Um Estdo à Lz da Regressão Qantílca. 1 Introdcão Almr Rogéro A. de Soza 1 Jâno Macel da Slva 2 Marnalva Cardoso Macel 3 O debate sobre o relaconamento

Leia mais

3. ANPEC Questão 15 Ainda em relação à questão anterior pode-se concluir que, exceto por erro de arredondamento:

3. ANPEC Questão 15 Ainda em relação à questão anterior pode-se concluir que, exceto por erro de arredondamento: Lsta de Exercícos #9 Ass uto: Aáls e de Re gres s ão Mé todo de Mímos Quadrados. ANPEC 99 - Questão 8 A capacdade de produção stalada (Y), em toeladas, de uma frma, pode ser fução da potêca stalada (X),

Leia mais

ESCOLA SUPERIOR DE TECNOLOGIA UNIVERSIDADE DO ALGARVE

ESCOLA SUPERIOR DE TECNOLOGIA UNIVERSIDADE DO ALGARVE SCOLA SUPIO D CNOLOGIA UNIVSIDAD DO ALGAV CUSO BIÁPICO M NGNHAIA CIVIL º cclo egme Duro/Nocturo Dscpla de COMPLMNOS D MAMÁICA Ao lectvo de 7/8 - º Semestre Ídce. egressão lear múltpla.... Itrodução....

Leia mais

Métodos iterativos. Capítulo O Método de Jacobi

Métodos iterativos. Capítulo O Método de Jacobi Capítulo 4 Métodos teratvos 41 O Método de Jacob O Método de Jacob é um procedmeto teratvo para a resolução de sstemas leares Tem a vatagem de ser mas smples de se mplemetar o computador do que o Método

Leia mais

Capítulo 1. Exercício 5. Capítulo 2 Exercício

Capítulo 1. Exercício 5. Capítulo 2 Exercício UNIVERSIDADE FEDERAL DE GOIÁS CIÊNCIAS ECONÔMICAS ECONOMETRIA (04-II) PRIMEIRA LISTA DE EXERCÍCIOS Exercícos do Gujarat Exercíco 5 Capítulo Capítulo Exercíco 3 4 5 7 0 5 Capítulo 3 As duas prmeras demonstrações

Leia mais

PRESSUPOSTOS DO MODELO DE REGRESSÃO

PRESSUPOSTOS DO MODELO DE REGRESSÃO PREUPOTO DO MODELO DE REGREÃO A aplcação do modelo de regressão lnear múltpla (bem como da smples) pressupõe a verfcação de alguns pressupostos que condensamos segudamente.. Os erros E são varáves aleatóras

Leia mais

MEDIDAS DE DISPERSÃO:

MEDIDAS DE DISPERSÃO: MEDID DE DIPERÃO: fução dessas meddas é avalar o quato estão dspersos os valores observados uma dstrbução de freqüêca ou de probabldades, ou seja, o grau de afastameto ou de cocetração etre os valores.

Leia mais

Regressão Linear Simples. Frases. Roteiro

Regressão Linear Simples. Frases. Roteiro Regressão Lnear Smples Frases Por serem mas precsos que as palavras, os números são partcularmente adequados para transmtr conclusões centífcas Pagano e Gauvre, 4 Rotero. Modelagem de Relação. Modelo Lnear

Leia mais

Conceitos básicos de metrologia. Prof. Dr. Evandro Leonardo Silva Teixeira Faculdade UnB Gama

Conceitos básicos de metrologia. Prof. Dr. Evandro Leonardo Silva Teixeira Faculdade UnB Gama Prof. Dr. Evadro Leoardo Slva Teera Faculdade UB Gama Metrologa: Cêca que abrage os aspectos teórcos e prátcos relatvos a medção; Descreve os procedmetos e métodos para determar as certezas de medções;

Leia mais

MEDIDAS DE TENDÊNCIA CENTRAL I

MEDIDAS DE TENDÊNCIA CENTRAL I Núcleo das Cêcas Bológcas e da Saúde Cursos de Bomedca, Ed. Físca, Efermagem, Farmáca, Fsoterapa, Fooaudologa, edca Veterára, uscoterapa, Odotologa, Pscologa EDIDAS DE TENDÊNCIA CENTRAL I 7 7. EDIDAS DE

Leia mais

Testes à Estabilidade dos Parâmetros de um Modelo de Regressão: Uma Aplicação Especial dos Regressores Dummy

Testes à Estabilidade dos Parâmetros de um Modelo de Regressão: Uma Aplicação Especial dos Regressores Dummy R EVISTA DE E STATÍSTICA 4ª P A GINA º QUADRIMESTRE DE Testes à Establdade dos Parâmetros de m Modelo de Regressão: Uma Aplcação Especal dos Regressores Dmm Atores: Patríca Oom do Valle Efgéo Rebelo VOLUME

Leia mais

Análise de Regressão e Correlação

Análise de Regressão e Correlação Aálse e Regressão e Correlação Fo já estuao a forma e escrever um cojuto e oservações e uma só varável. Quao se coseram oservações e uas ou mas varáves surge um ovo poto. O estuo as relações porvetura

Leia mais

É o grau de associação entre duas ou mais variáveis. Pode ser: correlacional ou experimental.

É o grau de associação entre duas ou mais variáveis. Pode ser: correlacional ou experimental. Prof. Lorí Val, Dr. [email protected] http://www.mat.ufrgs.br/~val/ É o grau de assocação entre duas ou mas varáves. Pode ser: correlaconal ou expermental. Numa relação expermental os valores de uma das

Leia mais

Testes não-paramétricos

Testes não-paramétricos Testes não-paramétrcos Prof. Lorí Val, Dr. http://www.mat.ufrgs.br/val/ [email protected] Um teste não paramétrco testa outras stuações que não parâmetros populaconas. Estas stuações podem ser relaconamentos,

Leia mais

Dualidades entre Análise de Covariância e Análise de Regressão com variáveis dummy

Dualidades entre Análise de Covariância e Análise de Regressão com variáveis dummy R EVISA DE E SAÍSICA 65ª P AGINA º QUADRIESRE DE Daldades etre Aálse de Covarâca e Aálse de Regressão com varáves dmm Atores: Patríca Oom do Valle Efgéo Rebelo VOLUE II º QUADRIESRE DE R EVISA DE E SAÍSICA

Leia mais

Estimação pontual, estimação intervalar e tamanho de amostras

Estimação pontual, estimação intervalar e tamanho de amostras Estmação potual, estmação tervalar e tamaho de amostras Iferêca: por meo das amostras, cohecer formações geras da população. Problemas de ferêca, em geral, se dvdem em estmação de parâmetros e testes de

Leia mais

Média. Mediana. Ponto Médio. Moda. Itabira MEDIDAS DE CENTRO. Prof. Msc. Emerson José de Paiva 1 BAC011 - ESTATÍSTICA. BAC Estatística

Média. Mediana. Ponto Médio. Moda. Itabira MEDIDAS DE CENTRO. Prof. Msc. Emerson José de Paiva 1 BAC011 - ESTATÍSTICA. BAC Estatística BAC 0 - Estatístca Uversdade Federal de Itajubá - Campus Itabra BAC0 - ESTATÍSTICA ESTATÍSTICA DESCRITIVA MEDIDAS DE CENTRO Méda Medda de cetro ecotrada pela somatóra de todos os valores de um cojuto,

Leia mais